Geodesics in Riemannian Space
 Copyright © 2010 by Joel A. Shapiro

We saw that in generalized coordinates, even if we restrict our point transformations to be time-independent, the kinetic energy is in general given by a more complicated quadratic in the velocities,

$$
T=\frac{1}{2} \sum_{j k} g_{j k}(\{x\}) \dot{x}_{j} \dot{x}_{k}
$$

where the mass matrix $g_{j k}(\{x\})$ can be a function on coordiate space $\{x\}$, and can have off-diagonal elements, though it is a real symmetric matrix. We can think of g as providing a metric, a measure on infinitesimal displacements $d x_{i}$

$$
(d s)^{2}=\sum_{j k} g_{j k}\left(\left\{x_{i}\right\}\right) d x_{j} d x_{k}
$$

Aside from weighting the distance each particle moves by its mass, this also allows for distances to be described appropriately for non-cartesian coordinates.

Consider a system with no forces, no potential. Then the action is just (half) the "distance" as defined by the metric g, so we expect the path to be of minimum length, to be a "straight line". What does that mean if the space is not Euclidean?

If a path in $\{x\}$ space is given by $x_{i}(\lambda)$, the length of the path is

$$
\ell=\int_{\lambda_{i}}^{\lambda_{f}} \sqrt{(d s)^{2}}=\int_{\lambda_{i}}^{\lambda_{f}} \sqrt{\sum_{j k} g_{j k}\left(\left\{x_{i}\right\}\right) \frac{d x_{j}}{d \lambda} \frac{d x_{k}}{d \lambda}} d \lambda
$$

This is like Hamilton with $L \rightarrow f=\sqrt{\sum_{j k} g_{j k}\left(\left\{x_{i}\right\}\right) \dot{x}_{j} \dot{x}_{k}}$, with $t \rightarrow \lambda$. Then the shortest length is a stationary action, given by the Lagrange equations based on

$$
f\left(\left\{x_{j}\right\},\left\{\dot{x}_{k}\right\}\right)=\sqrt{\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}},
$$

where $\dot{x}_{j}:=d x_{j} / d \lambda$, not the time derivative.
(a) Thus

$$
\frac{\partial f}{\partial \dot{x}_{i}}=\frac{\sum_{k} g_{i k} \dot{x}_{k}}{\sqrt{\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}}}
$$

while

$$
\frac{\partial f}{\partial x_{i}}=\frac{1}{2} \sum_{j k} \frac{\partial g_{j k}}{\partial x_{i}} \dot{x}_{j} \dot{x}_{k} / \sqrt{\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}}
$$

We notice that life would be a lot simpler if we could assume $\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}=1$. We will do so later, after having justified it, but for now we just plod along.

Lagrange's equations give

$$
\begin{aligned}
0= & \frac{d}{d \lambda} \frac{\partial f}{\partial \dot{x}_{i}}-\frac{\partial f}{\partial x_{i}} \\
= & \frac{\sum_{j k} \frac{\partial g_{i k}}{\partial x_{j}} \dot{x}_{j} \dot{x}_{k}+\sum_{k} g_{i k} \ddot{x}_{k}}{\sqrt{\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}}} \\
& \quad-\frac{1}{2} \frac{\left(\sum_{k} g_{i k} \dot{x}_{k}\right)\left(\sum_{j k} 2 g_{j k} \dot{x}_{j} \ddot{x}_{k}+\sum_{j k m} \frac{\partial g_{j k}}{\partial x_{m}} \dot{x}_{j} \dot{x}_{k} \dot{x}_{m}\right)}{\left(\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}\right)^{3 / 2}} \\
& \quad-\frac{1}{2} \frac{\sum_{j k} \frac{\partial g_{j k}}{\partial x_{i}} \dot{x}_{j} \dot{x}_{k}}{\sqrt{\sum_{j k} g_{j k} \dot{x}_{j} \dot{x}_{k}}}
\end{aligned}
$$

Multiplying by $\left(\sum_{m n} g_{m n} \dot{x}_{m} \dot{x}_{n}\right)^{3 / 2}$, we have

$$
\begin{gathered}
0=\sum_{j k m n}\left(g_{m n} \frac{\partial g_{i k}}{\partial x_{j}}-\frac{1}{2} g_{i n} \frac{\partial g_{j k}}{\partial x_{m}}-\frac{1}{2} g_{m n} \frac{\partial g_{j k}}{\partial x_{i}}\right) \dot{x}_{j} \dot{x}_{k} \dot{x}_{m} \dot{x}_{n} \\
+\sum_{k m n}\left(g_{m n} g_{i k}-g_{i m} g_{n k}\right) \dot{x}_{m} \dot{x}_{n} \ddot{x}_{k} .
\end{gathered}
$$

We seem to have three differential equations for our three functions $x_{i}(\lambda)$, but if we multiply by \dot{x}_{i} and sum on i, we get an identity, because the g factors in parentheses vanish when contracted with expressions symmetric under $i \leftrightarrow j$, under $j \leftrightarrow m$, and under $i \leftrightarrow n$. So we see the three equations are not independent. Why?
(b) The length has been written in a form independant of the variable used to describe the position along the path, as can be seem by the chain rule, as $\sqrt{\sum g_{j k} \frac{\partial x_{j}}{\partial \sigma} \frac{\partial x_{k}}{\partial \sigma}}=\frac{d \lambda}{d \sigma} \sqrt{\sum g_{j k} \frac{\partial x_{j}}{\partial \lambda} \frac{\partial x_{k}}{\partial \lambda}}$. But if $m=\lambda+\delta \lambda, \delta x_{i}=\dot{x}_{i} \delta \lambda$, so \dot{x}_{i} times the variation due to δx_{i} gives zero for any path.

We may use this independence of parameterization to justify taking our parameter λ to be the distance s from the beginning up to the point in question, in which case $(d \lambda)^{2}=\sum_{j k} g_{j k} d x_{j} d x_{k}$ and $\sum g_{j k} \frac{\partial x_{j}}{\partial \lambda} \frac{\partial x_{k}}{\partial \lambda}=1$. Thus we can ignore this denominator in our Lagrange equation, and get

$$
0=\frac{d}{d s} \sum_{k} g_{i k} \dot{x}_{k}-\frac{1}{2} \sum_{j k} \frac{\partial g_{j k}}{\partial x_{i}} \dot{x}_{j} \dot{x}_{k}=\sum_{k} g_{i k} \ddot{x}_{k}+\sum_{j k}\left(\frac{\partial g_{i k}}{\partial x_{j}}-\frac{1}{2} \frac{\partial g_{j k}}{\partial x_{i}}\right) \dot{x}_{j} \dot{x}_{k} .
$$

To extract the equations with individual $d^{2} x_{k} / d s^{2}$, define $G_{\ell i}$ to be the inverse matrix to $g_{i k}$, or more precisely, because we are talking about matrices and not their matrix elements, $G=g^{-1}$. Also notice that, because it is multiplied by $\dot{x}_{j} \dot{x}_{k}$, we can replace the $\frac{\partial g_{i k}}{\partial x_{j}}$ in the second term with $\frac{1}{2} \frac{\partial g_{i k}}{\partial x_{j}}+$ $\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{k}}$ so we find the geodesic equation
$\frac{d^{2} x_{i}}{d s^{2}}+\sum_{j k} \Gamma^{i}{ }_{j k} \frac{d x_{j}}{d s} \frac{d x_{k}}{d \tau}=0, \quad$ with $\quad \Gamma^{i}{ }_{j k}:=\frac{1}{2} \sum_{m} G_{i m}\left(\frac{\partial g_{m k}}{\partial x_{j}}+\frac{\partial g_{m j}}{\partial x_{k}}-\frac{\partial g_{j k}}{\partial x_{m}}\right)$.
Generalized to four-dimensional space with the appropriate generalization of the Minkowski metcic, $\Gamma^{\lambda}{ }_{\mu \nu}$ is called the Christoffel symbol or affine connection.

