Notes to be added at the end of Section 5.2

In this section we will explore the effects of driving forces on oscillators. For simplicity let us consider a damped oscillator with one degree of freedom, with a driving force $F(t)$:

$$
m \ddot{x}(t)+R \dot{x}(t)+k x(t)=F(t)
$$

For this linear oscillator, we can solve by Fourier transform. Writing $x(t)=\int_{-\infty}^{\infty} \tilde{x}(\omega) e^{-i \omega t} d \omega$, we find $\left(-m \omega^{2}-i R \omega+k\right) \tilde{x}(\omega)=\tilde{F}(\omega)$, where the Fourier transformed force is $\tilde{F}(\omega):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(t) e^{i \omega t} d t$.

Without any forces, we have solutions for $\omega^{2}+2 i \rho \omega-\omega_{0}^{2}=0$, (where $\left.\omega_{0}:=\sqrt{k / m}, \rho=R / 2 m\right)$, so the solutions are at $\omega=-i \rho \pm \bar{\omega}$, with $\bar{\omega}=$ $\sqrt{\omega_{0}^{2}-\rho^{2}}$. Due to the negative imaginary part of either of these $\omega \mathrm{s}$, the unforced oscillations will decay with time. If we do have a forcing function, however, we have an inhomogeneous solution (with $\tilde{f}=\tilde{F} / m$)

$$
\tilde{x}(\omega)=\frac{\tilde{f}(\omega)}{\omega_{0}^{2}-\omega^{2}-2 i \rho \omega} .
$$

As $x(t)$ and $f(t)$ are real-valued functions of time, the fourier transforms must satisfy $\tilde{x}^{*}(\omega)=\tilde{x}(-\omega), \tilde{f}^{*}(\omega)=\tilde{f}(-\omega)$, and

$$
\begin{aligned}
x(t) & =\int_{0}^{\infty} d \omega\left(\tilde{x}(\omega) e^{-i \omega t}+\tilde{x}^{*}(\omega) e^{i \omega t}\right)=2 \Re \int_{0}^{\infty} d \omega \tilde{x}(\omega) e^{-i \omega t} \\
& =2 \Re \int_{0}^{\infty} d \omega \frac{\tilde{f}(\omega)}{\omega_{0}^{2}-\omega^{2}-2 i \rho \omega} e^{-i \omega t} .
\end{aligned}
$$

If we consider a forcing function of only one positive frequency, say $\tilde{f}(\omega)=$ $a \delta\left(\omega-\omega_{\mathrm{ex}}\right)$ for $\omega \geq 0$, we have

$$
x(t)=2 \Re \frac{a}{\omega_{0}^{2}-\omega_{\mathrm{ex}}^{2}-2 i \rho \omega_{\mathrm{ex}}} e^{-i \omega_{\mathrm{ex}} t}
$$

with amplitude

$$
\begin{aligned}
A & =\left|\frac{2 a}{\omega_{0}^{2}-\omega_{\mathrm{ex}}^{2}-2 i \rho \omega_{\mathrm{ex}}}\right| \\
& =\frac{2|a|}{\sqrt{\left(\omega_{0}^{2}-\omega_{\mathrm{ex}}^{2}\right)^{2}+4 \rho^{2} \omega_{\mathrm{ex}}^{2}}} .
\end{aligned}
$$

We see that the response in the frequency domain is proportional to the force, with a frequency dependence which is sharply peaked if the damping coefficient is small compared to the natural frequency,
 $\rho \ll \omega_{0}$.

If we ask in the temporal domain, what is the effect on $x(t)$ of a force $f\left(t^{\prime}\right)$, we have

$$
\begin{align*}
x(t) & =\int_{-\infty}^{\infty} d \omega \frac{1}{2 \pi} \int_{-\infty}^{\infty} d t^{\prime} \frac{f\left(t^{\prime}\right)}{\omega_{0}^{2}-\omega^{2}-2 i \rho \omega} e^{i \omega\left(t-t^{\prime}\right)} \\
& =\int_{-\infty}^{\infty} d t^{\prime} G\left(t-t^{\prime}\right) \frac{f\left(t^{\prime}\right)}{m} \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(t-t^{\prime}\right):=\frac{1}{2 \pi} \int d \omega \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega_{0}^{2}-\omega^{2}-2 i \rho \omega} \tag{2}
\end{equation*}
$$

is the temporal Green's function. Note that it would appear from (1) that effects could preceed causes, as the integral is over all t^{\prime}, including times after t, but in fact G vanishes there. For $t^{\prime}>t$ we may evaluate (2) by closing the integration contour in the upper half plane, for the exponential will vanish for large $\Im \omega>0$ when $t<t^{\prime}$. As the integrand is analytic in the upper half plane, the contour integral vanishes, and $G\left(t-t^{\prime}\right)=0$ for $t^{\prime}>t$. On the other hand, for $\Delta t=t-t^{\prime}>0$, the integration contour may be closed in the lower half plane, picking up the residues from the poles at $\omega=-i \rho \pm \bar{\omega}$. The residue there is $\mp e^{-\rho \Delta t} e^{\mp i \bar{\omega} \Delta t} / \bar{\omega}$, so

$$
G(\Delta t)=\frac{1}{\bar{\omega}} e^{-\rho \Delta t} \sin \bar{\omega} \Delta t
$$

0.0.1 Weakly nonlinear oscillating systems

The oscilator we just considered could be solved exactly because it is a linear system. The equation of motion is a linear operator (including time deriva-
tive operators) acting on the dynamical variable $x(t)$, set equal to a forcing term which is a given function of time. Most systems, however, are not exactly linear. If the equation of motion is close to linear, we might imagine a perturbative calculation in which we bring the difference from linearity, considered small, to the right hand side, evaluate it in the linear approximation, and consider it a forcing term. For example, we are quite used to the idea that a pendulum may be approximated by a harmonic oscillator. A forced, linearly damped pendulum has an equation of motion

$$
m \ell^{2} \ddot{\theta}+R \dot{\theta}+m g \ell \sin \theta=F(t)
$$

which in the approximation $\sin \theta \approx \theta$ reduces to the harmonic oscillator we just considered. More precisely, we can write

$$
\ddot{\theta}+2 \rho \dot{\theta}+\omega_{0}^{2} \theta=f(t)-\omega_{0}^{2}(\sin \theta-\theta),
$$

where $\rho=R / 2 m \ell^{2}, \omega_{0}=\sqrt{g / \ell}$ and $f(t)=F(t) / m \ell^{2}$. If the forcing function $f(t)$ and the oscillations are small $(\theta \ll \pi)$, we can imagine a sequence of approximations, first evaluating $\theta(t)$ dropping the $(\sin \theta-\theta)$ term, and then evaluating the $n+1$ 'st approximation to $\theta(t)$ by using the n 'th approximation to evaluate $(\sin \theta-\theta)(t)$ as a forcing term.

We will return to this issue, discussing both how this works and why it may not be the ideal way to do a perturbative expansion, in Chapter 7.

