
Physics 507 Homework #5
Due: Thursday, Oct. 7, 2010

5.1 Consider a particle constrained to move on the surface described in
cylindrical coordinates by z = αr3, subject to a constant gravitational force
~F = −mgêz. Find the Lagrangian, two conserved quantities, and reduce the
problem to a one dimensional problem. What is the condition for circular
motion at constant r?

5.2 Suppose a particle of mass m moves under the influence of a power-
law central force, ~F = −crpêr, and is observed to have an orbit which is a
circle of radius R passing through the point of attraction.

Find what values the power p could be, what is the angular momentum
about the center of force, and what is the energy relative to U(∞).

How do θ̇, ẏ, and ẋ behave as the particle approaches the origin, as a
function of r as r → 0?. Is this consistent with x taking its minimum value
at that point?

Hamilton’s Principle tells us that the motion of a particle is determined
by the action functional being stationary under small variations of the path
Γ in extended configuration space (t, ~x). The unsymmetrical treatment of
t and ~x(t) is not suitable for relativity, but we may still associate an action
with each path, which we can parameterize with λ, so Γ is the trajectory
λ→ (t(λ), ~x(λ)).

In the general relativistic treatment of a particle’s motion in a gravita-
tional field, the action is given by mc2∆τ , where ∆τ is the elapsed proper
time, ∆τ =

∫
dτ . But distances and time intervals are measured with a spa-

tial varying metric gµν , with µ and ν ranging from 0 to 3, with the zeroth
component referring to time. The four components of extended configura-
tion space are written xµ, with a superscript rather than a subscript, and
x0 = ct. The other three xµ can be generalized coordinates, as long as gµν is
appropriate. In the next problem they are similar to spherical coordinates.
The gravitational field is described by the space-time dependence of the
metric gµν(x

ρ). In this language, an infinitesimal element of the path of a

particle corresponds to a proper time dτ = (1/c)
√∑

µν gµνdxµdxν , so

S = mc2∆τ = mc
∫

dλ

√√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ
.

This is in preparation for the next problem which is worth 20 points,
twice normal.



5.3 In problem 2.12 we learned that the general-relativistic motion of a
particle in a gravitational field is given by Hamilton’s variational principle
on the path xµ(λ) with the action

S =
∫

dλL with L = mc

√√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ
,

where we may freely choose the path parameter λ to be the proper time
(after doing the variation), so that the

√
is c, the speed of light.

The gravitational field of a static point mass M is given by the
Schwartzschild metric

g00 = 1−2GM

rc2
, grr = −1

/(
1− 2GM

rc2

)
, gθθ = −r2, gφφ = −r2 sin2 θ,

where all other components of gµν are zero. Treating the four xµ(λ) as
the coordinates, with λ playing the role of time, find the four conjugate
momenta pµ, show that p0 and pφ = L are constants, and use the freedom
to choose

λ = τ =
1

c

∫ √√√√∑
µν

gµν(xρ)
dxµ

dλ

dxν

dλ

to show m2c2 =
∑

µν gµνpµpν , where gµν is the inverse matrix to gαβ. Use
this to show that

dr

dτ
=

√√√√κ−
(
−2GM

r
+

L2

m2r2
− 2GML2

m2r3c2

)
,

where κ is a constant. For an almost circular orbit at the minimum r = a of
the effective potential this implies, show that the precession of the perihelion
is 6πGM/ac2.

Find the rate of precession for Mercury, with G = 6.67×10−11 Nm2/kg2,
M = 1.99 × 1030 kg and a = 5.79 × 1010 m, per revolution, and also per
century, using the period of the orbit as 0.241 years.


