Physics 507 Homework \#10
 Due: Thursday, Nov. 18, 2010

$\mathbf{1 0 . 1}$ [20 points] We have considered k-forms in 3-D Euclidean space and their relation to vectors expressed in cartesian basis vectors. We have seen that k-forms are invariant under change of coordinatization of \mathcal{M}, so we can use them to examine the forms of the gradient, curl, divergence and laplacian in general coordinates in three dimensional space. We will restrict our treatment to orthogonal curvilinear coordinates $\left(q_{1}, q_{2}, q_{3}\right)$, for which we have, at each point $\mathbf{p} \in \mathcal{M}$, a set of orthonormal basis vectors \hat{e}_{i} directed along the corresponding coordinate, so that $d q_{i}\left(\hat{e}_{j}\right)=0$ for $i \neq j$. We assume they are right handed, so $\hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j}$ and $\hat{e}_{i} \times \hat{e}_{j}=\sum_{k} \epsilon_{i j k} \hat{e}_{k}$. The $d q_{i}$ are not normalized measures of distance, so we define $h_{i}(\mathbf{p})$ so that $d q_{i}\left(\hat{e}_{j}\right)=h_{i}^{-1} \delta_{i j}$ (no sum).
(a) For a function $f\left(q_{1}, q_{2}, q_{3}\right)$ and a vector $\vec{v}=\sum v_{i} \hat{e}_{i}$, we know that $d f(\vec{v})=$ $\vec{v} \cdot \vec{\nabla} f$. Use this to find the expression for $\vec{\nabla} f$ in the basis \hat{e}_{i}.
(b) Use this to get the general relation of a 1 -form $\sum \omega_{i} d q_{i}$ to its associated vector $\vec{v}=\sum v_{i} \hat{e}_{i}$.
(c) If a 1 -form $\omega^{(a)}$ is associated with $\vec{v}^{(a)}$ and 1 -form $\omega^{(b)}$ is associated with $\vec{v}^{(b)}$, we know the 2 -form $\omega^{(a)} \wedge \omega^{(b)}$ is associated with $\vec{v}^{(a)} \times \vec{v}^{(b)}$. Use this to find the general association of a 2 -form with a vector.
(d) We know that if a 1 -form ω is associated with a vector vecv, then $d \omega$ is associated with $\vec{\nabla} \times \vec{v}$. Use this to find the expression for $\vec{\nabla} \times \vec{v}$ in orthogonal curvilinear coordinates.
(e) If the 1 -form ω is associated with \vec{v} and the 2 -form Ω is associated with \vec{F}, we know that $\omega \wedge \Omega$ is associated with the scalar $\vec{v} \cdot \vec{F}$. Use this to find the general association of a 3 -form with a scalar.
(f) If the 2 -form Ω is associated with \vec{v}, we know that $d \Omega$ is associated with the divergence of \vec{v}. Use this to find the expression for $\vec{\nabla} \cdot \vec{v}$ in orthogonal curvilinear coordinates.
(g) Use (a) and (f) to find the expression for the laplacian of a scalar, $\nabla^{2} f=\vec{\nabla} \cdot \vec{\nabla} f$, in orthogonal curvilinear coordinates.
10.2 Consider the unusual Hamiltonian for a one-dimensional problem

$$
H=\omega\left(x^{2}+1\right) p,
$$

where ω is a constant.
(a) Find the equations of motion, and solve for $x(t)$.
(b) Consider the transformation to new phase-space variables $P=\alpha p^{\frac{1}{2}}$, $Q=\beta x p^{\frac{1}{2}}$. Find the conditions necessary for this to be a canonical transformation, and find a generating function $F(x, Q)$ for this transformation.
(c) What is the Hamiltonian in the new coordinates?

