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Thus the system evolves as if with the mean field hamiltonian, with a small
added oscillatory motion which does not grow (to order ω−2 for q(t)) with
time.

We have seen that there are excellent techniques for dealing with pertur-
bations which are either very slowly varying modifications of a system which
would be integrable were the parameters not varying, or with perturbations
which are rapidly varying (with zero mean) compared to the natural motion
of the unperturbed system.

Exercises

7.1 Consider the harmonic oscillator H = p2/2m + 1
2mω

2q2 as a perturbation
on a free particle H0 = p2/2m. Find Hamilton’s Principle Function S(q, P ) which
generates the transformation of the unperturbed hamiltonian to Q,P the initial
position and momentum. From this, find the Hamiltonian K(Q,P, t) for the full
harmonic oscillator, and thus equations of motion for Q and P . Solve these iter-
atively, assuming P (0) = 0, through fourth order in ω. Express q and p to this
order, and compare to the exact solution for an harmonic oscillator.

7.2 Consider the Kepler problem in two dimensions. That is, a particle of (re-
duced) mass µ moves in two dimensions under the influence of a potential

U(x, y) = − K√
x2 + y2

.

This is an integrable system, with two integrals of the motion which are in invo-
lution. In answering this problem you are expected to make use of the explicit
solutions we found for the Kepler problem.
a) What are the two integrals of the motion, F1 and F2, in more familiar terms
and in terms of explicit functions on phase space.
b) Show that F1 and F2 are in involution.
c) Pick an appropriate η0 ∈ M~f

, and explain how the coordinates ~t are related

to the phase space coordinates η = g~t(η0). This discussion may be somewhat
qualitative, assuming we both know the explicit solutions of Chapter 3, but it
should be clearly stated.
d) Find the vectors ~ei which describe the unit cell, and give the relation between
the angle variables φi and the usual coordinates η. One of these should be explicit,
while the other may be described qualitatively.
e) Comment on whether there are relations among the frequencies and whether
this is a degenerate system.
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7.3 Consider a mass m hanging at the end of a length of string which passes
through a tiny hole, forming a pendulum. The length of string below the hole, `(t)
is slowly shortened by someone above the hole pulling on the string. How does
the amplitude (assumed small) of the oscillation of the pendulum depend on time?
(Assume there is no friction).

7.4 A particle of mass m slides without friction on a flat
ramp which is hinged at one end, at which
there is a fixed wall. When the mass hits the
wall it is reflected perfectly elastically. An ex-
ternal agent changes the angle α very slowly
compared to the interval between successive
times at which the particle reaches a maxi-
mum height. If the angle varies from from
an initial value of αI to a final value αF , and
if the maximum excursion is LI at the be-
ginning, what is the final maximum excursion
LF ?
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7.5 Consider a particle of massm and charge q in the field of a fixed electric dipole
with moment ~p. Using spherical coordinates with the axis in the ~p direction, the
potential energy is given by

U(~r) =
1

4πε0
qp

r2
cos θ.

There is no explicit t or φ dependence, so H and pφ = Lz are conserved.
a) Show that

A = p2
θ +

p2
φ

sin2 θ
+
qpm

2πε0
cos θ

is also conserved.
b) Given these three conserved quantities, what else must you show to find if this
is an integrable system? Is it true? What, if any, conditions are there for the
motion to be confined to an invariant torus?



Chapter 8

Field Theory

8.1 Lagrangian Mechanics for Fields

In sections 5.3 and 5.4.1 we considered the continuum limit of a chain of
point masses on stretched string. We had a situation in which the potential
energy had interaction terms for particle A which depended only on the
relative displacements of particles in the neighborhood of A. If we take
our coordinates to be displacements from equilibrium, and consider only
motions for which the displacement η = η(x, y, z, t) becomes differentiable
in the continuum limit, then the leading term in the potential energy is
proportional to the square of derivatives in the spatial coordinates. For our
points on a string at tension τ , with mass density ρ, we found

T =
1

2
ρ
∫ L

0
ẏ2(x)dx,

U =
τ

2

∫ L

0

(
∂y

∂x

)2

dx,

and we can write the Lagrangian as an integral of a Lagrangian density
L(y, ẏ, y′, x, t) over x. Actually for our string we had no y or x or t de-
pendence, because we ignored gravity Ug =

∫
ρgy(x, t)dx, and had a ho-

mogeneous string whose properties were also time independent. In general,
however, such dependence is quite possible. In section 5.4.2, we considered a
three dimensional object, and discussed the equations for the displacement
of the atoms in a crystal. Then the fields ~η were the three components of
the displacement of a particle, as a function of the three coordinates (x, y, z)
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determining the particle, as well as time. Thus the generalized coordinates
are the functions ηi(x, y, z, t), and the Lagrangian density will depend on
these, their gradients, their time derivatives, as well as possibly on x, y, z, t.
Thus

L = L(ηi,
∂ηi
∂x

,
∂ηi
∂y

,
∂ηi
∂z

,
∂ηi
∂t
, x, y, z, t)

and

L =
∫
dx dy dz L,

I =
∫
dx dy dz dtL.

The actual motion of the system will be given by a particular set of
functions ηi(x, y, z, t), which are functions over the volume in question and
of t ∈ [tI , tf ]. The function will be determined by the laws of dynamics of
the system, together with boundary conditions which depend on the initial
configuration ηi(x, y, z, tI) and perhaps a final configuration. Generally there
are some boundary conditions on the spatial boundaries as well. For example,
our stretched string required y = 0 at x = 0 and x = L, for all values of t.

Before taking the continuum limit we say that the configuration of the
system at a given t was a point in a large N dimensional configuration space,
and the motion of the system is a path Γ(t) in this space. In the continuum
limit N →∞, so we might think of the path as a path in an infinite dimen-
sional space. But we can also think of this path as a mapping t→ η(·, ·, ·, t)
of time into the (infinite dimensional) space of functions on ordinary space.

Hamilton’s principal says that the actual path is an extremum of the
action. If we consider small variations δηi(x, y, z, t) which vanish on the
boundaries, then

δI =
∫
dx dy dz dt δL = 0

determines the equations of motion.
Note that what is varied here are the functions ηi, not the coordinates

(x, y, z, t). x, y, z do not represent the position of some atom — they represent
a label which tells us which atom it is that we are talking about. Often they
are chosen to be the equilibrium position of that atom, but they are fixed
labels independent of the motion. It is the ηi(~x), for each ~x, which are the
dynamical degrees of freedom, specifying the configuration of the system. In
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our discussion of section 5.4 ηi specified the displacement from equilibrium,
but here we generalize to an arbitrary set of dynamical fields1.

The variation of the Lagrangian density is

δL(ηi,
∂ηi
∂x

,
∂ηi
∂y

,
∂ηi
∂z

,
∂ηi
∂t
, x, y, z, t)

=
∑
i

∂L
∂η〉

δηi +
∑
i

∂L
∂(∂η〉/∂§)δ

∂ηi
∂x

+
∑
i

∂L
∂(∂η〉/∂†)δ

∂ηi
∂y

+
∑
i

∂L
∂(∂η〉/∂‡)δ

∂ηi
∂z

+
∑
i

∂L
∂(∂η〉/∂t)

δ
∂ηi
∂t
.

Notice there is no variation of x, y, z, and t, as we discussed.
The notation is getting awkward, so we need to reintroduce the notation

A,j = ∂A/∂rj, for rj = (x, y, z). In fact, we see that ∂/∂t enters in the same
way as ∂/∂x, so it is time to introduce notation which will become crucial
when we consider relativistic dynamics, even though we are not doing so
here. So we will consider time to be an additional component of the position,
called the zeroth rather than the fourth component. We will also change our
notation for coordinates to anticipate needs from relativity, by writing the
indices of coordinates as superscripts rather than subscripts. Thus we write
x0 = ct, where c will eventually be taken as the speed of light, but for the
moment is an arbitrary scaling factor. Until we get to special relativity,
one should consider whether an index is raised or lowered as irrelevant, but
they are written here in the place which will be correct once we make the
distinction between them. In particular the Kronecker delta is now written
δ ν
µ . For the partial derivatives we now have

∂µ :=
∂

∂xµ
=

(
∂

c∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

for µ = 0, 1, 2, 3, and write η,µ := ∂µη. If there are several fields ηi, then
∂µηi = ηi,µ. The comma represents the beginning of differentiation, so we
must not use one to separate different ordinary indices.

In this notation, we have

δL =
∑
i

∂L
∂ηi

δηi +
∑
i

3∑
µ=0

∂L
∂ηi,µ

δηi,µ,

1Note in particular that {ηi} is not the set of coordinates of phase space as it was in
the last chapter.
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and

δI =
∫ ∑

i

∂L
∂ηi

δηi +
∑
i

3∑
µ=0

∂L
∂ηi,µ

δηi,µ

 d4x,

where2 d4x = cdx dy dz dt. Except for the first term, we integrate by parts,

δI =
∫ ∑

i

∂L
∂ηi

−∑
i

3∑
µ=0

(
∂µ

∂L
∂ηi,µ

) δηid4x,

where we have thrown away the boundary terms which involve δηi evaluated
on the boundary, which we assume to be zero. Inside the region of integration,
the δηi are independent, so requiring δI = 0 for all functions δηi(x

µ) implies

∑
µ

d

dxµ
∂L
∂ηi,µ

− ∂L
∂ηi

= 0. (8.1)

We have written the equations of motion (which are now partial differ-
ential equations rather than coupled ordinary differential equations), in a
form which looks like we are dealing with a relativistic problem, because t
and spatial coordinates are entering in the same way. We have not made
any assumption of relativity, however, and our problem will not be relativis-
tically invariant unless the Lagrangian density is invariant under Lorentz
transformations (as well as translations).

Now consider how the Lagrangian changes from one point in space-time
to another, including the variation of the fields, assuming the fields obey the
equations of motion. Then the total derivative for a variation of xµ is given
by the chain rule

dL
dxµ

=
∂L
∂xµ

∣∣∣∣∣
η

+
∑
i

∂L
∂ηi

ηi,µ +
∑
νi

∂L
∂ηi,ν

ηi,ν,µ.

As we did previously with d/dt, we are using “total” derivative notation
d/dxµ to represent the variation from a change in one xµ, including the
changes induced in the fields which are the arguments of L, though it is still
a partial derivative in the sense that the other three xν need to be held fixed
while varying xµ.

2We have also multiplied I by c, which does no harm in finding the extrema.



8.1. LAGRANGIAN MECHANICS FOR FIELDS 237

Plugging the equations of motion into the second term,

dL
dxµ

=
∂L
∂xµ

+
∑
i

[∑
ν

d

dxν

(
∂L
∂ηi,ν

)]
ηi,µ +

∑
iν

∂L
∂ηi,ν

ηi,µ,ν

=
∂L
∂xµ

+
∑
ν

d

dxν

(∑
i

∂L
∂ηi,ν

ηi,µ

)
.

Thus ∑
ν

d

dxν
T ν
µ = − ∂L

∂xµ
, (8.2)

where the stress-energy tensor T ν
µ is defined by

T ν
µ (x) =

∑
i

∂L
∂ηi,ν

ηi,µ − Lδ ν
µ . (8.3)

We will often talk about T ν
µ as a function of xρ, understanding that x depen-

dence to include the implicit dependence through the fields, for T is a func-
tion of xµ, ηi(x) and ηi,µ(x). It is that total derivative that we are evaluating
on the left of equation (8.2), but it is often written as a partial derivative,∑
∂νT

ν
µ = −∂µL, understanding that T ν

µ (xρ) depends on xρ through its
field dependence as well as any explicit dependence. But the partial deriva-
tives on the right of that equation do not include the variations through the
fields. Sorry about that, it is just the way it is always written.

Note that if the Lagrangian density has no explicit dependence on the
coordinates xµ, equation (8.2) tells us the stress-energy tensor satisfies an
equation

∑
ν ∂νT

ν
µ = 0 which is a continuity equation.

What does that mean? In fluid mechanics, we have the equation of con-
tinuity

∂ρ/∂t+ ~∇ · (ρ~v) = 0,

which expresses the conservation of mass. That equation has the interpreta-
tion that the rate of change in the mass contained in some volume is equal
to the flux into the volume, because ρ~v is the flow of mass outward past a
unit surface area. In general, if we have a scalar field ρ(~x, t) which, together
with a vector field ~j(~x, t), satisfies the equation

∂ρ

∂t
(~x, t) +∇ ·~j(~x, t) = 0, (8.4)

we can interpret ρ as the density of, and ~j as the flow of, a material property
which is conserved. Given any volume V with a boundary surface S, the rate
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at which this property is flowing out of the volume,
∫
S
~j · d~S =

∫
V ∇ · ~j dV ,

is the rate at which the total amount of the substance in the volume is
decreasing,

∫
V −(dρ/dt)dV . If we define j0 = cρ, we can rewrite this equation

of continuity (8.4), as
∑
ν ∂νj

ν = 0, and we say that jν is a conserved current3.
If we integrate over the whole volume of our field, we can define a total
“charge” Q(t) =

∫
V j0(~x, t)/c d3x, and its time derivative is

d

dt
Q(t) =

∫
V

dρ

dt
(~x, t) d3x = −

∫
V
∇ ·~j(~x, t) d3x = −

∫
S

~j · d~S.

We see that this is the integral of the divergence of a vector current ~j, which
by Gauss’ law becomes a surface integral of the flux of j out of the volume
of our system. We have been sloppy about our boundary conditions, but
in many cases it is reasonable to assume there is no flux out of the entire
volume, either because of boundary conditions, as in a stretched string, or
because we are working in an infinite space and expect any flux to vanish at
infinity. Then the surface integral vanishes, and we find that the charge Q is
conserved.

We have seen that when the lagrangian density has no explicit xµ depen-
dence, for each value of µ, T ν

µ represents such a conserved current. Thus
we should have four conserved currents (Jµ)

ν := T ν
µ , each of which gives a

conserved “charge”

Qµ(t) =
∫
V
T 0
µ (~x, t) d3x = constant.

We will return to what these conserved quantities are in a moment.
In dynamics of discrete systems we defined the momenta pi = ∂L/∂q̇i,

and defined the Hamiltonian as H =
∑
i piq̇i − L(q, p, t). In considering the

continuum limit of the loaded string, we noted that the momentum corre-
sponding to each point particle (of vanishing mass) disappears in the limit,
but the appropriate thing to do is define a momentum density

P (x) =
δ

δẏ(x)
L =

δ

δẏ(x)

∫
L(y(x′), ẏ(x′), x′, t)dx′ =

∂L
∂ẏ

∣∣∣∣∣
x

,

having defined both the “variation at a point” δ/δẏ(x) and the lagrangian
density L. In considering the three dimensional continuum as a limit, say

3More accurately, the set of four fields jν(~x, t) is a conserved current.
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on a cubic lattice, L =
∫
d3xL is the limit of

∑
ijk ∆x∆y∆zLijk, where Lijk

depends on ~ηijk and a few of its neighbors, and also on ~̇ηijk. The conjugate

momentum to ~η(i, j, k) is ~pijk = ∂L/∂~̇ηijk = ∆x∆y∆z∂Lijk/∂~̇ηijk, which
would vanish in the continuum limit. So we define instead the momentum
density

π`(x, y, z) = (~pijk)`/∆x∆y∆z = ∂Lijk/∂(~̇ηijk)` = ∂L/∂η̇`(x, y, z).

The Hamiltonian

H =
∑

~pijk · ~̇ηijk − L =
∑

∆x∆y∆z~π(x, y, z) · ~̇η(xyz)− L

=
∫
d3x

(
~π(~r) · ~̇η(~r)− L

)
=
∫
d3xH,

where the Hamiltonian density is defined by H(~r) = ~π(~r) · ~̇η(~r) − L(~r).
This assumed the dynamical fields were the vector displacements ~η(~r, t), but
the same discussion applies to any set of dynamical fields η`(~r, t), even if η
refers to some property other than a displacement. Then

H(~r) =
∑
`

π`(~r)η̇`(~r)− L(~r).

where

π`(~r) =
∂L

∂η̇`(~r)
=

1

c

∂L
∂η`,0(~r)

.

Notice from (8.3) that T 0
µ = c

∑
` π`η`,µ − δ 0

µ L, and in particular T 0
0 =∑

` π`η̇` −L = H is the Hamiltonian density, which we see is one component
of the stress-energy tensor.

Consider again the case where L does not depend explicitly on (~x, t),
so

∑3
ν=0 ∂νT

ν
µ = 0, which, as we have seen, tells us that the four cur-

rents (Jµ)
ν := T ν

µ are conserved currents, leading to conserved “charges”
Qµ =

∫
V T

0
µ d3x. For µ = 0, T 0

0 is the hamiltonian density, so under appro-

priate conditions Q0 is the conserved total energy. Then T j
0 should be the j

component of the flow of energy. As an example, let’s return to thinking of ηi
as the displacement, and make the small deviation approximation of section
5.4.2. If we consider a small piece d~S of the surface of a volume V , then the
inside is exerting a force dFi =

∑
j PijdSj on the outside, and if the surface
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is moving with velocity ~v, the inside is doing work
∑
i vidFi = ~v ·P · d~S. But

~v = d~η/dt or vi = cηi,0, so energy is flowing out of the volume at a rate

−dE
dt

= c
∫
S
~η,0 ·P · d~S = c

∫
V

∑
ij

∂j (ηi,0Pij))

= c
∫
V

∑
j

∂jT
j

0 = c
∫
V

∑
ij

∂j

(
∂L
∂ηi,j

ηi,0

)

which encourages us to conclude

Pij =
∂L
∂ηi,j

.

A force on the surface of our volume transfers not only energy but also
momentum. In fact, the force A exerts on B represents the rate of momentum
transfer from A to B, and the force per unit area across a surface gives the
flux of momentum across that surface. As the outside is exerting a force
−dFi = −∑j PijdSj on the inside, this force will cause the momentum Pi of
the inside of the volume to be changing at a rate

d

dt
Pi =

∫
S
−∑

j

PijdSj = −
∫
V

∑
j

∂jPij = −
∫
V

∑
j

∂j
∂L
∂ηi,j

=
∫
V

(
d

cdt

∂L
∂ηi,0

)
− ∂L
∂ηi

,

where in the last step we used the equations of motion. If it were not for
the last term, we would take this as expected, because we would expect, if
the Lagrangian is of the usual form, that the momentum density would be
∂L
∂η̇i

= ∂L
∂cηi,0

. We will return to the interpretation of this last term after we

discuss what happens in its absence.

Cyclic coordinates

In discrete mechanics, when L was independent of a coordinate qi, even
though it depended on q̇i, we called the coordinate cyclic or ignorable, and
found a conserved momentum conjugate to it. In particular, if we use the
center-of-mass coordinates in an isolated system those will be ignorable co-
ordinates and the conserved momentum of the system will be their conjugate
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variables. In field theory, however, the center of mass is not a suitable dy-
namical variable. The variables are not ~x but ηi(~x, t). For fields in general,
L(η, η̇,∇η) depends on spatial derivatives of η as well, and we may ask
whether we need to require absence of dependence on ∇η for a coordinate
to be cyclic. Independence of both η and ∇η implies independence on an
infinite number of discrete coordinates, the values of η(~r) at every point ~r,
which is too restrictive a condition for our discussion. We will call a coor-
dinate field ηi cyclic if L does not depend directly on ηi, although it may
depend on its derivatives η̇i and ∇ηi.

The Lagrange equation then states

∑
µ

∂µ
∂L
∂ηi,µ

= 0, or
d

dt
πi +

∑
j

∂j
∂L
∂ηi,j

= 0,

which constitutes continuity equations for the densities πi(~r, t) and currents
(~ji)` = ∂L/∂ηi,j. If we integrate this equation over all space, and define

Πi(t) =
∫
πi(~r)d

3r,

then the derivative dΠ/dt involves the integral of a divergence, which by
Gauss’ law is a surface term

dΠ(t)

dt
= −

∫ ∂L
∂ηi,j

(dS)j.

If we assume the spatial boundary conditions are such that we may ignore this
boundary term, we see that the Πi(t) will be constants of the motion. These
are the total canonical momentum conjugate to η, and not, except when η
represents a displacement, the components of the total ordinary momentum
of the system.

If we considered our continuum with ηi representing the displacement, and
placed it in a gravitational field, we would have an additional potential energy∫
V ρgη3, and our equation for dπi/dt would have an extra term corresponding

to the volume force:

Fvol
i + F surf

i = ∆V
dπi
dt

= ∆V

−∑
j

∂j
∂L
∂ηi,j

+
∂L
∂η i

 ,
so

Fvol
i = ∆V

∂L
∂η i

= −ρgêz∆V,
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as expected, and the total momentum is not conserved.
From equation (8.3) we found that if L is independent of ~x, the stress-

energy tensor gives conserved currents. Linear momentum conservation in
field dynamics is connected not to ignorable coordinates but to a lack of
dependence on the labels. This is best viewed as an invariance under a
transformation of all the fields, ηi(~x) → ηi(~x + ~a), for a constant vector
~a. This is a change in the integrand which can be undone by a change in
the variable of integration, ~x → ~x ′ = ~x + ~a, under which the Lagrangian
is unchanged if the integration is over all space and the Lagrangian density
does not depend explicitly on ~x. This is a special case of conserved quantities
arising because of symmetries, a topic we will pursue in the next section.

Before we do so, let us return to our treatment of elasticity in the linear
continuum approximation of a solid, with the dynamical fields being the
displacements ηi(~x, t). We saw that the stress tensor Pij = ∂L/∂ηi,j, and if
we intend to describe a material obeying the generalized Hooke’s law,

∂L
∂ηi,j

= Pij = −α− β

3
δij TrS− βSij = −α− β

3
δij
∑
k

ηk,k − β

2
(ηi,j + ηj,i) .

This suggests a term in the Lagrangian

L1 =
β − α

6

(∑
k

ηk,k

)2

− β

8
(ηi,j + ηj,i)

2 .

We will also need a kinetic energy term to give a momentum density, which
we would expect to be just ~π = ρ~̇η, so we take that term to be

L2 =
c2

2
ρ
∑
i

η2
i,0.

Finally, if we have a volume force ~E(~r) due to some external potential −~η · ~E,

this will be from L3 = ~η · ~E. Thus our total lagrangian density is

L =
c2

2
ρ
∑
i

η2
i,0 +

β − α

6

(∑
k

ηk,k

)2

− β

8
(ηi,j + ηj,i)

2 + ~η · ~E.

Now

∂L
∂ηi,j

=
β − α

3
δij
∑
k

ηk,k − β

2
(ηi,j + ηj,i)
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∂L
∂ηi,0

= c2ρηi,0

∂L
∂ηi

= Ei

so the equations of motion are

0 = ∂µ
∂L
∂ηi,µ

− ∂L
∂ηi

= ρη̈i +
∑
j

[
β − α

3
δij
∑
k

ηk,k,j − β

2
(ηi,j,j + ηj,i,j)

]
− Ei,

or

ρ~̈η =

(
α

3
+
β

6

)
∇(∇ · ~η) +

β

2
∇2~η + ~E,

in agreement with (5.9).

8.2 Special Relativity

We have commented several times that a continuous symmetry of the dynam-
ics, such as invariance under translation or rotation, is reflected in conserva-
tion laws. We will give a formal development of Noether’s theorem, which
makes this connection generally, in the next section. When we do that, we
will certainly want to consider relativistic invarinance, so first we will revise
and clarify our notation appropriately.

So we now consider the symmetry known as special relativity, the postu-
late that the laws of physics are equally valid in all inertial reference frames.
We will assume familiarity with the basic ideas4, so we will only deal with no-
tational issues here. The relation of coordinates in different inertial reference
frames is determined by the invariance of

(ds)2 = −c2(dt)2 + (dx)2 + (dy)2 + (dz)2,

where c is the speed of light in vacuum. This looks something like the
Pythagorian length, except that the time component is scaled and has the
wrong sign. The scaling is not a problem, we could just choose to define
x0 = ct and measure time with x0 in meters. Then we can treat the space-
time coordinates as a four-vector5 xµ = (ct, x, y, z). The minus sign is more

4The student who has not learned about Einstein’s theory is referred to Smith ([15])
or French ([5]) for elementary introductions.

5Actually xµ is a position in space-time and not truly a vector, a distinction discussed
in section (1.2.1) but not important here.
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significant, so that (ds)2 is not a true length. We introduce the Minkowski
metric tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


so we can write6

(ds)2 =
∑
µν

ηµνdx
µdxν .

Notice we have defined xµ with superscripts rather than subscripts, and any
vector (or tensor) with such indices is said to be contravariant. From any
such vector V µ we can also define a covariant vector

Vµ =
∑
ν

ηµνV
ν .

This is a somewhat trivial distinction in special relativity, only changing the
sign of the zeroth component7. But it is useful, because it enables us to define
an invariant inner product

∑
µ VµW

µ. One can also make a contravariant
vector from a covariant one, W µ =

∑
ν η

µνWν , where ηµν is the inverse8, as
a matrix, of ηµν . We will also redefine the Einstein summation convention:
an index which occurs twice is summed over only if it appears once upper
and once lower. (Otherwise it is probably a mistake!) We also redefine what
we mean by the square of a vector V µ: V 2 := ηµνV

µV ν = VµV
µ and not∑

µ(V
µ)2.

The relationship between coordinates in different inertial frames,

x′µ = Λµ
νx

ν

is given by the Lorentz transformation matrix Λµ
ν . The invariance of (ds)2

tells us
ηµνΛ

µ
ρΛ

ν
σ = ηρσ, (8.5)

6Note that this is not a two-form, as η is symmetric.
7In general relativity ηµν is replaced by the metric tensor gµν which is a dynamical

degree of freedom of space-time rather than a fixed matrix, and this distinction becomes
less trivial.

8
∑

ρ η
µρηρν = δµ

ν = 1 if µ = ν and 0 otherwise. Note the Kronecker delta function
needs one upper and one lower index in order to be properly covariant, and in fact it and
η are different forms of the same tensor, using the usual lowering or raising procedures
with η. Don’t be misled by the fact that for each µ and ν, ηµν is the same as ηµν .
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which says that Λ is pseudo-orthogonal.
We have defined position to be naturally described by a contravariant

vector, but some objects are naturally defined as covariant. In particular,
the partial derivative operator

∂µ =
∂

∂xµ
is, for ∂µx

ν = δνµ.

With this four dimensional notation we see that time translation and
spatial translations are unified in xµ → xµ+cµ, and rotations are just special
cases of Lorentz transformations, with

Λµ
ν =


1 0 0 0
0
0
0

R

 .
As for rotations, we may ask how objects transform under Lorentz trans-

formations. For rotations, we saw that in addition to scalars and vectors, we
may have tensors with multiple indices. The same is true in relativity — a
large class of covariant objects may be written in terms of multiple indices,
and the transformation properties are simply multiplicative. First of all,
how does a covariant vector transform? From V ′µ = Λµ

νV
ν and the lowered

forms V ′
ρ = ηρµV

′µ = ηρµΛ
µ
νV

ν = ηρµΛ
µ
νη

νσVσ, we see that V ′
ρ = Λ σ

ρ Vσ,
where we have used η’s to lower and raise the indices on the Lorentz ma-
trix, Λ σ

ρ = ηρµΛ
µ
νη

νσ. So we see that covariant indices transform with Λ σ
ρ .

Note that Λ σ
ρ Λρ

τ = ηρµΛ
µ
νη

νσΛρ
τ = ητνη

νσ = δστ , where the second equality
follows from (8.5), so Λ σ

ρ = (Λ−1)σρ. Note also that the order of indices
matters, Λ ν

µ 6= Λν
µ.

Now more generally we may define a multiply-indexed tensor
T
µ1...µj µj+1...µ`

ν1...νk and it will transform with each index suitably transformed:

T
′µ′1...µ′j µ′j+1...µ

′
`

ν′1...ν
′
k

=
∏̀
i=1

Λ
µ′i
µi

k∏
n=1

Λ
νn

ν′n T µ1...µj µj+1...µ`
ν1...νk

. (8.6)

If we contract two indices, they don’t contribute to the transformation:

T ′ µµ = Λ ν
µ Λµ

ρT
ρ

ν = (Λ−1)νµΛ
µ
ρT

ρ
ν = δνρT

ρ
ν = T ν

ν .

So we see that we can make an invariant object (a scalar) by contracting
all indices. We should mention that in addition to tensors, another possible
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transformation possibility is that of a spinor, but we will not explore that
here.

For a point particle, the momentum three-vector is coupled by Lorentz
transformation to the energy9, P µ = (E/c, ~p). Then we see that to make an
invariant,

P µP νηµν = ~p 2 − E2/c2 = −m2c2.

We are going to be interested in infinitesimal Lorentz transformations,
with Λµ

ν = δµν + εLµν . From the condition (8.5) for Λ to be a Lorentz
transformation, we have

ηµν
(
δµρ + εLµρ

)
(δνσ + εLνσ) = ηρσ + ε

(
ηµσL

µ
ρ + ηρνL

ν
σ

)
+O(ε2) = ηρσ,

so
ηµσL

µ
ρ + ηρνL

ν
σ = Lσρ + Lρσ = 0,

so the condition is that L is antisymmetric when its indices are both lowered.
Thus L·· is a 4× 4 antisymmetric real matrix, and has 6 independent param-
eters, and the infinitesimal Lorentz transformations form a 6 dimensional Lie
algebra.

Now we are ready to discuss symmetries more generally.

8.3 Noether’s Theorem

We have seen in several ways that there is a connection between conserved
quantities and an invariance of the dynamics under some continuous trans-
formations. First we saw, in discrete dynamics, that ignorable coordinates
have conserved conjugate momenta. A coordinate is ignorable if the La-
grangian is unchanged under its translation, φ → φ + c, for arbitrary c. In
particular invariance under translation of all coordinates ~rj → ~rj +~c leads to
conservation of the total momentum. In field theory momentum conservation
is not associated with ignorable field coordinates, but rather to invariance
under translations of the labels, that is, under η`(~r) → η`(~r + ~c), which is
a consequence of ~r being an integration variable, so changing it makes no
difference as long as L has no explicit dependence on it, and as long as we

9Why P 0 rather than P0 for the energy? In quantum mechanics we have ~p associated
with the gradient operator, ~p = −ih̄~∇, and a partial derivative is naturally covariant. But
the energy is H = ih̄∂/∂t, because Schrödinger arbitrarily chose that sign when he wrote
down his equation. So if we write Pµ = −ih̄∂/∂xµ, we have Pµ = (−E/c, ~p).
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are integrating over all ~r. For rotations in discrete mechanics we saw that
one component of ~L could be considered conserved because φ is ignorable,
but the other two components, which are also conserved, must be attributed
to a less obvious symmetry, that of rotations about directions other than z.

Now we will discuss more generally the relationship between symmetries
and conserved quantities, a general connection given in a famous theorem by
Emmy Noether10. Symmetry means the dynamics is unchanged under a
change in the values of the degrees of freedom η → η′ which will in general
depend on those degrees of freedom. In the discrete case the dependence is
commonly on a related set, such as the new x component of the electric field
experienced by a point charge being dependent on all three old components
under a general rotation. In the case of fields, it would in principle be pos-
sible for the new field η′`(~x) to depend on all the values of all fields at all
points in space, but this is not useful to consider. We might consider only
local symmetries, for which it depends only on the old fields at the same
point, η′k(~x), which might for example be the case for considering the spins
of atoms under rotation of all the spins. But if we want to consider the more
fundamental symmetry under a true rotation, for which the atoms are also
rotating, we need to consider a symmetry which relates new fields at x′ to
old fields at x, where the symmetry maps x → x′ as well as transforming
the fields. Then we find that the new field η′`(~x

′) depends on the old fields
at a different point ~x. This is what we have in the case of translation we
just discussed, as well as for rotations and other possible symmetries. These
symmetries may be thought of in a passive sense as having the physics un-
changed when we translate, rotate, or boost (in a relativistic theory) the
coordinate system describing the physics. Then the new coordinates x′µ de-
scribe the same physical point as the old xµ, with a definite map Φ : x 7→ x′

which describes the change of coordinates of space(time). While the physics
at that point is unchanged, its description in terms of fields may be, so we
need to consider a rule for transforming the fields, which gives η`(x

′
µ) as a

function of fields at xν .

We will only be concerned with continuous symmetries, which can be gen-
erated by infinitesimal transformations, so we can consider an infinitesimal
transformation with x′µ = xµ + δxµ, along with a rule that gives the change
of η′`(x

′
µ) from the set of ηk(xν). For a scalar field, like temperature, under a

10This section relies heavily on Goldstein, “Classical Mechanics”, 2nd Ed., section 12-7.
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rotation, we would define the new field

η′(x′) = η(x),

but more generally the field may also change, in a way that may depend on
other fields,

η′i(x
′) = ηi(x) + δηi(x; ηk(x)).

This is what you would expect for a vector field ~E under rotations, because
the new E ′

x gets a component from the old Ey.
To say that

xµ → x′µ, ηi → η′i

is a symmetry means, at the least, that if ηi(x) is a specific solution of the
equations of motion, the set of transformed fields η′i(x

′) is also a solution.
The equations of motion are determined by varying the action, so if the
corresponding actions are equal for each pair of configurations (η(x), η′(x′)),
so are the equations of motion. Notice here that what we are saying is that
the same Lagrangian function applied to the fields η′i and integrated over
x′ ∈ R′ should give the same action as S =

∫
R L(ηi(x)...)d

4x, where R′ is the
range of x′ corresponding to the domain R of x. [Of course our argument
applies also if δxµ = 0, when the transformation does not involve a change
in coordinates. Such symmetries are called internal symmetries, with isospin
an example.]

Actually, the above condition that the actions be unchanged is far more
demanding than is needed to insure that the same equations of motion arise.
The variations required to derive the equations of motion only compare ac-
tions for field configurations unchanged at the boundaries, so if the actions

S ′ =
∫
R′
L(η′i(x

′), ∂′µη
′
i(x

′), x′)d4x′ and S =
∫
R
L(ηi(x), ∂µηi(x), x)d

4x (8.7)

differ by a function only of the values of ηi on the boundary ∂R, they will
give the same equations of motion. Even in quantum mechanics, where the
transition amplitude is given by integrating eiS/h̄ over all configurations, a
change in the action which depends only on surface values is only a phase
change in the amplitude. In classical mechanics we could also have an overall
change multiplying the Lagrangian and the action by a constant c 6= 0, which
would still have extrema for the same values of the fields, but we will not
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consider such changes because quantum mechanically they correspond to
changing Planck’s constant.

The Lagrangian density is a given function of the old fields L(ηi, ∂µηi, xµ).
If we substitute in the values of η(x) in terms of η′(x′) we get a new density
L′, defined by

L′(η′i, ∂′µη′i, x′µ) = L(ηi, ∂µηi, xµ)

∣∣∣∣∣ ∂x
ν

∂x′µ

∣∣∣∣∣ ,
where the last factor is the Jacobian of the transformation x→ x′, required
because these are densities, intended to be integrated. This change in func-
tional form for the Lagrangian is not the symmetry transformation, for as
long as x↔ x′ is one-to-one, the integral is unchanged

∫
R′
L′(η′i(x′), ∂′µη′i(x′), x′)d4x′ =

∫
R′
L(ηi(x), ∂µηi(x), x)

∣∣∣∣∣ ∂x
ν

∂x′µ

∣∣∣∣∣ d4x′

=
∫
R
L(ηi(x), ∂µηi(x), x)d

4x = S (8.8)

regardless of whether this transformation is a symmetry.
We see that the change in the action, δS = S ′ − S, which must vanish

up to surface terms for a symmetry, may be written as an integral over R′

of the variation of the Lagrangian density, δS =
∫
R′ δL, with

δL(η′i(x
′), ∂′µη

′
i(x

′), x′) := L(η′i(x
′), ∂′µη

′
i(x

′), x′)− L′(η′i(x′), ∂′µη′i(x′), x′)

= L(η′i(x
′), ∂′µη

′
i(x

′), x′)− L(ηi(x), ∂µηi(x), x)

∣∣∣∣∣ ∂x
ν

∂x′µ

∣∣∣∣∣ . (8.9)

Here we have used the first of Eq. (8.7) for S ′ and Eq. (8.8) for S.
Expanding to first order, the Jacobian is

det

∣∣∣∣∣∂x
′µ

∂xν

∣∣∣∣∣
−1

= det (δµν + ∂νδx
µ)−1 =

(
1 + Tr

∂δxµ

∂xν

)−1

= 1− ∂µδx
µ, (8.10)

while

L(η′i(x
′), ∂′µη

′
i(x

′), x′) = L(ηi(x), ∂µηi(x), x)

+δηi
∂L
∂ηi

+ δ(∂µηi)
∂L
∂∂µηi

+ δxµ
δL
δxµ

, (8.11)
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Thus11

δL = L∂µδxµ + δηi
∂L
∂ηi

+ δ(∂µηi)
∂L
∂∂µηi

+ δxµ
δL
δxµ

, (8.12)

and if this is a divergence, δL = ∂µΛ
µ for some Λµ, we will have a symmetry.

There are subtleties in this expression12. The last term involves a deriva-
tive of L with its first two arguments fixed, and as such is not the derivative
with respect to xµ with the functions ηi fixed. For this reason we used a
different symbol, because it is customary to use ∂µ to mean only that xν is
fixed for ν 6= µ, and not to indicate that the other arguments of L are held
fixed. That form of derivative is the stream derivative,

∂L
(
ηi(x), ∂µηi(x), x

)
∂xν

=
δL
(
ηi(x), ∂µηi(x), x

)
δxν

+ (∂νηi)
∂L
∂ηi

+ (∂ν∂µηi)
∂L
∂∂µηi

.

Note also that δηi(x) = η′i(x
′)−ηi(x) is not simply the variation of the field at

a point, �ηi(x) = η′i(x)−ηi(x), but includes in addition the change (δxµ)∂µηi
due to the displacement of the argument. Thus

δηi(x) = �ηi(x) + (δxν)∂νηi. (8.13)

The variation with respect to ∂′µη
′
i needs to be examined carefully, because

the δ variation effects the coordinates, and therefore in general ∂µδηi 6= δ∂µηi.
By definition,

δ∂µηi = ∂η′i/∂x
′µ|x′ − ∂ηi/∂x

µ|x
=

∂xν

∂x′µ
∂

∂xν
[ηi + (δxρ)∂ρηi + �ηi]

∣∣∣∣∣
x

− ∂ηi/∂x
µ|x

= − (∂µδx
ν) ∂νηi +

∂

∂xµ
[(δxρ)∂ρηi + �ηi]

= (δxν)∂µ∂νηi + �∂µηi (8.14)

where in the last line we used ∂µ�ηi = �∂µηi, because the � variation is
defined at a given point and does commute with ∂µ.

11This is the equation to use on homework.
12There is also a summation understood on the repeated i index as well as on the

repeated µ index.
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Notice that the δxν terms in (8.13) and (8.14) are precisely what is re-
quired in (8.11) to change the last term to a full stream derivative. Thus

L(η′i(x
′), ∂′µη

′
i(x

′), x′) = L(ηi(x), ∂µηi(x), x)

+�ηi
∂L
∂ηi

+ �∂µηi
∂L
∂∂µηi

+ δxµ
∂L
∂xµ

, (8.15)

where now ∂L/∂xµ means the stream derivative, including the variations of
ηi(x) and its derivative due to the variation δxµ in their arguments.

Inserting this and (8.10) into the expression (8.9) for δL, we see that the
change of action is given by the integral of

δL = (∂µδx
µ)L+ δxµ

∂L
∂xµ

+ �ηi
∂L
∂ηi

+ �∂µηi
∂L
∂∂µηi

=
∂

∂xµ

(
δxµL+ �ηi

∂L
∂∂µηi

)
+ �ηi

(
∂L
∂ηi

− ∂

∂xµ
∂L
∂∂µηi

)
(8.16)

We will discuss the significance of this in a minute, but first, I want to present
an alternate derivation.

Observe that in the expression (8.7) for S ′, x′ is a dummy variable and
can be replaced by x, and the difference can be taken at the same x values,
except that the ranges of integration differ. That is,

S ′ =
∫
R′
L (η′(x), ∂µη′(x), x) d4x,

and this differs from S(η) because

1. the Lagrangian is evaluated with the field η′(x) rather than η(x), pro-
ducing a change

δ1S =
∫ (

∂L
∂ηi

�ηi +
∂L
∂∂µηi

�∂µηi

)
d4x,

where the variation with respect to the fields is now in terms of �ηi(x) :=
η′i(x)− ηi(x), at the same argument x.

2. Change in the region of integration, R′ rather than R,

δ2S =
(∫

R′
−
∫
R

)
L(ηi, ∂µηi, x) d

4x.
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If we define dSµ to be an element of the three dimensional boundary ∂R of
R, with outward-pointing normal in the direction of dSµ, the difference in
the regions of integration may be written as an integral over the surface,(∫

R′
−
∫
R

)
d4x =

∫
∂R
δxµ · dSµ.

Thus

δ2S =
∫
∂R
Lδxµ · dSµ =

∫
R
∂µ (Lδxµ) (8.17)

by Gauss’ Law (in four dimensions).
As � is a difference of two functions at the same values of x, this operator

commutes with partial differentiation, so �∂µηi = ∂µ�ηi. Using this in the
second term of δ1S, and using A∂µB = ∂µ(AB)−B∂µA, we have

δ1S =
∫
R
d4x

[
∂µ

(
�ηi

∂L
∂∂µηi

)
+ �ηi

(
∂L
∂ηi

− ∂µ
∂L
∂∂µηi

)]

Thus altogether S ′ − S = δ1S + δ2S =
∫
R d

4xδL, with δL given by (8.16).
This completes our alternate derivation that S ′ − S =

∫
R d

4xδL, and Eq.
(8.16).

Note that δL is a divergence plus a piece which vanishes if the dynamical
fields obey the equation of motion, quite independent of whether or not the
infinitesimal variation we are considering is a symmetry. As we mentioned,
to be a symmetry, δL must be a divergence for all field configurations, not
just those satisfying the equations of motion, so that the variations over
configurations will give the correct equations of motion.

We have been assuming the variations δx and δη can be treated as in-
finitesimals. This is appropriate for a continuous symmetry, that is, a symme-
try group13 described by a (or several) continuous parameters. For example,
symmetry under displacements xµ → xµ+ cµ, where cµ is any arbitrary fixed
4-vector, or rotations through an arbitrary angle θ about a fixed axis. Each
element of such a group lies in a one-parameter subgroup, and can be ob-
tained, in the limit, from an infinite number of applications of an infinitesimal
transformation. If we call the parameter ε, the infinitesimal variations in xµ

13Symmetries always form a group. Continuous symmetries form a Lie group, whose ele-
ments can be considered exponentials of linear combinations of generators. The generators
form a Lie algebra.
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and ηi are given by derivatives of x′(ε, x) and η′ with respect to the parameter
ε. Thus

δxµ = ε
dx′µ

dε

∣∣∣∣∣
xν

, δηi = ε
dη′i(x

′)
dε

∣∣∣∣∣
xν

.

The divergence must also be first order in ε, so δL = ε∂µΛ
µ if we have a

symmetry.
We define the current for the transformation

Jµ = − ∂L
∂∂µηi

dη′i
dε

+
∂L
∂∂µηi

∂νηi
dx′ν

dε
− Ldx

′µ

dε
+ Λµ. (8.18)

Recalling that �ηi = δηi − (δxν)∂νηi, we can rewrite (8.16)

δL =
∂

∂xµ

(
δxµL+ δηi

∂L
∂∂µηi

− δxν(∂νηi)
∂L
∂∂µηi

)

+�ηi

(
∂L
∂ηi

− ∂

∂xµ
∂L
∂∂µηi

)

and see that

ε∂µJ
µ =

∂

∂xµ

(
− ∂L
∂∂µηi

δηi +
∂L
∂∂µηi

∂νηiδx
ν

)
− ∂

∂xµ
(Lδxµ) + δL

= �ηi

(
∂L
∂ηi

− ∂

∂xµ
∂L
∂∂µηi

)

Thus we have

∂µJ
µ = 0 for a symmetry, when the fields obey the equations of motion.

This condition is known as current conservation. Associated with each
such current, we may define the charge enclosed in a constant volume V

QV (t) =
∫
V
d3xJ0(~x, t).

If we evaluate the time derivative of the charge, we have

d

dt
QV (t) =

∫
V
d3x∂0J

0(~x, t) ≈ −
∫
V
d3x

∑
i=1,3

∂iJ
i(~x, t) = −

∫
V
d3x~∇ · ~J(~x, t)

= −
∫
∂V

~J · d~S,
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where ∂V is the boundary of the volume and d~S an element of surface area.
We have used the conservation of the current and Gauss’ Law. If, as can
usually be assumed, the current vanishes as we move infinitely far way from
the region of interest, the surface integral vanishes if we take V to be all
of space, and we find that the total charge is conserved, dQ/dt = 0, in the
same sense that equations of motion are satisfied. The assumption about
asymptotic behavior is not always valid, and we must consider whether we
have grounds for it in particular applications. We will see later that in some
circumstances there are “anomolies” when this assumption is not justified.

It should be mentioned that, because we are only considering infinitesimal
transformations, it is possible to describe the symmetry without relating new
fields at new points to old fields at the old points. We could simply consider
whether the transformation of fields ηi(x) → η′i(x) = ηi(x) + �ηi(x) is a
symmetry, where �ηi(x) = δηi(x) − (δxν)∂νηi includes not only the natural
variation δη (that is, zero for a scalar and an orthogonal transformation for a
vector), but also the derivative piece. The derivation then need not consider
change of integration region, but will in general require a nonzero choice of Λ
to compensate. This is not necessary in simple applications using the method
described here. Another disadvantage of starting with � is that it obscures
the local nature of the field dependence.

8.3.1 Applications of Noether’s Theorem

Now it is time to use the very powerful though abstract formalism Noether
developed for continuous symmetries to ask about symmetries we expect our
theories to have. At the very least, in this class, we are going to deal only
with theories which are invariant under

• spatial translations, ~x→ ~x ′ = ~x+ ~c.

• time translations, t → t′ = t + c0, or in four dimensional notation,
x0 → x′ 0 = x0 + c0.

• rotations, xi → x′ i =
∑
j R

i
jx
j, with Ri

j an orthogonal matrix.

• Lorentz boost transformations.

where Ri
j is an orthogonal real matrix of determinant 1. The first two of

these together are four dimensional translations,

xµ → x′µ = xµ + cµ, (8.19)
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and the last two (actually Lorentz transformations already include both) can
be written xµ → x′µ =

∑
ν Λµ

νx
ν = Λµ

νx
ν , (using the Einstein summa-

tion convention), where the matrix Λ is a real matrix satisfying the pseudo-
orthogonality condition

Λµ
νηµρΛ

ρ
τ = ηντ ,

which is required so that the length of a four-vector is preserved, x′2 :=
x′µx′µ = x2.

All together, this symmetry group is called the inhomogeneous Lorentz
group, or Poincaré group.

Translation Invariance

First, let us consider the conserved quantities generated by translation in-
variance, for which δxµ = cµ. All fields we will deal with are invariant, or
transform as scalars, under translations, so δη` = 0. From (8.18) the con-
served current is

Jµc = cν
∂L
∂∂µη`

∂νη` − Lcµ = cνT µ
ν ,

so the four conserved currents are nothing but the energy-momentum tensor
whose conservation we found in (8.3) directly from the equations of motion.
The conserved charges from this current are

Pµ =
∫
V
T 0
µ (~x, t)d3x,

with P0 = H, Pj the total momentum for j = 1, 2, 3.

Lorentz Transformations

Now consider an infinitesimal Lorentz transformation, with

x′µ = Λµ
νx

ν =
(
δµν + εLµν

)
xν , or δxµ = εLµνx

ν .

The pseudo-orthogonality of Λ requires

ηµνL
µ
ρδ
ν
σ + ηµνδ

µ
ρL

ν
σ = 0 = Lσρ + Lρσ,

so the infinitesimal generator, when its indices are lowered, is antisymmetric.
The fields may transform is many ways. A scalar field14 will have ξ′(x′) =

14 Now that our fields may be developing space-time indices, we will change their name
from η to ξ to avoid confusion with ηµν .
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ξ(x), with δξ = 0, but a field ξ might transform like a contravariant vector,
δξµ = εLµνξ

ν , or in an even more complex fashion such as a tensor or a
spinor. Whatever the change in ξ` is, it will be proportional to Lµν , so
δη` = εLµν∆

ν
µ `, and the current generated is

Jµ = LρνMµρν = − ∂L
∂∂µξ`

Lρσ∆
σ
ρ ` +

∂L
∂∂µξ`

∂τξ`L
τ
κx

κ − LLµνxν .

As Lρν is antisymmetric under ρ↔ ν, there are six independant infinitesimal
generators which can produce currents. Only the part antisymmetric under
ρ ↔ ν in Mµρν enters in this expression, so we take Mµρν and ∆ρν

` to be
antisymmetric under ρ↔ ν, and thus

Mµρν = − ∂L
∂∂µξ`

∆ρν
`+

1

2

∂L
∂∂µξ`

[ηρτ (∂τξ`)x
ν−ηντ (∂τξ`)xρ]−1

2
L (ηµρxν−ηµνxρ) .

Of course the six currents Mµρν are conserved only if the action is invariant,
which will be the case only if the lagrangian density transforms like a scalar
under lorentz transformations. This will be assured if all the vector indices
of the fields are contracted correctly, one up and one down. Note that part
of the current Mµρν is related to the energy-momentum tensor,

Mµρν =
1

2
(xνT ρµ − xρT νµ)− ∂L

∂∂µξ`
∆ρν

`.

As T ρµ is a 4-current of the 4-momentum, we see that the first term is the
4-current of the four dimensional version of orbital angular momentum. The
last term is then the contribution of the spin to the current of the total
angular momentum.

8.4 Examples of Relativistic Fields

As we mentioned, Noether’s theorem will generate conserved generators of
Lorentz transformations if the lagrangian density transforms as a scalar under
Poincaré transformations. For convenience we will take c = 1. The easiest
example to consider is a single scalar field, with what is called the Klein-
Gordon Lagrangian:

L =
1

2

(
−ηµν ∂φ

∂xµ
∂φ

∂xν
−m2φ2

)
=

1

2

(
φ̇2 − (~∇φ)2 −m2φ2

)
.
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The canonical momentum field is π = ∂L
∂φ̇

= φ̇, and

T ν
µ =

∂L
∂φ,ν

φ,µ − Lδνµ = −φ,νφ,µ +
1

2
δνµ
(
−φ̇2 + (~∇φ)2 +m2φ2

)
.

The Hamiltonian is

H =
∫
T 0

0 d3x =
1

2

∫ [
φ̇2 + (~∇φ)2 +m2φ2

]
d3x,

the three-momentum is

(~P )j =
∫
T 0
j d3x =

∫
φ̇(~∇φ)j d

3x or ~P =
∫
π~∇φ d3x.

The equation of motion (8.1) is(
ηµν∂µ∂ν −m2

)
φ = 0, or φ̈−∇2φ+m2φ = 0,

which has solutions which are waves, decomposable into plane waves φ(~x, t) ∝
ei(

~k·~x−ωt), with ω2 = k2 +m2. Identifying k with the momentum and ω with
the energy, as one would in quantum mechanics (with h̄ = 1) gives the
relation one would expect for a particle of mass m: E2 = p2 + m2 (as we
have set c = 1 also. E2 = p2c2 +m2c4 if you want to put c back in).

The only relativistic field we are familiar with from classical (non-quantum)

mechanics is the electromagnetic field. We are familiar with ~E and ~B as fields
defined throughout space and also functions of time. But ~E and ~B satisfy
constraint equations. Maxwell’s equations (in free space and SI units) are

~∇ · ~E = ρ/ε0 (8.20)

~∇ · ~B = 0 (8.21)

~∇× ~E +
1

c

∂ ~B

∂t
= 0 (8.22)

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~j (8.23)

Notice that (8.20) and (8.21) are not equations of motion, as they do not
involve time derivatives. Instead they are equations of constraint, best im-
plemented by solving them in terms of independent degrees of freedom. As
we saw in section (2.7), these equations allow us to consider ~E and ~B as
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derivatives of the magnetic vector potential ~A(~x, t) and the electrostatic po-

tential φ(~x, t). Then we have ~B = ~∇× ~A, and ~E = −~∇φ− 1
c
∂ ~A
∂t

. We also saw
that the interaction of these fields with a charged particle could be given in
terms of a potential

U(~r,~v) = q
(
φ(r, t)− (~v/c) · ~A(~r, t)

)
= −q

c

dxµ

dt
Aµ,

if I take A0 = −φ = −A0. This is the first step in writing electromagnetism
in relativistic notation15.

The connection to ~E and ~B is best understood if we define a 1-form from
A and its exterior derivative:

A := Aµ(x
ν)dxµ, F := dA =

∂Aµ
∂xν

dxν ∧ dxµ =
1

2
Fµνdx

µ ∧ dxν .

Examining the components, we have

F0j =
1

c
Ȧj +

∂φ

∂xj
= −Ej = −Fj0, (8.24)

Fij =
∂Aj
∂xi

− ∂Ai
∂xj

=
∑
k

εijk(~∇× ~A)k =
∑
k

εijkBk. (8.25)

As F := dA we know that dF = 0. dF is a 3-form,

dF =
1

6
(dF)µνρdx

µdxνdxρ =
1

6
εµνρσV

σdxµdxνdxρ,

where V σ = (−1/6)εµνρσ(dF)µνρ. As we saw in three dimensions in section
(6.5), a k-form ω in D dimensions can be associated not only with an anti-
symmetric tensor of rank k, but also with one of rank D− k. That tensor is
associated with a (D−k)-form, called the Hodge dual16 of ω, written ∗ω.
On the basis vectors we define

∗(dxµ1 ∧ · · · dxµk) =
1

(D − k)!
εµ1···µk

ν1···νD−k
dxν1 ∧ · · · dxνD−k .

15Note U is not an invariant, nor should it be, as it is part of the energy. Therefore it
is expected that it should transform like d/dt of a scalar.

16Warning: the dual of the dual of a k-form ω is ±ω, with the sign depending on D and
k.
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In particular, if ω is a 2-form in four dimensional Minkowski space,

ω =
1

2
ωµνdx

µ ∧ dxν

∗ ω =
1

2

(
1

2
εµνρσωµν

)
dxρ ∧ dxσ

dω =
1

2
ωµν,ρdx

ρ ∧ dxµ ∧ dxν

∗ dω =
1

2
εµνρσωµν,ρdx

σ

∗ d ∗ ω = εκρστ

(
1

4
εµνρσωµν,κ

)
dxτ = ωτκ,κdx

τ .

In particular for our 2-form F, the fact that dF = 0, and thus ∗dF = 0 tells
us the vector V σ = (−1/6)εµνρσFνρ,µ = 0. The σ = 0 component of this

0 = 3V 0 =
1

2
εijkFjk,i =

1

2
εijkεjk`B`,i = δi`B`,i = ~∇ · ~B,

giving us the constraint equation (8.21). For the spatial component,

0 = −3V i =
1

2

3∑
µ,ν,ρ=0

εµνρiFνρ,µ =
1

2

3∑
j,k=1

(
εjkiFjk,0 + 2εjkiFk0,j

)

=
1

2

3∑
j,k=1

(
εjki

1

c
εjk`Ḃ` + 2εjki∂jEk

)

=
(

1

c
~̇B + ~∇× ~E

)
i
,

which gives us the constraint (8.22). So the two constraint equations among
Maxwell’s four are

dF = 0. (8.26)

What are the two dynamical equations? If we evaluate ∗ d ∗ F =
Fµν,νdx

µ =: Vµdx
µ, we see the zeroth component contains only F0j = −Ej,

with V0 =
∑
j ∂F0j/∂x

j = −~∇· ~E, which Maxwell tells us is −ρ/ε0. The spa-

tial component is Vi = Fi0,0 +
∑
j Fij,j = Ėj/c+ εijk∂jBk =

(
~̇E/c+ ~∇× ~B

)
i

which Maxwell tells us is (modulo c) µ0(~j)i. This encourages us to define the
4-vector Jµ = (ρ,~j) and its accompanying 1-form J = Jµdx

µ, and to write
the two dynamical equations as

∗ d ∗ F = −J or d ∗ F = ∗J. (8.27)
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How should we write the lagrangian density for the electromagnetic fields?
As the dynamics is determined by the action, the integral of L over four-
dimensional space-time, we should expect L to be essentially a 4-form, which
needs to be made out of the 2-form F. Our first idea might be to try F ∧ F,
which is a 4-form, but unfortunately it is a closed 4-form, for d(F ∧ F) =
(dF) ∧ F + (F) ∧ (dF), and dF = ddA = 0. Because we are working on a
contractable space, F ∧ F is thereform exact, and an exact form is useless
as a lagrangian density because

∫
dωd4x =

∫
S ω which depends only on the

boundaries, both in space and time, but this is exactly where variations of
the dynamical degrees of freedom are kept fixed in determing the variation
of the action.

There is another 2-form available, however, ∗ F , so we might consider

Ldtd3x = −1

2
F ∧ ∗F = −1

2
· 1

2
Fµνdx

µ ∧ dxν · 1

4
εκλρσFκλ ∧ dxρ ∧ dxσ

= − 1

16
εκλρσε

µνρσFµνFκλdx
0 ∧ dx1 ∧ dx2 ∧ dx3

L = − c

16
εκλρσε

µνρσFµνFκλ = − c
8
(F µνFµν − F µνFνµ)

= − c
4
F µνFµν = − c

2
(−F 2

0j +
1

2
εijkBkεij`B` =

1

2
(E2 −B2)

Exercises

8.1 The Lagrangian density for the electromagnetic field in vacuum may be writ-
ten

L =
1
2

(
~E 2 − ~B 2

)
,

where the dynamical degrees of freedom are not ~E and ~B, but rather ~A and φ,
where

~B = ~∇×A

~E = −~∇φ− 1
c
~̇A

a) Find the canonical momenta, and comment on what seems unusual about one
of the answers.
b) Find the Lagrange Equations for the system. Relate to known equations for
the electromagnetic field.
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8.2 A tensor transforms properly under Lorentz transformations as specified by
equation (8.6), with each index being contracted with a suitable L·· or L ·· as
appropriate.
(a) The Minkowsky metric ηµν should then be transformed into a new tensor by
contracting with two L ·· ’s. Show that the new tensor η′ is nonetheless the same as
η. [That is, each element still has the same value].
(b) The Levi-Civita symbol in one reference frame is defined by ε0123 = 1 and
εµνρσ is antisymmetric under any interchange of two indices. Being a four-index
contravariant tensor, it will transform with four L··’s. Show that the transformed
tensor still has the same values under proper17 Thus both ηµν and εµνρσ are both
invariant and transform co- or contra-variantly.
(c) Show that if T ρ1...ρj µ

σ1...σk transforms correctly, the tensor T ρ1...ρj
µσ1...σk :=

ηµνT
ρ1...ρj ν

σ1...σk transforms correctly as well.
(d) Show that if two indices, one upper and one lower, are contracted, that is, set
equal and summed over, the resulting object transforms as if those indices were
not there. That is, Wµ1...µj

ρ1...ρk := T
νµ1...µj

νρ1...ρk transforms correctly.

17Proper Lorentz transformations are those that can be generated continuously from
the identity. That is, they exclude transformations that reverse the direction of time or
convert a right-handed coordinate system to a left-handed one.
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