
6.8. ACTION-ANGLE VARIABLES 199

(b) Consider the transformation to new phase-space variables P = αp
1
2 , Q =

βxp
1
2 . Find the conditions necessary for this to be a canonical transforma-

tion, and find a generating function F (x,Q) for this transformation.

(c) What is the Hamiltonian in the new coordinates?

6.10 For the central force problem with an attractive coulomb law,

H =
p2

2m
− K

r
,

we saw that the Runge-Lenz vector

~A = ~p× ~L−mK
~r

|r|

is a conserved quantity, as is ~L. Find the Poisson brackets of Ai with Lj , which you
should be able to do without detailed calculation, and also of Ai with Aj . [Hint:
it might be useful to first show that [pi, f(~r)] = −∂if for any function of the
coordinates only. It will be useful to evaluate the two terms in ~A independently,
and to use the Jacobi identity judiciously.]

6.11 a) Argue that [H,Li] = [H,Ai] = 0. Show that for any differentiable
function R on phase space and any differentiable function f of one variable, if
[H,R] = 0 then [f(H), R] = 0.
b) Scale the Ai to form new conserved quantities Mi = Ai/

√−2mH. Given the
results of (a), find the simple algebra satisfied by the six generators ~L, ~M .
c) Define Lij = εijkLk, for i, j, k = 1, 2, 3, and Li4 = −L4i = Mi. Show that in
this language, with µ, ν, ρ, σ = 1, ..., 4,

[Lµν , Lρσ] = −δνρLµσ + δµρLνσ + δνσLµρ − δµσLνρ.

What does this imply about the symmetry group of the Hydrogen atom?

6.12 Consider a particle of mass m and charge q in the field of a fixed electric
dipole with dipole moment21 p. In spherical coordinates, the potential energy is
given by

U(~r) =
1

4πε0
qp

r2
cos θ.

21Please note that q and p are the charge and dipole moments here, not coordinates or
momenta of the particle.
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a) Write the Hamiltonian. It is independent of t and φ. As a consequence, there
are two conserved quantities. What are they?
b) Find the partial differential equation in t, r, θ, and φ satisfied by Hamilton’s
principal function S, and the partial differential equation in r, θ, and φ satisfied
by Hamilton’s characteristic function W.
c) Assume W can be broken up into r-dependent, θ-dependent, and φ-dependent
pieces:

W (r, θ, φ, Pi) = Wr(r, Pi) +Wθ(θ, Pi) +Wφ(φ, Pi).

Find ordinary differential equations for Wr, Wθ and Wφ.



Chapter 7

Perturbation Theory

The class of problems in classical mechanics which are amenable to exact
solution is quite limited, but many interesting physical problems differ from
such a solvable problem by corrections which may be considered small. One
example is planetary motion, which can be treated as a perturbation on a
problem in which the planets do not interact with each other, and the forces
with the Sun are purely Newtonian forces between point particles. Another
example occurs if we wish to find the first corrections to the linear small
oscillation approximation to motion about a stable equilibrium point. The
best starting point is an integrable system, for which we can find sufficient
integrals of the motion to give the problem a simple solution in terms of
action-angle variables as the canonical coordinates on phase space. One then
phrases the full problem in such a way that the perturbations due to the
extra interactions beyond the integrable forces are kept as small as possible.
We first examine the solvable starting point.

7.1 Integrable systems

An integral of the motion for a hamiltonian system is a function F on
phase space M for which the Poisson bracket with H vanishes, [F,H] = 0.
More generally, a set of functions on phase space is said to be in involution if
all their pairwise Poisson brackets vanish. The systems we shall consider are
integrable systems in the sense that there exists one integral of the motion
for each degree of freedom, and these are in involution and independent.
Thus on the 2n-dimensional manifold of phase space, there are n functions
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Fi for which [Fi, Fj] = 0, and the Fi are independent, so the dFi are linearly
independent at each point η ∈ M. We will assume the first of these is the
Hamiltonian. As each of the Fi is a conserved quantity, the motion of the
system is confined to a submanifold of phase space determined by the initial
values of these invariants fi = Fi(q(0), p(0)):

M~f = {η : Fi(η) = fi for i = 1, . . . , n, connected},
where if the space defined by Fi(η) = fi is disconnnected, M~f is only the
piece in which the system starts. The differential operators DFi

= [Fi, ·]
correspond to vectors tangent to the manifold M~f , because acting on each
of the Fj functions, DFi

vanishes, as the F ’s are in involution. These
differential operators also commute with one another, because as we saw in
(6.13),

DFi
DFj

−DFj
DFi

= D[Fi,Fj ] = 0.

They are also linearly independent, for if
∑
αiDFi

= 0,
∑
αiDFi

ηj =
0 = [

∑
αiFi, ηj], which means that

∑
αiFi is a constant on all of phase

space, and that would contradict the assumed independence of the Fi. Thus
the DFi

are n commuting independent differential operators corresponding
to the generators Fi of an Abelian1 group of displacements on M~f . A given
reference point η0 ∈M is mapped by the canonical transformation generator∑
tiFi into some other point g~t(η0) ∈ M~f . Poisson’s Theorem shows the

volume covered diverges with ~t, so if the manifoldM~f is compact, there must

be many values of ~t for which g~t(η0) = η0. These elements form a discrete
Abelian subgroup, and therefore a lattice in R

n. It has n independent lattice
vectors, and a unit cell which is in 1-1 correspondence with M~f . Let these
basis vectors be ~e1, . . . , ~en. These are the edges of the unit cell in R

n, the
interior of which is a linear combination

∑
ai~ei where each of the ai ∈ [0, 1).

We therefore have a diffeomorphism between this unit cell and M~f , which
induces coordinates on M~f . Because these are periodic, we scale the ai to

new coordinates φi = 2πai, so each point of M~f is labelled by ~φ, given by

the ~t =
∑
φk~ek/2π for which g~t(η0) = η. Notice each φi is a coordinate on a

circle, with φi = 0 representing the same point as φi = 2π, so the manifold
M~f is diffeomorphic to an n dimensional torus T n = (S1)n.

1 An Abelian group is one whose elements all commute with each other, A�B = B�A
for all A,B ∈ G. When Abelian group elements are expressed as exponentials of a set of
independent infinitesimal generators, group multiplication corresponds to addition of the
parameters multiplying the generators in the exponent.
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Under an infinitesimal generator
∑
δtiFi, a point of M~f is translated

by δη =
∑
δti[η, Fi]. This is true for any choice of the coordinates η, in

particular it can be applied to the φj, so

δφj =
∑
i

δti[φj, Fi],

where we have already expressed

δ~t =
∑
k

δφk~ek/2π.

We see that the Poisson bracket is the inverse of the matrix Aji given by
the j’th coordinate of the i’th basis vector

Aji =
1

2π
(~ei)j , δ~t = A · δφ, [φj, Fi] =

(
A−1

)
ji
.

As the HamiltonianH = F1 corresponds to the generator with ~t = (1, 0, . . . , 0),
an infinitesimal time translation generated by δtH produces a change δφi =
(A−1)i1δt = ωiδt, for some vector ~ω which is determined by the ~ei. Note that
the periodicities ~ei may depend on the values of the integrals of the motion,
so ~ω does as well, and we have

d~φ

dt
= ~ω(~f).

The angle variables ~φ are not conjugate to the integrals of the motion Fi,
but rather to combinations of them,

Ii =
1

2π
~ei(~f) · ~F ,

for then

[φj, Ii] =
1

2π

(
~ei(~f)

)
k
[φj, Fk] = Aki

(
A−1

)
jk

= δij.

These Ii are the action variables, which are functions of the original set Fj of
integrals of the motion, and therefore are themselves integrals of the motion.
In action-angle variables the motion is very simple, with ~I constant and
~̇φ = ~ω = constant. This is called conditionally periodic motion, and the
ωi are called the frequencies. If all the ratios of the ωi’s are rational, the

204 CHAPTER 7. PERTURBATION THEORY

motion will be truly periodic, with a period the least common multiple of
the individual periods 2π/ωi. More generally, there may be some relations∑

i

kiωi = 0

for integer values ki. Each of these is called a relation among the fre-
quencies. If there are no such relations the frequencies are said to be inde-
pendent frequencies.

In the space of possible values of ~ω, the subspace of values for which
the frequencies are independent is surely dense. In fact, most such points
have independent frequencies. We should be able to say then that most of
the invariant tori M~f have independent frequencies if the mapping ~ω(~f) is
one-to-one. This condition is

det

(
∂~ω

∂ ~f

)
6= 0, or equivalently det

(
∂~ω

∂~I

)
6= 0.

When this condition holds the system is called a nondegenerate system.
As ωi = ∂H/∂Ii, this condition can also be written as det ∂2H/∂Ii∂Ij 6= 0.

Consider a function g on M~f . We define two averages of this function.

One is the time average we get starting at a particular point ~φ0 and averaging
over over an infinitely long time,

〈g〉t(~φ0) = lim
T→∞

1

T

∫ T

0
g(~φ0 + ~ωt)dt.

We may also define the average over phase space, that is, over all values of
~φ describing the submanifold M~f ,

〈g〉M~f
= (2π)−n

∫ 2π

0
. . .
∫ 2π

0
g(~φ)dφ1 . . . dφn,

where we have used the simple measure dφ1 . . . dφn on the space M~f . Then
an important theorem states that, if the frequencies are independent, and
g is a continuous function on M~f , the time and space averages of g are
the same. Note any such function g can be expanded in a Fourier series,

g(~φ) =
∑
~k∈Zn g~ke

i~k·~φ, with 〈g〉M~f
= g~0, while

〈g〉t = lim
T→∞

1

T

∫ T

0

∑
~k

g~k e
i~k·~φ0+i~k·~ωtdt

= g~0 +
∑
~k 6=~0

g~k e
i~k·~φ0 lim

T→∞
1

T

∫ T

0
ei
~k·~ωtdt = g~0,
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because

lim
T→∞

1

T

∫ T

0
ei
~k·~ωt = lim

T→∞
1

T

ei
~k·~ωT − 1

i~k · ~ω = 0,

as long as the denominator does not vanish. It is this requirement that ~k ·~ω 6=
0 for all nonzero ~k ∈ Z

n, which requires the frequencies to be independent.

As an important corrolary of this theorem, when it holds the trajectory is
dense in M~f , and uniformly distributed, in the sense that the time spent in
each specified volume of M~f is proportional to that volume, independent of
the position or shape of that volume. This leads to the notion of ergodicity,
that every state of a system left for a long time will have average values of
various properties the same as the average of all possible states with the same
conserved values.

If instead of independence we have relations among the frequencies, these
relations, each given by a ~k ∈ Z

n, form a subgroup of Z
n (an additive group of

translations by integers along each of the axes). Each such ~k gives a constant

of the motion, ~k · ~φ. Each independent relation among the frequencies there-
fore restricts the dimensionality of the motion by an additional dimension,
so if the subgroup is generated by r such independent relations, the motion
is restricted to a manifold of reduced dimension n − r, and the motion on
this reduced torus T n−r is conditionally periodic with n − r independent
frequencies. The theorem and corrolaries just discussed then apply to this
reduced invariant torus, but not to the whole n-dimensional torus with which
we started. In particular, 〈g〉t(φ0) can depend on φ0 as it varies from one
submanifold T n−r to another, but not along paths on the same submanifold.

While having relations among the frequencies for arbitrary values of the
integrals of the motion might seem a special case, unlikely to happen, there
are important examples where they do occur. We saw that for Keplerian mo-
tion, there were five invariant functions on the six-dimensional phase space of
the relative coordinate, because energy, angular momentum, and the Runge-
Lenz are all conserved, giving five independent conserved quantities. The
locus of points in the six dimensional space with these five functions taking
on assigned values is therefore one-dimensional, that is, a curve on the three
dimensional invariant torus. This is responsible for the stange fact that the
oscillations in r have the same period as the cycles in φ. Even for other
central force laws, for which there is no equivalent to the Runge-Lenz vector,
there are still four conserved quantities, so there must still be one relation,
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which turns out to be that the periods of motion in θ and φ are the same2.
If the system is nondegenerate, for typical ~I the ωi’s will have no relations

and the invariant torus will be densely filled by the motion of the system.
Therefore the invariant tori are uniquely defined, although the choices of
action and angle variables is not. In the degenerate case the motion of
the system does not fill the n dimensional invariant torus, so it need not be
uniquely defined. This is what happens, for example, for the two dimensional
harmonic oscillator or for the Kepler problem.

This discussion has been somewhat abstract, so it might be well to give
some examples. We will consider

• the pendulum

• the two-dimensional isotropic harmonic oscillator

• the three dimensional isotropic anharmonic oscillator

The Pendulum

The simple pendulum is a mass connected by a fixed length massless rod to a
frictionless ball joint, which we take to be at the origin, hanging in a uniform
gravitational field. The generalized coordinates may be
taken to be the angle θ which the rod makes with the down-
ward vertical, and the azimuthal angle φ. If ` is the length
of the rod, U = −mg` cos θ, and as shown in section 2.2.1 or
section 3.1.2, the kinetic energy is T = 1

2
m`2

(
θ̇2 + sin2 θφ̇2

)
.

So the lagrangian,

L =
1

2
m`2

(
θ̇2 + sin2 θφ̇2

)
+mg` cos θ

is time independent and has an ignorable coordinate φ,
φ

θ

2The usual treatment for spherical symmetry is to choose ~L in the z direction, which
sets z and pz to zero and reduces our problem to a four-dimensional phase space with two
integrals of the motion, H and Lz. But without making that choice, we do know that the
motion will be resticted to some plane, so axx+ ayy + azz = 0 for some fixed coefficients
ax, ay, az, and in spherical coordinates r(az cos θ + ax sin θ cosφ+ ay sin θ sinφ) = 0. The
r dependence factors out, and thus φ can be solved for, in terms of θ, and must have the
same period.
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so pφ = m`2 sin2 θφ̇ is conserved, and so is H. As pθ = m`2θ̇, the Hamiltonian
is

H =
1

2m`2

(
p2
θ +

p2
φ

sin2 θ

)
−mg` cos θ.

In the four-dimensional phase space one coordinate, pφ, is fixed, and the equa-
tion H(θ, φ, pθ) = E gives a two-dimensional surface in the three-dimensional
space which remains. Let us draw this in cylindrical coordiates with radial
coordinate θ, angular coordinate φ,
and z coordinate pθ, and polar an-
gle φ. Thus the motion will be
restricted to the invariant torus
shown. The generators F2 = pφ and
F1 = H generate motions along the
torus as shown, with pφ generating
changes in φ, leaving θ and pθ fixed.
Thus a point moves as on the blue
path shown, looking like a line of
latitude. The change in φ generated

by g(0,t2) is just t2, so we may take φ = φ2 of the last section. H generates
the dynamical motion of the system,

θ̇ =
∂H

∂pθ
=

pθ
m`2

, φ̇ =
∂H

∂pφ
=

pφ
m`2 sin2 θ

,

ṗθ = −∂H
∂θ

=
p2
φ cos θ

m`2 sin3 θ
−mg` sin θ.

This is shown by the red path, which goes around the bottom, through the
hole in the donut, up the top, and back, but not quite to the same point
as it started. Ignoring φ, this is periodic motion in θ with a period Tθ, so
g(Tθ,0)(η0) is a point at the same latitude as η0. This t ∈ [0, Tθ] part of the
trajectory is shown as the thick red curve. There is some t̄2 which, together

with t̄1 = Tθ, will cause g
~̄t to map each point on the torus back to itself.

Thus ~e1 = (Tθ, t̄2) and ~e2 = (0, 2π) constitute the unit vectors of the
lattice of ~t values which leave the points unchanged. The trajectory generated
by H does not close after one or a few Tθ. It could be continued indefinitely,
and as in general there is no relation among the frequencies (t̄2/2π is not
rational, in general), the trajectory will not close, but will fill the surface of
the torus. If we wait long enough, the system will sample every region of the
torus.
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The 2-D isotropic harmonic oscillator

A different result occurs for the two dimensional zero-length isotropic oscil-
lator,

L =
1

2
m(ẋ2 + ẏ2)− 1

2
k(x2 + y2) =

1

2
m(ṙ2 + r2φ̇2)− 1

2
kr2.

While this separates in cartesian coordinates, from which we easily see that
the orbit closes because the two periods are the same, we will look instead
at polar coordinates, where we have a conserved Hamiltonian

F1 = H =
p2
r

2m
+

p2
φ

2mr2
+

1

2
kr2,

and conserved momentum pφ conjugate to the ignorable coordinate φ.

As before, pφ simply changes φ, as
shown in blue. But now if we trace
the action of H,

dr

dt
= pr(t)/m,

dφ

dt
=

pφ
mr2

,

dpr
dt

=
p2
φ

mr3(t)
− kr(t),

we get the red curve which closes
on itself after one revolution in φ
and two trips through the donut
hole. Thus the orbit is a closed
curve, there is a relation among the frequencies. Of course the system now
only samples the points on the closed curve, so a time average of any function
on the trajectory is not the same as the average over the invariant torus.

The 3-D isotropic anharmonic oscillator

Now consider the spherically symmetric oscillator for which the potential
energy is not purely harmonic, say U(r) = 1

2
kr2 +cr4. Then the Hamiltonian

in spherical coordinates is

H =
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+

1

2
kr2 + cr4.
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This is time independent, so F1 = H is conserved, the first of our integrals
of the motion. Also φ is an ignorable coordinate, so F2 = pφ = Lz is the

second. But we know that all of ~L is conserved. While Lx is an integral of
the motion, it is not in involution with Lz, as [Lz, Lx] = Ly 6= 0, so it will
not serve as an additional generator. But L2 =

∑
k L

2
k is also conserved and

has zero Poisson bracket with H and Lz, so we can take it to be the third
generator

F3 = L2 = (~r × ~p)2 = r2~p 2 − (~r · ~p)2 = r2

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
− r2p2

r

= p2
θ +

p2
φ

sin2 θ
.

The full phase space is six dimensional, and as pφ is constant we are left,
in general, with a five dimensional space with two nonlinear constraints.
On the three-dimensional hypersurface, pφ generates motion only in φ, the
Hamiltonian generates the dynamical trajectory with changes in r, pr, θ, pθ
and φ, and F3 generates motion in θ, pθ and φ, but not in r or pr.

Now while Lx is not in involution with the three Fi already chosen, it is
a constant of the (dynamical) motion, as [Lx, H] = 0. But under the flow
generated by F2 = Lz, which generates changes in ηj proportional to [ηj, Lz],
we have

d

dλ
Lx(g

λLz~η) =
∑
j

∂Lx(η)

∂ηj
[ηj, Lz] =

∑
jk

∂Lx(η)

∂ηj
Jjk

∂Lz
ηk

= [Lx, Lz] 6= 0.

Thus the constraint on the dynamical motion that Lx is conserved tells us
that motion on the invariant torus generated by Lz is inconsistent with the
dynamical evolution — that the trajectory lies in a discrete subspace (two di-
mensional) rather than being dense in the three-dimensional invariant torus.
This also shows that there must be one relation among the frequencies.

Of course we could have reached this conclusion much more easily, as we
did in the last footnote, by choosing the z-axis of the spherical coordinates
along whatever direction ~L points, so the motion restricts ~r to the xy plane,
and throwing in pr gives us a two-dimensional torus on which the motion
remains.
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7.2 Canonical Perturbation Theory

We now consider a problem with a conserved Hamiltonian which is in some
sense approximated by an integrable system with n degrees of freedom. This
integrable system is described with a Hamiltonian H(0), and we assume we
have described it in terms of its action variables I

(0)
i and angle variables φ

(0)
i .

This system is called the unperturbed system, and the Hamiltonian is, of
course, independent of the angle variables, H(0)

(
~I (0), ~φ (0)

)
= H(0)

(
~I (0)

)
.

The action-angle variables of the unperturbed system are a canonical set
of variables for the phase space, which is still the same phase space for the
full system. We write the Hamiltonian of the full system as

H
(
~I (0), ~φ (0)

)
= H(0)

(
~I (0)

)
+ εH ′ (~I (0), ~φ (0)

)
. (7.1)

We have included the parameter ε so that we may regard the terms in H ′ as
fixed in strength relative to each other, and still consider a series expansion
in ε, which gives an overall scale to the smallness of the perturbation.

We might imagine that if the perturbation is small, there are some new
action-angle variables Ii and φi for the full system, which differ by order
ε from the unperturbed coordinates. These are new canonical coordinates,
and may be generated by a generating function (of type 2),

F
(
~I, ~φ (0)

)
=
∑

φ
(0)
i Ii + εF ′

(
~I, ~φ (0)

)
+ ....

This is a time-independent canonical transformation, so the full Hamiltonian
is the same function on phase-space whether the unperturbed or full action-
angle variables are used, but has a different functional form,

H̃(~I, ~φ) = H
(
~I (0), ~φ (0)

)
. (7.2)

Note that the phase space itself is described periodically by the coordinates
~φ (0), so the Hamiltonian perturbation H ′ and the generating function F ′ are
periodic functions (with period 2π) in these variables. Thus we can expand
them in Fourier series:

H ′ (~I (0), ~φ (0)
)

=
∑
~k

H ′
~k

(
~I (0)

)
ei
~k·~φ (0)

, (7.3)

F ′
(
~I, ~φ (0)

)
=

∑
~k

F ′~k
(
~I
)
ei
~k·~φ (0)

, (7.4)



7.2. CANONICAL PERTURBATION THEORY 211

where the sum is over all n-tuples of integers ~k ∈ Z
n. The zeros of the new

angles are arbitrary for each ~I, so we may choose F ′~0 (I) = 0.
The unperturbed action variables, on which H0 depends, are the old

momenta given by I
(0)
i = ∂F/∂φ

(0)
i = Ii + ε∂F ′/∂φ(0)

i + ..., so to first order

H0

(
~I (0)

)
= H0

(
~I
)

+ ε
∑
j

∂H0

∂I
(0)
j

∂F ′

∂φ
(0)
j

+ ...

= H0

(
~I
)

+ ε
∑
j

ω
(0)
j

∑
~k

ikjF
′
~k
(~I )ei

~k·~φ (0)

+ ..., (7.5)

where we have noted that ∂H0/∂I
(0)
j = ω

(0)
j , the frequencies of the unper-

turbed problem. Thus

H̃
(
~I, ~φ

)
= H

(
~I (0), ~φ (0)

)
= H(0)

(
~I (0)

)
+ ε

∑
~k

H ′
~k

(
~I (0)

)
ei
~k·~φ (0)

= H0

(
~I
)

+ ε
∑
~k

∑
j

ikjω
(0)
j F ′~k

(
~I
)

+H ′
~k

(
~I (0)

) ei~k·~φ (0)

.

The ~I are the action variables of the full Hamiltonian, so H̃(~I, ~φ) is in fact

independent of ~φ. In the sum over Fourier modes on the right hand side,
the φ(0) dependence of the terms in parentheses due to the difference of ~I(0)

from ~I is higher order in ε, so the the coefficients of ei
~k·~φ (0)

may be considered
constants in φ(0) and therefore must vanish for ~k 6= ~0. Thus the generating
function is given in terms of the Hamiltonian perturbation

F ′~k = i
H ′
~k

~k · ~ω(0)
(
~I
) , ~k 6= ~0. (7.6)

We see that there may well be a problem in finding new action variables
if there is a relation among the frequencies. If the unperturbed system is
not degenerate, “most” invariant tori will have no relation among the fre-
quencies. For these values, the extension of the procedure we have described
to a full power series expansion in ε may be able to generate new action-
angle variables, showing that the system is still integrable. That this is true
for sufficiently small perturbations and “sufficiently irrational” ω

(0)
J is the

conclusion of the famous KAM theorem3.
3See Arnold[2], pp 404-405, though he calls it Kolmogorov’s Theorem, denying credit

to himself and Moser, or Josè and Saletan[8], p. 477.
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What happens if there is a relation among the frequencies? Consider a
two degree of freedom system with pω

(0)
1 + qω

(0)
2 = 0, with p and q relatively

prime. Then the Euclidean algorithm shows us there are integers m and
n such that pm + qn = 1. Instead of our initial variables φ

(0)
i ∈ [0, 2π] to

describe the torus, we can use the linear combinations

(
ψ1

ψ2

)
=
(
p q
n −m

)(
φ

(0)
1

φ
(0)
2

)
= B ·

(
φ

(0)
1

φ
(0)
2

)
.

Then ψ1 and ψ2 are equally good choices for the angle variables of the unper-
turbed system, as ψi ∈ [0, 2π] is a good coordinate system on the torus. The
corresponding action variables are I ′i = (B−1)ji Ij, and the corresponding
new frequencies are

ω′i =
∂H

∂I ′i
=
∑
j

∂H

∂Ij

∂Ij
∂I ′i

= Bijω
(0)
j ,

and so in particular ω′1 = pω
(0)
1 + qω

(0)
2 = 0 on the chosen invariant torus.

This conclusion is also obvious from the equations of motion φ̇i = ωi.

In the unperturbed problem, on our initial invariant torus, ψ1 is a constant
of the motion, so in the perturbed system we might expect it to vary slowly
with respect to ψ2. Then it is appropriate to use the adiabatic approximation
of section 7.3

7.2.1 Time Dependent Perturbation Theory

Now we will consider problems for which the HamiltonianH is approximately
that of an exactly solvable problem, H0. So we write

H(q, p, t) = H0(q, p, t) + εHI(q, p, t),

where εHI(q, p, t) is considered a small “interaction” Hamiltonian. We as-
sume we know Hamilton’s principal function S0(q, P, t) for the unperturbed
problem, which gives a canonical transformation (q, p) → (Q,P ), and in the
limit ε→ 0, Q̇ = Ṗ = 0. For the full problem,

K(Q,P, t) = H0 + εHI +
∂S0

∂t
= εHI ,
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and is small. Expressing HI in terms of the new variables (Q,P ), we have
that

Q̇ = ε
∂HI

∂P
, Ṗ = −ε∂HI

∂Q

and these are slowly varying because ε is small. In symplectic form, with
ζT = (Q,P ), we have, of course,

ζ̇ = εJ · ∇HI(ζ). (7.7)

This differential equation can be solved perturbatively. If we assume an
expansion

ζ(t) = ζ0(t) + εζ1(t) + ε2ζ2(t) + ...,

ζ̇n on the left of (7.7) can be determined from only lower order terms ζj,
j < n on the right hand side. The initial value ζ(0) is arbitrary, so we can
take it to be ζ0(0), and determine ζn(t) =

∫ t
0 ζ̇n(t

′)dt′ accurate to order εn.
Thus we can recursively find higher and higher order terms in ε. This is a
good expansion for ε small enough, for fixed t, but as we are making an error
in ζ̇, this will give an error of order εt compared to the previous stage., so the
total error at the m’th step is O([εt]m) for ζ(t). Thus for calculating the long
time behavior of the motion, this method is unlikely to work in the sense
that any finite order calculation cannot be expected to be good for t → ∞.
Even though H and H0 differ only slightly, and so acting on any given η they
will produce only slightly different rates of change, as time goes on there is
nothing to prevent these differences from building up. In a periodic motion,
for example, the perturbation is likely to make a change ∆τ of order ε in the
period τ of the motion, so at a time t ∼ τ 2/2∆τ later, the systems will be at
opposite sides of their orbits, not close together at all.

Clearly a better approximation scheme is called for, one in which ζ(t) is
compared to ζ0(t

′) for a more appropriate time t′. The canonical method
does this, because it compares the full Hamiltonian and the unperturbed one
at given values of φ, not at a given time. Another example of such a method
applies to adiabatic invariants.
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7.3 Adiabatic Invariants

7.3.1 Introduction

We are going to discuss the evolution of a system which is, at every instant,
given by an integrable Hamiltonian, but for which the parameters of that
Hamiltonian are slowly varying functions of time. We will find that this leads
to an approximation in which the actions are time invariant. We begin with a
qualitative discussion, and then we discuss a formal perturbative expansion.

First we will consider a system with one degree of freedom described by
a Hamiltonian H(q, p, t) which has a slow time dependence. Let us call TV
the time scale over which the Hamiltonian has significant variation (for fixed
q, p). For a short time interval � TV , such a system could be approximated
by the Hamiltonian H0(q, p) = H(q, p, t0), where t0 is a fixed time within
that interval. Any perturbative solution based on this approximation may
be good during this time interval, but if extended to times comparable to
the time scale TV over which H(q, p, t) varies, the perturbative solution will
break down. We wish to show, however, that if the motion is bounded and
the period of the motion determined by H0 is much less than the time scale
of variations TV , the action is very nearly conserved, even for evolution over
a time interval comparable to TV . We say that the action is an adiabatic
invariant.

7.3.2 For a time-independent Hamiltonian

In the absence of any explicit time dependence, a Hamiltonian is conserved.
The motion is restricted to lie on a particular contour H(q, p) = α, for all
times. For bound solutions to the equations of motion, the solutions are
periodic closed orbits in phase space. We will call this contour Γ, and the
period of the motion τ . Let us parameterize the contour with the action-
angle variable φ. We take an arbitrary point on Γ to be φ = 0 and also
(q(0), p(0)). As action-angles evolve at a fixed rate, every other point is
determined by Γ(φ) = (q(φτ/2π), p(φτ/2π)), so the complete orbit is given
by Γ(φ), φ ∈ [0, 2π). The action is defined as

J =
1

2π

∮
pdq. (7.8)

This may be considered as an integral along one cycle in extended phase
space, 2πJ(t) =

∫ t+τ
t p(t′)q̇(t′)dt′. Because p(t) and q̇(t) are periodic with
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period τ , J is independent of time t. But J can also be
thought of as an integral in phase space itself,2πJ =∮
Γ pdq, of a one form ω1 = pdq along the closed

path Γ(φ), φ ∈ [0, 2π], which is the orbit in question.
By Stokes’ Theorem,∫

S
dω =

∫
δS
ω,

true for any n-form ω and suitable region S of a man-
ifold, we have 2πJ =

∫
A dp ∧ dq, where A is the area

bounded by Γ.

-1

0

1

-1 1 q

p

Fig. 1. The orbit
of an autonomous
system in phase
space.

In extended phase space {q, p, t}, if we start at time t=0 with any point
(q, p) on Γ, the trajectory swept out by the equations of motion, (q(t), p(t), t)
will lie on the surface of a cylinder with base A extended in the time direction.
Let Γt be the embedding of Γ into the time slice at t, which is the intersection
of the cylinder with that time slice. The
surface of the cylinder can also be viewed
as the set of all the dynamical trajectories
which start anywhere on Γ at t = 0. In
other words, if Tφ(t) is the trajectory of
the system which starts at Γ(φ) at t=0,
the set of Tφ(t) for φ ∈ [0, 2π], t ∈ [0, T ],
sweeps out the same surface as {Γt}, for all
t ∈ [0, T ]. Because this is an autonomous
system, the value of the action J is the
same, regardless of whether it is evaluated
along Γt, for any t, or evaluated along one
period for any of the trajectories starting
on Γ0. If we terminate the evolution at
time T , the end of the cylinder, ΓT , is the
same orbit of the motion, in phase space,
as was Γ0.
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Γ ℑ

t

Fig 2. The surface in extended
phase space, generated by the
ensemble of systems which start
at time t = 0 on the orbit Γ
shown in Fig. 1. One such
trajectory is shown, labelled I,
and also shown is one of the Γt.

7.3.3 Slow time variation in H(q, p, t)

Now consider a time dependent Hamiltonian H(q, p, t). For a short interval
of time near t0, if we assume the time variation of H is slowly varying, the
autonomous Hamiltonian H(q, p, t0) will provide an approximation, one that
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has conserved energy and bound orbits given by contours of that energy.
Consider extended phase space, and
a closed path Γ0(φ) in the t=0 plane
which is a contour of H(q, p, 0), just
as we had in the autonomous case.
For each point φ on this path, con-
struct the trajectory Tφ(t) evolv-
ing from Γ(φ) under the influence
of the full Hamiltonian H(q, p, t),
up until some fixed final time t =
T . This collection of trajectories
will sweep out a curved surface Σ1

with boundary Γ0 at t=0 and an-
other we call ΓT at time t=T . Be-
cause the Hamiltonian does change
with time, these Γt, the intersec-
tions of Σ1 with the planes at

0 10 20 30 40
50 60 -2

0
2

-1

0

1

t
q

p

Fig. 3. The motion of a harmonic
oscillator with time-varying spring
constant k ∝ (1− εt)4, with ε = 0.01.
[Note that the horn is not tipping
downwards, but the surface ends flat
against the t = 65 plane.]

various times t, are not congruent. Let Σ0 and ΣT be the regions of the t=0
and t=T planes bounded by Γ0 and ΓT respectively, oriented so that their
normals go forward in time.

This constructs a region which is a deformation of the cylinder4 that we
had in the case where H was independent of time. Of course if the variation
of H is slow on a time scale of T , the path ΓT will not differ much from Γ0,
so it will be nearly an orbit and the action defined by

∮
pdq around ΓT will

be nearly that around Γ0. We shall show something much stronger; that if
the time dependence of H is a slow variation compared with the approximate
period of the motion, then each Γt is nearly an orbit and the action on that
path, J̃(t) =

∮
Γt
pdq is constant, even if the Hamiltonian varies considerably

over time T .
The Σ’s form a closed surface, which is Σ1+ΣT−Σ0, where we have taken

the orientation of Σ1 to point outwards, and made up for the inward-pointing
direction of Σ0 with a negative sign. Call the volume enclosed by this closed
surface V .

We will first show that the actions J̃(0) and J̃(T ) defined on the ends of

4Of course it is possible that after some time, which must be on a time scale of order TV

rather than the much shorter cycle time τ , the trajectories might intersect, which would
require the system to reach a critical point in phase space. We assume that our final time
T is before the system reaches a critical point.
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the cylinder are the same. Again from Stokes’ theorem, they are

J̃(0) =
∫
Γ0

pdq =
∫
Σ0

dp ∧ dq and J̃(T ) =
∫
ΣT

dp ∧ dq

respectively. Each of these surfaces has no component in the t direction, so
we may also evaluate J̃(t) =

∫
Σt
dω3, where ω3 = pdq −Hdt is the one-form

of section (6.6) which determines the motion by Hamilton’s principle. So

dω3 = dp ∧ dq − dH ∧ dt. (7.9)

Clearly dω3 is closed as it is exact.
As H is a function on extended phase space, dH = ∂H

∂p
dp+ ∂H

∂q
dq+ ∂H

∂t
dt,

and thus

dω3 = dp ∧ dq − ∂H

∂p
dp ∧ dt− ∂H

∂q
dq ∧ dt

=

(
dp+

∂H

∂q
dt

)
∧
(
dq − ∂H

∂p
dt

)
, (7.10)

where we have used the antisymmetry of the wedge product, dq ∧ dt =
−dt ∧ dq, and dt ∧ dt = 0.

Now the interesting thing about this rewriting of the action in terms of
the new form (7.10) of dω3 is that dω3 is now a product of two 1-forms

dω3 = ωa ∧ ωb, where ωa = dp+
∂H

∂q
dt, ωb = dq − ∂H

∂p
dt,

and each of ωa and ωb vanishes along any trajectory of the motion, along
which Hamilton’s equations require

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
.

As a consequence, dω3 vanishes at any point when evaluated on a surface
which contains a physical trajectory, so in particular dω3 vanishes over the
surface Σ1 generated by the trajectories. Because dω3 is closed,∫

Σ1+ΣT−Σ0

dω3 =
∫
V
d(dω3) = 0

where the first equality is due to Gauss’ law, one form of the generalized
Stokes’ theorem. Then we have

J̃(T ) =
∫
ΣT

dω3 =
∫
Σ0

dω3 = J̃(0).
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What we have shown here for the area in phase space enclosed by an orbit
holds equally well for any area in phase space. If A is a region in phase space,
and if we define B as that region in phase space in which systems will lie at
time t = T if the system was in A at time t = 0, then

∫
A dp∧dq =

∫
B dp∧dq.

For systems with n > 1 degrees of freedom, we may consider a set of n
forms (

∑
k dpk ∧ dqk)j, j = 1...n, which are all conserved under dynamical

evolution. In particular, (
∑
k dp ∧ dqk)n tells us the hypervolume in phase

space is preserved under its motion under evolution according to Hamilton’s
equations of motion. This truth is known as Liouville’s theorem, though the
n invariants (

∑
k dp ∧ dqk)j are known as Poincaré invariants.

While we have shown that the integral
∫
pdq is conserved when evaluated

over an initial contour in phase space at time t = 0, and then compared
to its integral over the path at time t = T given by the time evolution of
the ensembles which started on the first path, neither of these integrals are
exactly an action.

In fact, for a time-varying system
the action is not really well defined,
because actions are defined only for
periodic motion. For the one dimen-
sional harmonic oscillator (with vary-
ing spring constant) of Fig. 3, a reason-
able substitute definition is to define J
for each “period” from one passing to
the right through the symmetry point,
q = 0, to the next such crossing. The
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Fig. 4. The trajectory in phase
space of the system in Fig. 3. The
“actions” during two “orbits” are
shown by shading. In the adiabatic
approximation the areas are equal.
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trajectory of a single such system as it
moves through phase space is shown in
Fig. 4. The integrals

∫
p(t)dq(t) over

time intervals between successive for-
ward crossings of q = 0 is shown for
the first and last such intervals. While
these appear to have roughly the same
area, what we have shown is that the
integrals over the curves Γt are the
same. In Fig. 5 we show Γt for t at
the beginning of the first and fifth “pe-
riods”, together with the actual motion
through those periods. The deviations
are of order ετ and not of εT , and so are
negligible as long as the approximate
period is small compared to TV ∼ 1/ε.

-1

0

1

-2 -1 1 1.5q

p

Fig. 5. The differences between the
actual trajectories (thick lines) dur-
ing the first and fifth oscillations,
and the ensembles Γt at the mo-
ments of the beginnings of those pe-
riods. The area enclosed by the lat-
ter two curves are strictly equal, as
we have shown. The figure indi-
cates the differences between each
of those curves and the actual tra-
jectories.

Another way we can define an action in our time-varying problem is to
write an expression for the action on extended phase space, J(q, p, t0), given
by the action at that value of (q, p) for a system with hamiltonian fixed at
the time in question, Ht0(q, p) := H(q, p, t0). This is an ordinary harmonic

oscillator with ω =
√
k(t0)/m. For an autonomous harmonic oscillator the

area of the elliptical orbit is

2πJ = πpmaxqmax = πmωq2
max,

while the energy is

p2

2m
+
mω2

2
q2 = E =

mω2

2
q2
max,

so we can write an expression for the action as a function on extended phase
space,

J =
1

2
mωq2

max = E/ω =
p2

2mω(t)
+
mω(t)

2
q2.

With this definition, we can assign a value for the action to the system as a
each time, which in the autonomous case agrees with the standard action.
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From this discussion, we see that if
the Hamiltonian varies slowly on the
time scale of an oscillation of the sys-
tem, the action will remain fairly close
to the J̃t, which is conserved. Thus
the action is an adiabatic invariant, con-
served in the limit that τ/TV → 0.

To see how this works in a particular
example, consider the harmonic oscilla-
tor with a time-varying spring constant,
which we have chosen to be k(t) =
k0(1 − εt)4. With ε = 0.01, in units
given by the initial ω, the evolution is
shown from time 0 to time 65. During
this time the spring constant becomes
over 66 times weaker, and the natural
frequency decreases by a factor of more
than eight, as does the energy, but the
action remains quite close to its origi-
nal value, even though the adiabatic ap-
proximation is clearly badly violated by
a spring constant which changes by a
factor of more than six during the last
oscillation.
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0.6

0.8

1

1.2

0 20 40 60t

E

J

ω

Fig. 6. The change in angular
frequency, energy, and action
for the time-varying spring-
constant harmonic oscillator,
with k(t) ∝ (1 − εt)4, with
ε = ω(0)/100

We see that the failure of the action to be exactly conserved is due to
the descrepancy between the action evaluated on the actual path of a single
system and the action evaluated on the curve representing the evolution,
after a given time, of an ensemble of systems all of which began at time t = 0
on a path in phase space which would have been their paths had the system
been autonomous.

This might tempt us to consider a different problem, in which the time
dependance of the hamiltonian varies only during a fixed time interval, t ∈
[0, T ], but is constant before t = 0 and after T . If we look at the motion
during an oscillation before t = 0, the system’s trajectory projects exactly
onto Γ0, so the initial action J = J̃(0). If we consider a full oscillation
beginning after time T , the actual trajectory is again a contour of energy in
phase space. Does this mean the action is exactly conserved?

There must be something wrong with this argument, because the con-
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stancy of J̃(t) did not depend on assumptions of slow variation of the Hamil-
tonian. Thus it should apply to the pumped swing, and claim that it is
impossible to increase the energy of the oscillation by periodic changes in
the spring constant. But every child knows that is not correct. Examining
this case will point out the flawed assumption in the argument. In Fig. 7,
we show the surface generated
by time evolution of an ensem-
ble of systems initially on an en-
ergy contour for a harmonic os-
cillator. Starting at time 0, the
spring constant is modulated by
10% at a frequency twice the
natural frequency, for four nat-
ural periods. Thereafter the
Hamiltonian is the same as is
was before t = 0, and each sys-
tem’s path in phase space con-
tinues as a circle in phase space
(in the units shown), but the en-
semble of systems form a very
elongated figure, rather than a
circle.
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Fig. 7. The surface Σ1 for a harmonic
oscillator with a spring constant which
varies, for the interval t ∈ [0, 8π], as
k(t) = k(0)(1 + 0.1 sin 2t).

What has happened is that some of the systems in the ensemble have
gained energy from the pumping of the spring constant, while others have
lost energy. Thus there has been no conservation of the action for individual
systems, but rather there is some (vaguely understood) average action which
is unchanged.

Thus we see what is physically the crucial point in the adiabatic expan-
sion: if all the systems in the ensemble experience the perturbation in the
same way, because the time variation of the hamiltonian is slow compared
to the time it takes for each system in the ensemble to occupy the initial
position (in phase space) of every other system, then each system will have
its action conserved.

7.3.4 Systems with Many Degrees of Freedom

In the discussion above we considered as our starting point an autonomous
system with one degree of freedom. As the hamiltonian is a conserved
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function on phase space, this is an integrable system. For systems with
n > 1 degrees of freedom, we wish to again start with an integrable sys-
tem. Such systems have n invariant “integrals of the motion in involution”,
and their phase space can be described in terms of n action variables Ji and

corresponding coordinates φi. Phase
space is periodic in each of the φi with
period 2π, and the submanifold M~f of
phase space which has a given set {fi}
of values for the Ji is an n-dimensional
torus. As the Ji are conserved, the mo-
tion is confined to M~f , and indeed the
equations of motion are very simple,
dφi/dt = ωi (constant). M~f is known
as an invariant torus.

In the one variable case we related
the action to the 1-form p dq. On the
invariant torus, the actions are con-
stants and so it is trivially true that
Ji =

∮
Jidφi/2π, where the integral is∫ 2π

0 dφi with the other φ’s held fixed.
This might lead one to think about n
1-forms without a sum, but it is more
profitable to recognize that the single
1-form ω1 =

∑
Jidφi alone contains all

of the information we need. First note
that, restricted to M~f , dJi vanishes,

Γ
Γ

1
2

Fig 8. For an integrable system
with two degrees of freedom, the
motion is confined to a 2-torus,
and the trajectories are uniform
motion in each of the angles, with
independent frequencies. The
two actions J1 and J2 may be
considered as integrals of the single
1-form ω1 =

∑
Jidφi over two

independant cycles Γ1 and Γ2 as
shown.

so ω1 is closed on M~f , and its integral is a topological invariant, that is,
unchanged under continuous deformations of the path. We can take a set of
paths, or cycles, Γi, each winding around the torus only in the φi direction,
and we then have Ji = 1

2π

∫
Γi
ω1. The answer is completely independent of

where the path Γi is drawn on M~f , as long as its topology is unchanged.
Thus the action can be thought of as a function on the simplicial homology
H1 of M~f . The actions can also be expressed as an integral over a surface

Σi bounded by the Γi, Ji = 1
2π

∫
Σi

∑
dJi ∧ dφi. Notice that this surface Σi

does not lie on the invariant torus but cuts across it. This formulation has
two advantages. First,

∑
dpi ∧ dqi is invariant under arbitrary canonical

transformations, so
∑
dJi ∧ dφi is just one way to write it. Secondly, on a
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surface of constant t, such as Σi, it is identical to the fundamental form

dω3 =
n∑
i=1

dpi ∧ dqi − dH ∧ dt,

the generalization to several degrees of freedom of the form we used to show
the invariance of the integral under time evolution in the single degree of
freedom case.

Now suppose that our system is subject to some time-dependent pertur-
bation, but that at all times its Hamiltonian remains close to an integrable
system, though that system might have parameters which vary with time.
Let’s also assume that after time T the hamiltonian again becomes an au-
tonomous integrable system, though perhaps with parameters different from
what it had at t = 0.

Consider the evolution in time, un-
der the full hamiltonian, of each sys-
tem which at t = 0 was at some
point ~φ0 on the invariant torus M~f of
the original unperturbed system. Fol-
low each such system until time T .
We assume that none of these sys-
tems reaches a critical point during
this evolution. The region in phase
space thus varies continuously, and at
the fixed later time T , it still will
be topologically an n-torus, which we
will call B. The image of each of
the cycles Γi will be a cycle Γ̃i on B,
and together these images will be a a
basis of the homology H1 of the B.
Let Σ̃i be surfaces within the t = T

Γ
Γ

Γ
Γ

1

2

~

~

1
2

Fig. 9. Time evolution of the
invariant torus, and each of two of
the cycles on it.

hyperplane bounded by Γ̃i. Define J̃i to be the integral on Σ̃i of dω3, so
J̃i = 1

2π

∫
Σ̃i

∑
j dpj ∧ dqj, where we can drop the dH ∧ dt term on a constant

t surface, as dt = 0. We can now repeat the argument from the one-degree-
of-freedom case to show that the integrals J̃i = Ji, again because dω3 is a
closed 2-form which vanishes on the surface of evolution, so that its integrals
on the end-caps are the same.

Now we have assumed that the system is again integrable at t = T , so
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there are new actions J ′i , and new invariant tori

M′
~g = {(~q, ~p) 3 J ′i(~q, ~p) = gi}.

Each initial system which started at ~φ0 winds up on some new invariant torus
with ~g(~φ0).

If the variation of the hamiltonian is sufficiently slow and smoothly vary-
ing on phase space, and if the unperturbed motion is sufficiently ergotic that
each system samples the full invariant torus on a time scale short compared
to the variation time of the hamiltonian, then each initial system ~φ0 may
be expected to wind up with the same values of the perturbed actions, so
~g is independant of ~φ0. That means that the torus B is, to some good ap-
proximation, one of the invariant tori M′

~g, that the cycles of B are cycles of

M′
~g, and therefore that J ′i = J̃i = Ji, and each of the actions is an adiabatic

invariant.

7.3.5 Formal Perturbative Treatment

Consider a system based on a system H(~q, ~p, ~λ), where ~λ is a set of param-

eters, which is integrable for each constant value of ~λ within some domain
of interest. Now suppose our “real” system is described by the same Hamil-
tonian, but with ~λ(t) a given slowly varying function of time. Although the
full Hamiltonian is not invariant, we will show that the action variables are
approximately so.

For each fixed value of ~λ, there is a generating function of type 1 to the
corresponding action-angle variables:

F1(~q, ~φ,~λ) : (~q, ~p) → (~φ, ~I).

This is a time-independent transformation, so the Hamiltonian may be writ-
ten as H(~I(~q, ~p), ~λ), independent of the angle variable. This constant ~λ

Hamiltonian has equations of motion φ̇i = ∂H/∂Ii = ωi(~λ), İi = 0. But

in the case where ~λ is a function of time, the transformation F1 is not a
time-independent one, so the correct Hamiltonian is not just the reexpressed
Hamiltonian but has an additional term

K(~φ, ~I, ~λ) = H(~I, ~λ) +
∑
n

∂F1

∂λn

dλn
dt

,
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where the second term is the expansion of ∂F1/∂t by the chain rule. The
equations of motion involve differentiating K with respect to one of the vari-
ables (φj, Ij) holding the others, and time, fixed. While these are not the

usual variables (~q, ~φ) for F1, they are coordinates of phase space, so F1 can
be expressed in terms of (φj, Ij), and as shown in (7.2), it is periodic in the
φj. The equation of motion for Ij is

φ̇i = ωi(~λ) +
∑
n

∂2F1

∂λn∂Ii
λ̇n,

İi =
∑
n

∂2F1

∂λn∂φi
λ̇n,

where all the partial derivatives are with respect to the variables ~φ, ~I, ~λ. We
first note that if the parameters λ are slowly varying, the λ̇n’s in the equations
of motion make the deviations from the unperturbed system small, of first
order in ε/τ = λ̇/λ, where τ is a typical time for oscillation of the system.
But in fact the constancy of the action is better than that, because the
expression for İj is predominantly an oscillatory term with zero mean. This
is most easily analyzed when the unperturbed system is truly periodic, with
period τ . Then during one period t ∈ [0, τ ], λ̇(t) ≈ λ̇(0) + tλ̈. Assuming
λ(t) varies smoothly on a time scale τ/ε, λ̈ ∼ λO(ε2/τ 2), so if we are willing
to drop terms of order ε2, we may treat λ̇ as a constant. We can then also
evaluate F1 on the orbit of the unperturbed system, as that differs from the
true orbit by order ε, and the resulting value is multiplied by λ̇, which is
already of order ε/τ , and the result is to be integrated over a period τ . Then
we may write the change of Ij over one period as

∆Ij ≈
∑
n

λ̇n

∫ τ

0

∂

∂φj

(
∂F1

∂λn

)
dt.

But F1 is a well defined single-valued function on the invariant manifold, and
so are its derivatives with respect to λn, so we may replace the time integral
by an integral over the orbit,

∆Ij ≈
∑
n

λ̇n
τ

L

∮ ∂

∂φj

(
∂F1

∂λn

)
dφj = 0,

where L is the length of the orbit, and we have used the fact that for the
unperturbed system dφj/dt is constant.
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Thus the action variables have oscillations of order ε, but these variations
do not grow with time. Over a time t, ∆~I = O(ε)+tO(ε2/τ), and is therefore
conserved up to order ε even for times as large as τ/ε, corresponding to
many natural periods, and also corresponding to the time scale on which the
Hamiltonian is varying significantly.

This form of perturbation, corresponding to variation of constants on a
time scale slow compared to the natural frequencies of the unperturbed sys-
tem, is known as an adiabatic variation, and a quantity conserved to order
ε over times comparable to the variation itself is called an adiabatic in-
variant. Classic examples include ideal gases in a slowly varying container,
a pendulum of slowly varying length, and the motion of a rapidly moving
charged particle in a strong but slowly varying magnetic field. It is inter-
esting to note that in Bohr-Sommerfeld quantization in the old quantum
mechanics, used before the Schrödinger equation clarified such issues, the
quantization of bound states was related to quantization of the action. For
example, in Bohr theory the electrons are in states with action nh, with n a
positive integer and h Planck’s constant. Because these values are preserved
under adiabatic perturbation, it is possible that an adiabatic perturbation
of a quantum mechanical system maintains the system in the initial quan-
tum mechanical state, and indeed this can be shown, with the full quantum
theory, to be the case in general. An important application is cooling by
adiabatic demagnetization. Here atoms with a magnetic moment are placed
in a strong magnetic field and reach equilibrium according to the Boltzman
distribution for their polarizations. If the magnetic field is adiabatically re-
duced, the separation energies of the various polarization states is reduced
proportionally. As the distribution of polarization states remains the same
for the adiabatic change, it now fits a Boltzman distribution for a tempera-
ture reduced proportionally to the field, so the atoms have been cooled.

7.4 Rapidly Varying Perturbations

At the other extreme from adiabatic perturbations, we may ask what hap-
pens to a system if we add a perturbative potential which oscillates rapidly
with respect to the natural frequencies of the unperturbed system. If these
forces are of the same magnitude as those of the unperturbed system, we
would expect that they would cause in the coordinates and momenta a small
rapid oscillation, small because a finite acceleration could make only small
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changes in velocity and position over a small oscillation time. Then we might
expect the effects of the force to be little more than adding jitter to the unper-
turbed motion. Consider the case that the external force is a pure sinusoidal
oscillation,

H(~q, ~p) = H0(~q, ~p) + U(~q) sinωt,

and let us write the resulting motion as

qj(t) = q̄j(t) + ξj(t),

pj(t) = p̄j(t) + ηj(t),

where we subtract out the average smoothly varying functions q̄ and p̄, leav-
ing the rapidly oscillating pieces ~ξ and ~η, which have natural time scales of
2π/ω. Thus ξ̈, ωξ̇, ω2ξ, η̇ and ωη should all remain finite as ω gets large with
all the parameters of H0 and U(q) fixed. Our näıve expectation is that the
q̄(t) and p̄(t) are what they would have been in the absence of the perturba-
tion, and ξ(t) and η(t) are purely due to the oscillating force.

This is not exactly right, however, because the force due to H0 depends
on the q and p at which it is evaluated, and it is being evaluated at the full
q(t) and p(t) rather than at q̄(t) and p̄(t). In averaging over an oscillation,
the first derivative terms in H0 will not contribute to a change, but the
second derivative terms will cause the average value of the force to differ
from its value at (q̄(t), p̄(t)). The lowest order effect (O(ω−2)) is from the
oscillation of p(t), with η ∝ ω−1∂U/∂q, changing the average force by an
amount proportional to η2 times ∂2H0/∂pk∂p`. We shall see that a good
approximation is to take q̄ and p̄ to evolve with the effective “mean motion
Hamiltonian”

K(q̄, p̄) = H0(q̄, p̄) +
1

4ω2

∑
k`

∂U

∂q̄k

∂U

∂q̄`

∂2H0

∂p̄k∂p̄`
. (7.11)

Under this hamiltonian, we have

˙̄qj =
∂K

∂pj
=
∂H0

∂pj

∣∣∣∣∣
q̄,p̄

+
1

4ω2

∑
k`

∂U

∂q̄k

∂U

∂q̄`

∂3H0

∂p̄k∂p̄`∂p̄j
.

˙̄pj = −∂K
∂qj

(7.12)

= − ∂H0

∂qj

∣∣∣∣∣
q̄,p̄

− 1

2ω2

∑
k`

∂2U

∂q̄j∂q̄k

∂U

∂q̄`

∂2H0

∂p̄k∂p̄`
− 1

4ω2

∑
k`

∂U

∂q̄k

∂U

∂q̄`

∂3H0

∂p̄k∂p̄`∂q̄j
.
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Of course the full motion for q(t) and p(t) is given by the full Hamiltonian
equations:

˙̄qj + ξ̇j =
∂H0

∂pj

∣∣∣∣∣
q,p

=
∂H0

∂pj

∣∣∣∣∣
q̄,p̄

+
∑
k

ξk
∂2H0

∂pj∂qk

∣∣∣∣∣
q̄,p̄

+
∑
k

ηk
∂2H0

∂pj∂pk

∣∣∣∣∣
q̄,p̄

+
1

2

∑
k`

ηkη`
∂3H0

∂pj∂pk∂p`

∣∣∣∣∣
q̄,p̄

+O(ω−3)

˙̄pj + η̇j = − ∂H0

∂qj

∣∣∣∣∣
q,p

− ∂U

∂qj

∣∣∣∣∣
q,p

sinωt

= − ∂H0

∂qj

∣∣∣∣∣
q̄,p̄

−∑
k

ξk
∂2H0

∂qj∂qk

∣∣∣∣∣
q̄,p̄

−∑
k

ηk
∂2H0

∂qj∂pk

∣∣∣∣∣
q̄,p̄

−1

2

∑
k`

ηkη`
∂3H0

∂qj∂pk∂p`

∣∣∣∣∣
q̄,p̄

− sinωt
∂U

∂qj

∣∣∣∣∣
q̄

−∑
k

ξk sinωt
∂2U

∂qj∂qk

∣∣∣∣∣
q̄

+O(ω−3). (7.13)

Subtracting (7.12) from (7.13) gives

ξ̇j =
∑
k

ηk
∂2H0

∂pj∂pk

∣∣∣∣∣
q̄,p̄

+
∑
k

ξk
∂2H0

∂pj∂qk

∣∣∣∣∣
q̄,p̄

+

+
1

2

∑
k`

(
ηkη` − 1

2ω2

∂U

∂q̄k

∂U

∂q̄`

)
∂3H0

∂pj∂pk∂p`

∣∣∣∣∣
q̄,p̄

+O(ω−3) (7.14)

η̇j = − sinωt
∂U

∂qj

∣∣∣∣∣
q̄

−∑
k

ηk
∂2H0

∂qj∂pk

∣∣∣∣∣
q̄,p̄

−∑
k

ξk
∂2H0

∂qj∂qk

∣∣∣∣∣
q̄,p̄

−1

2

∑
k`

(
ηkη` − 1

2ω2

∂U

∂q̄k

∂U

∂q̄`

)
∂3H0

∂qj∂pk∂p`

∣∣∣∣∣
q̄,p̄

(7.15)

−∑
k

(
ξk sinωt− 1

2ω2

∑
`

∂U

∂q`

∂2H0

∂pk∂p`

)
∂2U

∂qj∂qk

∣∣∣∣∣
q̄

+O(ω−3).

All variables in expressions (7.14) and (7.15) are evaluated at time t. We
wish to show that over a full period τ = 2π/ω, η and ξ grow only negligibly,
that is, ∆η and ∆ξ vanish to O(ω−3), for which we need the derivatives to
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order O(ω−2). During a period, the change in q̄ and p̄ will be O(ω−1), so
in evaluating the H0 and U derivative terms in which they are multiplied by
things already O(ω−2), we can treat them as constants.

To lowest order in ω−1, we see that

ηj(t
′) =

1

ω
cosωt′

∂U

∂qj

∣∣∣∣∣
q̄

+ const +O(ω−2).

The ambiguity in the integration constant is an ambiguity in our initial con-
dition for p̄, so we can set the constant to zero, or better yet, arranged so
that the average value of ηj over one period is zero. So we require <ηk> = 0.
Our expression for ηj(t

′) is good enough to integrate (7.14) for ξj(t
′) to order

O(ω−3),

ξj(t
′) =

1

ω2
sinωt′

∑
k

∂U

∂q̄k

∂2H0

∂pj∂pk
+O(ω−3),

where we have again dropped the integration constant as a correction to the
initial condition for q̄. Notice that the average of ξj over one period is zero,
to the order required.

Now we are ready to find whether η and ξ change over the course of one
period. We will use∫ t+ τ

2

t− τ
2

sinωt′f(t′) dt′ =
2π

ω2

df

dt
cosωt+O(ω−3)

∫ t+ τ
2

t− τ
2

cosωtf(t) dt = −2π

ω2

df

dt
sinωt+O(ω−3)

In particular,∫ t+ τ
2

t− τ
2

sinωt′
∂U

∂qj

∣∣∣∣∣
q̄(t′)

dt′ =
2π

ω2
cosωt

∑
k

∂2U

∂qj∂qk

∣∣∣∣∣
q̄(t)

q̇k

=
2π

ω2
cosωt

∑
k

∂2U

∂qj∂qk

∣∣∣∣∣
q̄(t)

∂H0

∂pk

∣∣∣∣∣
q̄(t),p̄(t)

.

We also see that∫ t+ τ
2

t− τ
2

ηk(t
′)f(t′) dt′ =

∫ t+ τ
2

t− τ
2

ηk(t
′)

(
f(t) + (t′−t) df

dt

∣∣∣∣∣
t

)
dt′ +O(ω−3)

=
2π

ω
<ηk>f(t) +

df

dt

∣∣∣∣∣
t

∫ t+ τ
2

t− τ
2

(t′ − t)ηk(t
′) dt′

=
2π

ω
<ηk>f(t) +O(ω−3)
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because ηk(t
′) is already O(ω−1), is multiplied by something less than τ and

integrated over an interval of lenght τ .

So we can write that the changes in η and ξ over one period are

∆ξj =
∫ t+ τ

2

t− τ
2

ξ̇j(t
′) dt′

=
2π

ω

[∑
k

<ηk>
∂2H0

∂pj∂pk

∣∣∣∣∣
q̄,p̄

+
∑
k

<ξk>
∂2H0

∂pj∂qk

∣∣∣∣∣
q̄,p̄

+
1

2

∑
k`

(
<ηkη`>− 1

2ω2

∂U

∂q̄k

∂U

∂q̄`

)
∂3H0

∂pj∂pk∂p`

∣∣∣∣∣
q̄,p̄

]
+O(ω−4)

∆ηj =
∫ t+ τ

2

t− τ
2

η̇j(t
′) dt′

= −2π

ω2

∑
k

∂2U

∂qj∂qk

∂H0

∂pk
cosωt− 2π

ω

∑
k

<ηk>
∂2H0

∂qj∂pk

∣∣∣∣∣
q̄,p̄

−π
ω

∑
k`

(
<ηkη`>− 1

2ω2

∂U

∂q̄k

∂U

∂q̄`

)
∂3H0

∂qj∂pk∂p`

∣∣∣∣∣
q̄,p̄

−2π

ω

∑
k

(
<ξk sinωt>− 1

2ω2

∑
`

∂U

∂q`

∂2H0

∂pk∂p`

)
∂2U

∂qj∂qk

∣∣∣∣∣
q̄

+O(ω−4).

We need

<ηkη`> =
ω

2π

∫ t+ τ
2

t− τ
2

1

ω2
cos2 ωt′

∂U

∂qk

∂U

∂q`
dt′ =

1

2ω2

∂U

∂qk

∂U

∂q`
,

<ξk sinωt> =
ω

2π

∫ t+ τ
2

t− τ
2

1

ω2
sin2 ωt′

∑
k

∂U

∂q̄k

∂2H0

∂pj∂pk
dt′

=
1

2ω2

∑
k

∂U

∂q̄k

∂2H0

∂pj∂pk

These, together with our requirement <ηk> = 0, show that all the terms
vanish except

∆ηj = −2π

ω2

∑
k

∂2U

∂qj∂qk

∂H0

∂pk
cosωt.


