Physics 507
 Homework \#9 Due: Nov. 11, 2010

9.1 Two lagrangians, L_{1} and L_{2}, which differ by a total time derivative of a function on extended configuration space,

$$
L_{1}\left(\left\{q_{i}\right\},\left\{\dot{q}_{j}\right\}, t\right)=L_{2}\left(\left\{q_{i}\right\},\left\{\dot{q}_{j}\right\}, t\right)+\frac{d}{d t} \Phi\left(q_{1}, \ldots, q_{n}, t\right)
$$

describe the same dynamics. That is, they give the same equations of motion $q_{i}(t)$, but they give differing momenta $p_{i}^{(1)}$ and $p_{i}^{(2)}$. Find the relationship between the two momenta and between the two Hamiltonians, H_{1} and H_{2}, and show that these Hamiltonians lead to equivalent equations of motion.
9.2 A uniform static magnetic field can be described by a static vector potential $\vec{A}=\frac{1}{2} \vec{B} \times \vec{r}$. A particle of mass m and charge q moves under the influence of this field.
(a) Find the Hamiltonian, using inertial cartesian coordinates.
(b) Find the Hamiltonian, using coordinates of a rotating system with angular velocity $\vec{\omega}=-q \vec{B} / 2 m c$.
9.3 (a) Show directly that the transformation

$$
Q=\ln \left(\frac{\sin p}{q}\right), \quad P=q \cot p
$$

is canonical.
(b) Show directly that, for a arbitrary fixed constant α,

$$
Q=\arctan \left(\frac{\alpha q}{p}\right), \quad P=\frac{\alpha q^{2}}{2}\left(1+\frac{p^{2}}{\alpha^{2} q^{2}}\right)
$$

is canonical.

