Physics 507 Homework \#11 Due: Thursday, Dec. 2, 2010

11.1 (a) Show that a particle under a central force with an attractive potential inversely proportional to the distance squared has a conserved quantity $D=\frac{1}{2} \vec{r} \cdot \vec{p}-H t$.
(b) Show that the infinitesimal transformation generated by $G:=\frac{1}{2} \vec{r} \cdot \vec{p}$ scales \vec{r} and \vec{p} by opposite infinitesimal amounts, $\vec{Q}=\left(1+\frac{\epsilon}{2}\right) \vec{r}, \vec{P}=\left(1-\frac{\epsilon}{2}\right) \vec{p}$, or for a finite transformation $\vec{Q}=\lambda \vec{r}, \vec{P}=\lambda^{-1} \vec{p}$. Show that if we describe the motion in terms of a scaled time $T=\lambda^{2} t$, the equations of motion are invariant under this combined transformation $(\vec{r}, \vec{p}, t) \rightarrow(\vec{Q}, \vec{P}, T)$.
11.2 Consider a particle of mass m and charge q in the field of a fixed electric dipole with dipole moment ${ }^{1} p$. In spherical coordinates, the potential energy is given by

$$
U(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q p}{r^{2}} \cos \theta
$$

a) Write the Hamiltonian. It is independent of t and ϕ. As a consequence, there are two conserved quantities. What are they?
b) Find the partial differential equation in t, r, θ, and ϕ satisfied by Hamilton's principal function S, and the partial differential equation in r, θ, and ϕ satisfied by Hamilton's characteristic function W.
c) Assume W can be broken up into r-dependent, θ-dependent, and ϕ dependent pieces:

$$
W\left(r, \theta, \phi, P_{i}\right)=W_{r}\left(r, P_{i}\right)+W_{\theta}\left(\theta, P_{i}\right)+W_{\phi}\left(\phi, P_{i}\right)
$$

Find ordinary differential equations for W_{r}, W_{θ} and W_{ϕ}.

[^0]
[^0]: ${ }^{1}$ Please note that q and p are the charge and dipole moments here, not coordinates or momenta of the particle.

