Physics 507 Homework \#5 Due: Thursday, Oct. 7, 2010

5.1 Consider a particle constrained to move on the surface described in cylindrical coordinates by $z=\alpha r^{3}$, subject to a constant gravitational force $\vec{F}=-m g \hat{e}_{z}$. Find the Lagrangian, two conserved quantities, and reduce the problem to a one dimensional problem. What is the condition for circular motion at constant r ?
5.2 Suppose a particle of mass m moves under the influence of a powerlaw central force, $\vec{F}=-c r^{p} \hat{e}_{r}$, and is observed to have an orbit which is a circle of radius R passing through the point of attraction.

Find what values the power p could be, what is the angular momentum about the center of force, and what is the energy relative to $U(\infty)$.

How do $\dot{\theta}, \dot{y}$, and \dot{x} behave as the particle approaches the origin, as a function of r as $r \rightarrow 0$?. Is this consistent with x taking its minimum value at that point?

Hamilton's Principle tells us that the motion of a particle is determined by the action functional being stationary under small variations of the path Γ in extended configuration space (t, \vec{x}). The unsymmetrical treatment of t and $\vec{x}(t)$ is not suitable for relativity, but we may still associate an action with each path, which we can parameterize with λ, so Γ is the trajectory $\lambda \rightarrow(t(\lambda), \vec{x}(\lambda))$.

In the general relativistic treatment of a particle's motion in a gravitational field, the action is given by $m c^{2} \Delta \tau$, where $\Delta \tau$ is the elapsed proper time, $\Delta \tau=\int d \tau$. But distances and time intervals are measured with a spatial varying metric $g_{\mu \nu}$, with μ and ν ranging from 0 to 3 , with the zeroth component referring to time. The four components of extended configuration space are written x^{μ}, with a superscript rather than a subscript, and $x^{0}=c t$. The other three x^{μ} can be generalized coordinates, as long as $g_{\mu \nu}$ is appropriate. In the next problem they are similar to spherical coordinates. The gravitational field is described by the space-time dependence of the metric $g_{\mu \nu}\left(x^{\rho}\right)$. In this language, an infinitesimal element of the path of a particle corresponds to a proper time $d \tau=(1 / c) \sqrt{\sum_{\mu \nu} g_{\mu \nu} d x^{\mu} d x^{\nu}}$, so

$$
S=m c^{2} \Delta \tau=m c \int d \lambda \sqrt{\sum_{\mu \nu} g_{\mu \nu}\left(x^{\rho}\right) \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}}
$$

This is in preparation for the next problem which is worth 20 points, twice normal.
5.3 In problem 2.12 we learned that the general-relativistic motion of a particle in a gravitational field is given by Hamilton's variational principle on the path $x^{\mu}(\lambda)$ with the action

$$
S=\int d \lambda \mathcal{L} \quad \text { with } \quad \mathcal{L}=m c \sqrt{\sum_{\mu \nu} g_{\mu \nu}\left(x^{\rho}\right) \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}}
$$

where we may freely choose the path parameter λ to be the proper time (after doing the variation), so that the $\sqrt{ }$ is c, the speed of light.

The gravitational field of a static point mass M is given by the Schwartzschild metric
$g_{00}=1-\frac{2 G M}{r c^{2}}, \quad g_{r r}=-1 /\left(1-\frac{2 G M}{r c^{2}}\right), \quad g_{\theta \theta}=-r^{2}, \quad g_{\phi \phi}=-r^{2} \sin ^{2} \theta$,
where all other components of $g_{\mu \nu}$ are zero. Treating the four $x^{\mu}(\lambda)$ as the coordinates, with λ playing the role of time, find the four conjugate momenta p_{μ}, show that p_{0} and $p_{\phi}=L$ are constants, and use the freedom to choose

$$
\lambda=\tau=\frac{1}{c} \int \sqrt{\sum_{\mu \nu} g_{\mu \nu}\left(x^{\rho}\right) \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}}
$$

to show $m^{2} c^{2}=\sum_{\mu \nu} g^{\mu \nu} p_{\mu} p_{\nu}$, where $g^{\mu \nu}$ is the inverse matrix to $g_{\alpha \beta}$. Use this to show that

$$
\frac{d r}{d \tau}=\sqrt{\kappa-\left(-\frac{2 G M}{r}+\frac{L^{2}}{m^{2} r^{2}}-\frac{2 G M L^{2}}{m^{2} r^{3} c^{2}}\right)}
$$

where κ is a constant. For an almost circular orbit at the minimum $r=a$ of the effective potential this implies, show that the precession of the perihelion is $6 \pi G M / a c^{2}$.

Find the rate of precession for Mercury, with $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$, $M=1.99 \times 10^{30} \mathrm{~kg}$ and $a=5.79 \times 10^{10} \mathrm{~m}$, per revolution, and also per century, using the period of the orbit as 0.241 years.

