
Notes to be added at the end of Section 5.2

In this section we will explore the effects of driving forces on oscillators.
For simplicity let us consider a damped oscillator with one degree of freedom,
with a driving force F (t):

mẍ(t) + Rẋ(t) + kx(t) = F (t).

For this linear oscillator, we can solve by Fourier transform. Writing

x(t) =
∫ ∞

−∞
x̃(ω)e−iωt dω, we find (−mω2 − iRω + k) x̃(ω) = F̃ (ω), where the

Fourier transformed force is F̃ (ω) :=
1

2π

∫ ∞

−∞
F (t)eiωtdt.

Without any forces, we have solutions for ω2 + 2iρω − ω2
0 = 0, (where

ω0 :=
√

k/m, ρ = R/2m), so the solutions are at ω = −iρ ± ω̄, with ω̄ =√
ω2

0 − ρ2. Due to the negative imaginary part of either of these ωs, the
unforced oscillations will decay with time. If we do have a forcing function,
however, we have an inhomogeneous solution (with f̃ = F̃ /m)

x̃(ω) =
f̃(ω)

ω2
0 − ω2 − 2iρω

.

As x(t) and f(t) are real-valued functions of time, the fourier transforms
must satisfy x̃∗(ω) = x̃(−ω), f̃ ∗(ω) = f̃(−ω), and

x(t) =
∫ ∞

0
dω

(
x̃(ω)e−iωt + x̃∗(ω)eiωt

)
= 2<

∫ ∞

0
dωx̃(ω)e−iωt

= 2<
∫ ∞

0
dω

f̃(ω)

ω2
0 − ω2 − 2iρω

e−iωt.

If we consider a forcing function of only one positive frequency, say f̃(ω) =
aδ(ω − ωex) for ω ≥ 0, we have

x(t) = 2< a

ω2
0 − ω2ex − 2iρωex

e−iωext,

with amplitude
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A =

∣∣∣∣∣
2a

ω2
0 − ω2ex − 2iρωex

∣∣∣∣∣
=

2|a|√
(ω2

0 − ω2ex)
2
+ 4ρ2ω2ex

.

We see that the response in the fre-
quency domain is proportional to the force,
with a frequency dependence which is
sharply peaked if the damping coefficient
is small compared to the natural frequency,
ρ � ω0.
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If we ask in the temporal domain, what is the effect on x(t) of a force
f(t′), we have

x(t) =
∫ ∞

−∞
dω

1

2π

∫ ∞

−∞
dt′

f(t′)
ω2

0 − ω2 − 2iρω
eiω(t−t′)

=
∫ ∞

−∞
dt′ G(t− t′)

f(t′)
m

, (1)

where

G(t− t′) :=
1

2π

∫
dω

e−iω(t−t′)

ω2
0 − ω2 − 2iρω

(2)

is the temporal Green’s function. Note that it would appear from (1) that
effects could preceed causes, as the integral is over all t′, including times after
t, but in fact G vanishes there. For t′ > t we may evaluate (2) by closing the
integration contour in the upper half plane, for the exponential will vanish
for large =ω > 0 when t < t′. As the integrand is analytic in the upper half
plane, the contour integral vanishes, and G(t − t′) = 0 for t′ > t. On the
other hand, for ∆t = t− t′ > 0, the integration contour may be closed in the
lower half plane, picking up the residues from the poles at ω = −iρ± ω̄. The
residue there is ∓e−ρ ∆te∓iω̄∆t/ω̄, so

G(∆t) =
1

ω̄
e−ρ ∆t sin ω̄∆t.

0.0.1 Weakly nonlinear oscillating systems

The oscilator we just considered could be solved exactly because it is a linear
system. The equation of motion is a linear operator (including time deriva-
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tive operators) acting on the dynamical variable x(t), set equal to a forcing
term which is a given function of time. Most systems, however, are not ex-
actly linear. If the equation of motion is close to linear, we might imagine a
perturbative calculation in which we bring the difference from linearity, con-
sidered small, to the right hand side, evaluate it in the linear approximation,
and consider it a forcing term. For example, we are quite used to the idea
that a pendulum may be approximated by a harmonic oscillator. A forced,
linearly damped pendulum has an equation of motion

m`2θ̈ + Rθ̇ + mg` sin θ = F (t),

which in the approximation sin θ ≈ θ reduces to the harmonic oscillator we
just considered. More precisely, we can write

θ̈ + 2ρθ̇ + ω2
0θ = f(t)− ω2

0(sin θ − θ),

where ρ = R/2m`2, ω0 =
√

g/` and f(t) = F (t)/m`2. If the forcing function

f(t) and the oscillations are small (θ � π), we can imagine a sequence of
approximations, first evaluating θ(t) dropping the (sin θ− θ) term, and then
evaluating the n+1’st approximation to θ(t) by using the n’th approximation
to evaluate (sin θ − θ)(t) as a forcing term.

We will return to this issue, discussing both how this works and why it
may not be the ideal way to do a perturbative expansion, in Chapter 7.
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