
Appendix A

Appendices

A.1 εijk and cross products

A.1.1 Vector Operations: δij and εijk

These are some notes on the use of the antisymmetric symbol εijk for ex-
pressing cross products. This is an extremely powerful tool for manipulating
cross products and their generalizations in higher dimensions, and although
many low level courses avoid the use of ε, I think this is a mistake and I want
you to become proficient with it.

In a cartesian coordinate system a vector ~V has components Vi along each
of the three orthonormal basis vectors êi, or ~V =

∑
i Viêi. The dot product

of two vectors, ~A · ~B, is bilinear and can therefore be written as

~A · ~B = (
∑
i

Aiêi) ·
∑
j

Bj êj (A.1)

=
∑
i

∑
j

AiBj êi · êj (A.2)

=
∑
i

∑
j

AiBjδij, (A.3)

where the Kronecker delta δij is defined to be 1 if i = j and 0 otherwise.
As the basis vectors êk are orthonormal, i.e. orthogonal to each other and of
unit length, we have êi · êj = δij.

Doing a sum over an index j of an expression involving a δij is very simple,
because the only term in the sum which contributes is the one with j = i.
Thus

∑
j F (i, j)δij = F (i, i), which is to say, one just replaces j with i in all
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the other factors, and drops the δij and the summation over j. So we have
~A · ~B =

∑
iAiBi, the standard expression for the dot product1

We now consider the cross product of two vectors, ~A × ~B, which is also
a bilinear expression, so we must have ~A × ~B = (

∑
iAiêi) × (

∑
j Bj êj) =∑

i

∑
j AiBj(êi× êj). The cross product êi× êj is a vector, which can therefore

be written as ~V =
∑
k Vkêk. But the vector result depends also on the two

input vectors, so the coefficients Vk really depend on i and j as well. Define
them to be εijk, so

êi × êj =
∑
k

εkij êk.

It is easy to evaluate the 27 coefficients εkij, because the cross product of two
orthogonal unit vectors is a unit vector orthogonal to both of them. Thus
ê1 × ê2 = ê3, so ε312 = 1 and εk12 = 0 if k = 1 or 2. Applying the same
argument to ê2 × ê3 and ê3 × ê1, and using the antisymmetry of the cross
product, ~A× ~B = − ~B × ~A, we see that

ε123 = ε231 = ε312 = 1; ε132 = ε213 = ε321 = −1,

and εijk = 0 for all other values of the indices, i.e. εijk = 0 whenever any
two of the indices are equal. Note that ε changes sign not only when the last
two indices are interchanged (a consequence of the antisymmetry of the cross
product), but whenever any two of its indices are interchanged. Thus εijk is
zero unless (1, 2, 3) → (i, j, k) is a permutation, and is equal to the sign of
the permutation if it exists.

Now that we have an expression for êi × êj, we can evaluate

~A× ~B =
∑
i

∑
j

AiBj(êi × êj) =
∑
i

∑
j

∑
k

εkijAiBj êk. (A.4)

Much of the usefulness of expressing cross products in terms of ε’s comes
from the identity ∑

k

εkijεk`m = δi`δjm − δimδj`, (A.5)

which can be shown as follows. To get a contribution to the sum, k must be
different from the unequal indices i and j, and also different from ` and m.
Thus we get 0 unless the pair (i, j) and the pair (`,m) are the same pair of

1Note that this only holds because we have expressed our vectors in terms of orthonor-
mal basis vectors.
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different indices. There are only two ways that can happen, as given by the
two terms, and we only need to verify the coefficients. If i = ` and j = m,
the two ε’s are equal and the square is 1, so the first term has the proper
coefficient of 1. The second term differs by one transposition of two indices
on one epsilon, so it must have the opposite sign.

We now turn to some applications. Let us first evaluate

~A · ( ~B × ~C) =
∑
i

Ai
∑
jk

εijkBjCk =
∑
ijk

εijkAiBjCk. (A.6)

Note that ~A · ( ~B× ~C) is, up to sign, the volume of the parallelopiped formed

by the vectors ~A, ~B, and ~C. From the fact that the ε changes sign under
transpositions of any two indices, we see that the same is true for transposing
the vectors, so that

~A · ( ~B × ~C) = − ~A · (~C × ~B) = ~B · (~C × ~A) = − ~B · ( ~A× ~C)

= ~C · ( ~A× ~B) = −~C · ( ~B × ~A).

Now consider ~V = ~A× ( ~B × ~C). Using our formulas,

~V =
∑
ijk

εkij êkAi( ~B × ~C)j =
∑
ijk

εkij êkAi
∑
lm

εjlmBlCm.

Notice that the sum on j involves only the two epsilons, and we can use∑
j

εkijεjlm =
∑
j

εjkiεjlm = δklδim − δkmδil.

Thus

Vk =
∑
ilm

(
∑
j

εkijεjlm)AiBlCm =
∑
ilm

(δklδim − δkmδil)AiBlCm

=
∑
ilm

δklδimAiBlCm −
∑
ilm

δkmδilAiBlCm

=
∑
i

AiBkCi −
∑
i

AiBiCk = ~A · ~C Bk − ~A · ~B Ck,

so
~A× ( ~B × ~C) = ~B ~A · ~C − ~C ~A · ~B. (A.7)

This is sometimes known as the bac-cab formula.
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Exercise: Using (A.5) for the manipulation of cross products, show
that

( ~A× ~B) · (~C × ~D) = ~A · ~C ~B · ~D − ~A · ~D ~B · ~C.
The determinant of a matrix can be defined using the ε symbol. For a

3× 3 matrix A,

detA =
∑
ijk

εijkA1iA2jA3k =
∑
ijk

εijkAi1Aj2Ak3.

From the second definition, we see that the determinant is the volume of the
parallelopiped formed from the images under the linear map A of the three
unit vectors êi, as

(Aê1) · ((Aê2)× (Aê3)) = detA.

In higher dimensions, the cross product is not a vector, but there is a gen-
eralization of ε which remains very useful. In an n-dimensional space, εi1i2...in
has n indices and is defined as the sign of the permutation (1, 2, . . . , n) →
(i1i2 . . . in), if the indices are all unequal, and zero otherwise. The analog of
(A.5) has (n− 1)! terms from all the permutations of the unsummed indices
on the second ε. The determinant of an n× n matrix is defined as

detA =
∑

i1,...,in

εi1i2...in

n∏
p=1

Ap,ip .

A.2 The gradient operator

We can define the gradient operator

~∇ =
∑
i

êi
∂

∂xi
. (A.8)

While this looks like an ordinary vector, the coefficients are not numbers Vi
but are operators, which do not commute with functions of the coordinates
xi. We can still write out the components straightforwardly, but we must be
careful to keep the order of the operators and the fields correct.

The gradient of a scalar field Φ(~r) is simply evaluated by distributing the
gradient operator

~∇Φ = (
∑
i

êi
∂

∂xi
)Φ(~r) =

∑
i

êi
∂Φ

∂xi
. (A.9)
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Because the individual components obey the Leibnitz rule ∂AB
∂xi

= ∂A
∂xi
B+A ∂B

∂xi
,

so does the gradient, so if A and B are scalar fields,

~∇AB = (~∇A)B + A~∇B. (A.10)

The general application of the gradient operator ~∇ to a vector ~A gives an
object with coefficients with two indices, a tensor. Some parts of this tensor,
however, can be simplified. The first (which is the trace of the tensor) is
called the divergence of the vector, written and defined by

~∇ · ~A = (
∑
i

êi
∂

∂xi
) · (∑

j

êjBj) =
∑
ij

êi · êj ∂Bj

∂xi
=
∑
ij

δij
∂Bj

∂xi

=
∑
i

∂Bi

∂xi
. (A.11)

In asking about Leibnitz’ rule, we must remember to apply the divergence
operator only to vectors. One possibility is to apply it to the vector ~V = Φ ~A,
with components Vi = ΦAi. Thus

~∇ · (Φ ~A) =
∑
i

∂(ΦAi)

∂xi
=
∑
i

∂Φ

∂xi
Ai + Φ

∑
i

∂Ai
∂xi

= (~∇Φ) · ~A+ Φ~∇ · ~A. (A.12)

We could also apply the divergence to the cross product of two vectors,

~∇ · ( ~A× ~B) =
∑
i

∂( ~A× ~B)i
∂xi

=
∑
i

∂(
∑
jk εijkAjBk)

∂xi
=
∑
ijk

εijk
∂(AjBk)

∂xi

=
∑
ijk

εijk
∂Aj
∂xi

Bk +
∑
ijk

εijkAj
∂Bk

∂xi
. (A.13)

This is expressible in terms of the curls of ~A and ~B.
The curl is like a cross product with the first vector replaced by the

differential operator, so we may write the i’th component as

(~∇× ~A)i =
∑
jk

εijk
∂

∂xj
Ak. (A.14)

We see that the last expression in (A.13) is

∑
k

(
∑
ij

εkij
∂Aj
∂xi

)Bk−
∑
j

Aj
∑
ik

εjik
∂Bk

∂xi
= (~∇× ~A) · ~B− ~A · (~∇× ~B). (A.15)
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where the sign which changed did so due to the transpositions in the indices
on the ε, which we have done in order to put things in the form of the
definition of the curl. Thus

~∇ · ( ~A× ~B) = (~∇× ~A) · ~B − ~A · (~∇× ~B). (A.16)

Vector algebra identities apply to the curl as to any ordinary vector,
except that one must be careful not to change, by reordering, what the
differential operators act on. In particular, Eq. A.7 is

~A× (~∇× ~B) =
∑
i

Ai~∇Bi −
∑
i

Ai
∂ ~B

∂xi
. (A.17)

A.3 Gradient in Spherical Coordinates

The transformation between Cartesian and spherical coordinates is given by

r= (x2 + y2 + z2)
1
2 x= r sin θ cosφ

θ= cos−1(z/r) y= r sin θ sinφ
φ= tan−1(y/x) z= r cos θ

The basis vectors {êr, êθ, êφ} at the point (r, θ, φ) are given in terms of
the cartesian basis vectors by

êr = sin θ cosφ êx + sin θ sinφ êy + cos θ êz

êθ = cos θ cosφ êx + cos θ sinφ êy − sin θ êz

êφ = − sinφ êx + cosφ êy.

By the chain rule, if we have two sets of coordinates, say si and ci, and we
know the form a function f(si) and the dependence of si on cj, we can find
∂f
∂ci

=
∑
j
∂f
∂sj

∣∣∣
s

∂sj

∂ci

∣∣∣
c
, where |s means hold the other s’s fixed while varying

sj. In our case, the sj are the spherical coordinates r, θ, φ, while the ci are
x, y, z.

Thus

~∇f =

 ∂f
∂r

∣∣∣∣∣
θφ

∂r

∂x

∣∣∣∣∣
yz

+
∂f

∂θ

∣∣∣∣∣
rφ

∂θ

∂x

∣∣∣∣∣
yz

+
∂f

∂φ

∣∣∣∣∣
rθ

∂φ

∂x

∣∣∣∣∣
yz

 êx
+

 ∂f
∂r

∣∣∣∣∣
θφ

∂r

∂y

∣∣∣∣∣
xz

+
∂f

∂θ

∣∣∣∣∣
rφ

∂θ

∂y

∣∣∣∣∣
xz

+
∂f

∂φ

∣∣∣∣∣
rθ

∂φ

∂y

∣∣∣∣∣
xz

 êy (A.18)
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+

 ∂f
∂r

∣∣∣∣∣
θφ

∂r

∂z

∣∣∣∣∣
xy

+
∂f

∂θ

∣∣∣∣∣
rφ

∂θ

∂z

∣∣∣∣∣
xy

+
∂f

∂φ

∣∣∣∣∣
rθ

∂φ

∂z

∣∣∣∣∣
xy

 êz
We will need all the partial derivatives ∂sj

∂ci
. From r2 = x2 + y2 + z2 we see

that
∂r

∂x

∣∣∣∣∣
yz

=
x

r

∂r

∂y

∣∣∣∣∣
xz

=
y

r

∂r

∂z

∣∣∣∣∣
xy

=
z

r
.

From cos θ = z/r = z/
√
x2 + y2 + z2,

− sin θ
∂θ

∂x

∣∣∣∣∣
yz

=
−zx

(x2 + y2 + z2)3/2
=
−r2 cos θ sin θ cosφ

r3

so
∂θ

∂x

∣∣∣∣∣
yz

=
cos θ cosφ

r
.

Similarly,

∂θ

∂y

∣∣∣∣∣
xz

=
cos θ sinφ

r
.

There is an extra term when differentiating w.r.t. z, from the numerator, so

− sin θ
∂θ

∂z

∣∣∣∣∣
xy

=
1

r
− z2

r3
=

1− cos2 θ

r
= r−1 sin2 θ,

so
∂θ

∂z

∣∣∣∣∣
xy

= −r−1 sin θ.

Finally, the derivatives of φ can easily be found from differentiating tanφ =
y/x. Using differentials,

sec2 φdφ =
dy

x
− ydx

x2
=

dy

r sin θ cosφ
− dx sin θ sinφ

r sin2 θ cos2 φ

so
∂φ

∂x

∣∣∣∣∣
yz

= −1

r

sinφ

sin θ

∂φ

∂y

∣∣∣∣∣
xz

=
1

r

cosφ

sin θ

∂φ

∂z

∣∣∣∣∣
xy

= 0.
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Now we are ready to plug this all into (A.18). Grouping together the
terms involving each of the three partial derivatives, we find

~∇f =
∂f

∂r

∣∣∣∣∣
θφ

(
x

r
êx +

y

r
êy +

z

r
êz

)

+
∂f

∂θ

∣∣∣∣∣
rφ

(
cos θ cosφ

r
êx +

cos θ sinφ

r
êy − sin θ

r
êz

)

+
∂f

∂φ

∣∣∣∣∣
rθ

(
−1

r

sinφ

sin θ
êx +

1

r

cosφ

sin θ
êy

)

=
∂f

∂r

∣∣∣∣∣
θφ

êr +
1

r

∂f

∂θ

∣∣∣∣∣
rφ

êθ +
1

r sin θ

∂f

∂φ

∣∣∣∣∣
rθ

êφ

Thus we have derived the form for the gradient in spherical coordinates.


