Notes to be added at the end of Section 5.2

In this section we will explore the effects of driving forces on oscillators.
For simplicity let us consider a damped oscillator with one degree of freedom,
with a driving force F(t):

mi(t) + Ri(t) + kx(t) = F(t).

For this linear oscillator, we can solve by Fourier transform. Writing
x(t) = / T(w)e ™! dw, we find (—mw2 —iRw + k) i(w) = F(w), where the

Fourier transformed force is F(w) := — / )etdt.
Without any forces, we have solutlons for w? + 2ipw — wi = 0, (where
wo := y/k/m, p = R/2m), so the solutions are at w = —ip + w, with @ =

\/wg — p?. Due to the negative imaginary part of either of these ws, the
unforced oscillations will decay with time. If we do have a forcing function,
however, we have an inhomogeneous solution (with f = F/m)
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As x(t) and f(t) are real-valued functions of time, the fourier transforms
must satisfy 7*(w) = Z(—w), f*(w) = f(—w), and

=) = /OO dw (T(w)e ™ + 3" (w)e™') = 29%/000 dwi(w)e™ ™!
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If we consider a forcing function of only one positive frequency, say f (w) =
ad(w — wex) for w > 0, we have
a

o(t) = 2R ——e et
Wi — wgy — 2ipwex

with amplitude



2a
Wi — wgy — 2ipwex
2|al
V(R — w3’ + dp2wiy N

We see that the response in the fre- -
quency domain is proportional to the force,
with a frequency dependence which is

sharply peaked if the damping coefficient | p=0.1
is small compared to the natural frequency, 10 wwo 20
p << wp.

If we ask in the temporal domain, what is the effect on z(t) of a force
f(t"), we have
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is the temporal Green’s function. Note that it would appear from (1) that
effects could preceed causes, as the integral is over all ¢/, including times after
t, but in fact G vanishes there. For ¢’ > t we may evaluate (2) by closing the
integration contour in the upper half plane, for the exponential will vanish
for large Sw > 0 when t < t/. As the integrand is analytic in the upper half
plane, the contour integral vanishes, and G(t —t') = 0 for ¢’ > ¢t. On the
other hand, for At =t —1t' > 0, the integration contour may be closed in the
lower half plane, picking up the residues from the poles at w = —ip+w. The
residue there is Fe ? 2T /5 5o

1
G(At) = —e P2 sin WAL,

w

0.0.1 Weakly nonlinear oscillating systems

The oscilator we just considered could be solved exactly because it is a linear
system. The equation of motion is a linear operator (including time deriva-
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tive operators) acting on the dynamical variable z(t), set equal to a forcing
term which is a given function of time. Most systems, however, are not ex-
actly linear. If the equation of motion is close to linear, we might imagine a
perturbative calculation in which we bring the difference from linearity, con-
sidered small, to the right hand side, evaluate it in the linear approximation,
and consider it a forcing term. For example, we are quite used to the idea
that a pendulum may be approximated by a harmonic oscillator. A forced,
linearly damped pendulum has an equation of motion

ml*0 + RO + mglsinf = F(t),

which in the approximation sinf ~ 6 reduces to the harmonic oscillator we
just considered. More precisely, we can write

0 +2p0 + w20 = f(t) — wi(sinf —0),

where p = R/2ml?, wy = \/97/6 and f(t) = F(t)/m(*. If the forcing function
f(t) and the oscillations are small (§ < ), we can imagine a sequence of
approximations, first evaluating 6(t) dropping the (sinf — 6) term, and then
evaluating the n+1’st approximation to (t) by using the n’th approximation
to evaluate (sinf — 0)(t) as a forcing term.

We will return to this issue, discussing both how this works and why it
may not be the ideal way to do a perturbative expansion, in Chapter 7.



