Physics 507Homework #11Due: Thursday, Dec. 2, 2010

11.1 (a) Show that a particle under a central force with an attractive *potential* inversely proportional to the distance *squared* has a conserved quantity $D = \frac{1}{2}\vec{r} \cdot \vec{p} - Ht$.

(b) Show that the infinitesimal transformation generated by $G := \frac{1}{2}\vec{r}\cdot\vec{p}$ scales \vec{r} and \vec{p} by opposite infinitesimal amounts, $\vec{Q} = (1 + \frac{\epsilon}{2})\vec{r}, \vec{P} = (1 - \frac{\epsilon}{2})\vec{p}$, or for a finite transformation $\vec{Q} = \lambda \vec{r}, \vec{P} = \lambda^{-1}\vec{p}$. Show that if we describe the motion in terms of a scaled time $T = \lambda^2 t$, the equations of motion are invariant under this combined transformation $(\vec{r}, \vec{p}, t) \to (\vec{Q}, \vec{P}, T)$.

11.2 Consider a particle of mass m and charge q in the field of a fixed electric dipole with dipole moment¹ p. In spherical coordinates, the potential energy is given by

$$U(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{qp}{r^2} \cos\theta.$$

a) Write the Hamiltonian. It is independent of t and ϕ . As a consequence, there are two conserved quantities. What are they?

b) Find the partial differential equation in t, r, θ , and ϕ satisfied by Hamilton's principal function S, and the partial differential equation in r, θ , and ϕ satisfied by Hamilton's characteristic function W.

c) Assume W can be broken up into r-dependent, θ -dependent, and ϕ -dependent pieces:

$$W(r, \theta, \phi, P_i) = W_r(r, P_i) + W_{\theta}(\theta, P_i) + W_{\phi}(\phi, P_i).$$

Find ordinary differential equations for W_r , W_{θ} and W_{ϕ} .

¹Please note that q and p are the charge and dipole moments here, not coordinates or momenta of the particle.