
Chapter 2

Lagrange’s and Hamilton’s
Equations

In this chapter, we consider two reformulations of Newtonian mechanics, the
Lagrangian and the Hamiltonian formalism. The first is naturally associated
with configuration space, extended by time, while the latter is the natural
description for working in phase space.

Lagrange developed his approach in 1764 in a study of the libration of
the moon, but it is best thought of as a general method of treating dynamics
in terms of generalized coordinates for configuration space. It so transcends
its origin that the Lagrangian is considered the fundamental object which
describes a quantum field theory.

Hamilton’s approach arose in 1835 in his unification of the language of
optics and mechanics. It too had a usefulness far beyond its origin, and
the Hamiltonian is now most familiar as the operator in quantum mechanics
which determines the evolution in time of the wave function.

We begin by deriving Lagrange’s equation as a simple change of coordi-
nates in an unconstrained system, one which is evolving according to New-
ton’s laws with force laws given by some potential. Lagrangian mechanics
is also and especially useful in the presence of constraints, so we will then
extend the formalism to this more general situation.
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2.1 Lagrangian for unconstrained systems

For a collection of particles with conservative forces described by a potential,
we have in inertial cartesian coordinates

mẍi = Fi.

The left hand side of this equation is determined by the kinetic energy func-
tion as the time derivative of the momentum pi = ∂T/∂ẋi, while the right
hand side is a derivative of the potential energy, −∂U/∂xi. As T is indepen-
dent of xi and U is independent of ẋi in these coordinates, we can write both
sides in terms of the Lagrangian L = T − U , which is then a function of
both the coordinates and their velocities. Thus we have established

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0,

which, once we generalize it to arbitrary coordinates, will be known as La-
grange’s equation. Note that we are treating L as a function of the 2N
independent variables xi and ẋi, so that ∂L/∂ẋi means vary one ẋi holding
all the other ẋj and all the xk fixed. Making this particular combination

of T (~̇r) with U(~r) to get the more complicated L(~r, ~̇r) seems an artificial
construction for the inertial cartesian coordinates, but it has the advantage
of preserving the form of Lagrange’s equations for any set of generalized
coordinates.

As we did in section 1.3.3, we assume we have a set of generalized coor-
dinates {qj} which parameterize all of coordinate space, so that each point
may be described by the {qj} or by the {xi}, i, j ∈ [1, N ], and thus each set
may be thought of as a function of the other, and time:

qj = qj(x1, ...xN , t) xi = xi(q1, ...qN , t). (2.1)

We may consider L as a function1 of the generalized coordinates qj and q̇j,

1Of course we are not saying that L(x, ẋ, t) is the same function of its coordinates as
L(q, q̇, t), but rather that these are two functions which agree at the corresponding physical
points. More precisely, we are defining a new function L̃(q, q̇, t) = L(x(q, t), ẋ(q, q̇, t), t),
but we are being physicists and neglecting the tilde. We are treating the Lagrangian here
as a scalar under coordinate transformations, in the sense used in general relativity, that
its value at a given physical point is unchanged by changing the coordinate system used
to define that point.
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and ask whether the same expression in these coordinates

d

dt

∂L

∂q̇j
− ∂L

∂qj

also vanishes. The chain rule tells us

∂L

∂ẋj
=
∑
k

∂L

∂qk

∂qk
∂ẋj

+
∑
k

∂L

∂q̇k

∂q̇k
∂ẋj

. (2.2)

The first term vanishes because qk depends only on the coordinates xk and
t, but not on the ẋk. From the inverse relation to (1.10),

q̇j =
∑
i

∂qj
∂xi

ẋi +
∂qj
∂t
, (2.3)

we have
∂q̇j
∂ẋi

=
∂qj
∂xi

.

Using this in (2.2),
∂L

∂ẋi
=
∑
j

∂L

∂q̇j

∂qj
∂xi

. (2.4)

Lagrange’s equation involves the time derivative of this. Here what is
meant is not a partial derivative ∂/∂t, holding the point in configuration
space fixed, but rather the derivative along the path which the system takes as
it moves through configuration space. It is called the stream derivative, a
name which comes from fluid mechanics, where it gives the rate at which some
property defined throughout the fluid, f(~r, t), changes for a fixed element of
fluid as the fluid as a whole flows. We write it as a total derivative to indicate
that we are following the motion rather than evaluating the rate of change
at a fixed point in space, as the partial derivative does.

For any function f(x, t) of extended configuration space, this total time
derivative is

df

dt
=
∑
j

∂f

∂xj
ẋj +

∂f

∂t
. (2.5)

Using Leibnitz’ rule on (2.4) and using (2.5) in the second term, we find

d

dt

∂L

∂ẋi
=
∑
j

(
d

dt

∂L

∂q̇j

)
∂qj
∂xi

+
∑
j

∂L

∂q̇j

(∑
k

∂2qj
∂xi∂xk

ẋk +
∂2qj
∂xi∂t

)
. (2.6)
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On the other hand, the chain rule also tells us

∂L

∂xi
=
∑
j

∂L

∂qj

∂qj
∂xi

+
∑
j

∂L

∂q̇j

∂q̇j
∂xi

,

where the last term does not necessarily vanish, as q̇j in general depends on
both the coordinates and velocities. In fact, from 2.3,

∂q̇j
∂xi

=
∑
k

∂2qj
∂xi∂xk

ẋk +
∂2qj
∂xi∂t

,

so
∂L

∂xi
=
∑
j

∂L

∂qj

∂qj
∂xi

+
∑
j

∂L

∂q̇j

(∑
k

∂2qj
∂xi∂xk

ẋk +
∂2qj
∂xi∂t

)
. (2.7)

Lagrange’s equation in cartesian coordinates says (2.6) and (2.7) are equal,
and in subtracting them the second terms cancel2, so

0 =
∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
∂qj
∂xi

.

The matrix ∂qj/∂xi is nonsingular, as it has ∂xi/∂qj as its inverse, so we
have derived Lagrange’s Equation in generalized coordinates:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0.

Thus we see that Lagrange’s equations are form invariant under changes of
the generalized coordinates used to describe the configuration of the system.
It is primarily for this reason that this particular and peculiar combination
of kinetic and potential energy is useful. Note that we implicity assume the
Lagrangian itself transformed like a scalar, in that its value at a given phys-
ical point of configuration space is independent of the choice of generalized
coordinates that describe the point. The change of coordinates itself (2.1) is
called a point transformation.

2This is why we chose the particular combination we did for the Lagrangian, rather
than L = T − αU for some α 6= 1. Had we done so, Lagrange’s equation in cartesian
coordinates would have been α d(∂L/∂ẋj)/dt − ∂L/∂xj = 0, and in the subtraction of
(2.7) from α×(2.6), the terms proportional to ∂L/∂q̇i (without a time derivative) would
not have cancelled.
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2.2 Lagrangian for Constrained Systems

We now wish to generalize our discussion to include contraints. At the same
time we will also consider possibly nonconservative forces. As we mentioned
in section 1.3.2, we often have a system with internal forces whose effect is
better understood than the forces themselves, with which we may not be
concerned. We will assume the constraints are holonomic, expressible as k
real functions Φα(~r1, ..., ~rn, t) = 0, which are somehow enforced by constraint

forces ~FC
i on the particles {i}. There may also be other forces, which we

will call FD
i and will treat as having a dynamical effect. These are given by

known functions of the configuration and time, possibly but not necessarily
in terms of a potential.

This distinction will seem artificial without examples, so it would be well
to keep these two in mind. In each of these cases the full configuration
space is R

3, but the constraints restrict the motion to an allowed subspace
of extended configuration space.

1. In section 1.3.2 we discussed a mass on a light rigid rod, the other end
of which is fixed at the origin. Thus the mass is constrained to have
|~r| = L, and the allowed subspace of configuration space is the surface
of a sphere, independent of time. The rod exerts the constraint force
to avoid compression or expansion. The natural assumption to make is
that the force is in the radial direction, and therefore has no component
in the direction of allowed motions, the tangential directions. That is,
for all allowed displacements, δ~r, we have ~FC ·δ~r = 0, and the constraint
force does no work.

2. Consider a bead free to slide without friction on the spoke of a rotating
bicycle wheel3, rotating about a fixed axis at fixed angular velocity ω.
That is, for the polar angle θ of inertial coordinates, Φ := θ−ωt = 0 is
a constraint4, but the r coordinate is unconstrained. Here the allowed
subspace is not time independent, but is a helical sort of structure in
extended configuration space. We expect the force exerted by the spoke
on the bead to be in the êθ direction. This is again perpendicular to
any virtual displacement, by which we mean an allowed change in

3Unlike a real bicycle wheel, we are assuming here that the spoke is directly along a
radius of the circle, pointing directly to the axle.

4There is also a constraint z = 0.
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configuration at a fixed time. It is important to distinguish this virtual
displacement from a small segment of the trajectory of the particle. In
this case a virtual displacement is a change in r without a change in θ,
and is perpendicular to êθ. So again, we have the “net virtual work” of
the constraint forces is zero. It is important to note that this does not
mean that the net real work is zero. In a small time interval, the dis-
placement ∆~r includes a component rω∆t in the tangential direction,
and the force of constraint does do work!

We will assume that the constraint forces in general satisfy this restriction
that no net virtual work is done by the forces of constraint for any possible
virtual displacement. Newton’s law tells us that ~̇pi = Fi = FC

i + FD
i . We

can multiply by an arbitrary virtual displacement∑
i

(
~FD
i − ~̇pi

)
· δ~ri = −∑

i

~FC
i · δ~ri = 0,

where the first equality would be true even if δ~ri did not satisfy the con-
straints, but the second requires δ~ri to be an allowed virtual displacement.
Thus ∑

i

(
~FD
i − ~̇pi

)
· δ~ri = 0, (2.8)

which is known as D’Alembert’s Principle. This gives an equation which
determines the motion on the constrained subspace and does not involve the
unspecified forces of constraint FC . We drop the superscript D from now on.

Suppose we know generalized coordinates q1, . . . , qN which parameterize
the constrained subspace, which means ~ri = ~ri(q1, . . . , qN , t), for i = 1, . . . , n,
are known functions and the N q’s are independent. There are N = 3n −
k of these independent coordinates, where k is the number of holonomic
constraints. Then ∂~ri/∂qj is no longer an invertable, or even square, matrix,
but we still have

∆~ri =
∑
j

∂~ri
∂qj

∆qj +
∂~ri
∂t

∆t.

For the velocity of the particle, divide this by ∆t, giving

~vi =
∑
j

∂~ri
∂qj

q̇j +
∂~ri
∂t
, (2.9)

but for a virtual displacement ∆t = 0 we have

δ~ri =
∑
j

∂~ri
∂qj

δqj.
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Differentiating (2.9) we note that,

∂~vi
∂q̇j

=
∂~ri
∂qj

, (2.10)

and also
∂~vi
∂qj

=
∑
k

∂2~ri
∂qj∂qk

q̇k +
∂2~ri
∂qj∂t

=
d

dt

∂~ri
∂qj

, (2.11)

where the last equality comes from applying (2.5), with coordinates qj rather
than xj, to f = ∂~ri/∂qj. The first term in the equation (2.8) stating
D’Alembert’s principle is

∑
i

~Fi · δ~ri =
∑
j

∑
i

~Fi · ∂~ri
∂qj

δqj =
∑
j

Qj · δqj.

The generalized force Qj has the same form as in the unconstrained case, as
given by (1.9), but there are only as many of them as there are unconstrained
degrees of freedom.

The second term of (2.8) involves

∑
i

~̇pi · δ~ri =
∑
i

dpi
dt

∂~ri
∂qj

δqj

=
∑
j

d

dt

(∑
i

~pi · ∂~ri
∂qj

)
δqj −

∑
ij

pi ·
(
d

dt

∂~ri
∂qj

)
δqj

=
∑
j

d

dt

(∑
i

~pi · ∂~vi
∂q̇j

)
δqj −

∑
ij

pi · ∂~vi
∂qj

δqj

=
∑
j

[
d

dt

∑
i

mi~vi · ∂~vi
∂q̇j

−∑
i

mivi · ∂~vi
∂qj

]
δqj

=
∑
j

[
d

dt

∂T

∂q̇j
− ∂T

∂qj

]
δqj,

where we used (2.10) and (2.11) to get the third line. Plugging in the ex-
pressions we have found for the two terms in D’Alembert’s Principle,

∑
j

[
d

dt

∂T

∂q̇j
− ∂T

∂qj
−Qj

]
δqj = 0.
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We assumed we had a holonomic system and the q’s were all independent,
so this equation holds for arbitrary virtual displacements δqj, and therefore

d

dt

∂T

∂q̇j
− ∂T

∂qj
−Qj = 0. (2.12)

Now let us restrict ourselves to forces given by a potential, with ~Fi =
−~∇iU({~r}, t), or

Qj = −∑
i

∂~ri
∂qj

· ~∇iU = − ∂Ũ({q}, t)
∂qj

∣∣∣∣∣
t

.

Notice that Qj depends only on the value of U on the constrained surface.
Also, U is independent of the q̇i’s, so

d

dt

∂T

∂q̇j
− ∂T

∂qj
+
∂U

∂qj
= 0 =

d

dt

∂(T − U)

∂q̇j
− ∂(T − U)

∂qj
,

or

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0. (2.13)

This is Lagrange’s equation, which we have now derived in the more general
context of constrained systems.

2.2.1 Some examples of the use of Lagrangians

Atwood’s machine

Atwood’s machine consists of two blocks of mass m1 and m2 attached by an
inextensible cord which suspends them from a pulley of moment of inertia I
with frictionless bearings. The kinetic energy is

T =
1

2
m1ẋ

2 +
1

2
m2ẋ

2 +
1

2
Iω2

U = m1gx+m2g(K − x) = (m1 −m2)gx+ const

where we have used the fixed length of the cord to conclude that the sum of
the heights of the masses is a constant K. We assume the cord does not slip
on the pulley, so the angular velocity of the pulley is ω = ẋ/r, and

L =
1

2
(m1 +m2 + I/r2)ẋ2 + (m2 −m1)gx,
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and Lagrange’s equation gives

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 = (m1 +m2 + I/r2)ẍ− (m2 −m1)g.

Notice that we set up our system in terms of only one degree of freedom, the
height of the first mass. This one degree of freedom parameterizes the line
which is the allowed subspace of the unconstrained configuration space, a
three dimensional space which also has directions corresponding to the angle
of the pulley and the height of the second mass. The constraints restrict
these three variables because the string has a fixed length and does not slip
on the pulley. Note that this formalism has permitted us to solve the problem
without solving for the forces of constraint, which in this case are the tensions
in the cord on either side of the pulley.

Bead on spoke of wheel

As a second example, reconsider the bead on the spoke of a rotating bicycle
wheel. In section (1.3.4) we saw that the kinetic energy is T = 1

2
mṙ2 +

1
2
mr2ω2. If there are no forces other than the constraint forces, U(r, θ) ≡ 0,

and the Lagrangian is

L =
1

2
mṙ2 +

1

2
mr2ω2.

The equation of motion for the one degree of freedom is easy enough:

d

dt

∂L

∂ṙ
= mr̈ =

∂L

∂r
= mrω2,

which looks like a harmonic oscillator with a negative spring constant, so the
solution is a real exponential instead of oscillating,

r(t) = Ae−ωt +Beωt.

The velocity-independent term in T acts just like a potential would, and can
in fact be considered the potential for the centrifugal force. But we see that
the total energy T is not conserved but blows up as t→∞, T ∼ mB2ω2e2ωt.
This is because the force of constraint, while it does no virtual work, does do
real work.
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Mass on end of gimballed rod

Finally, let us consider the mass on the end of the gimballed rod. The
allowed subspace is the surface of a sphere, which can be parameterized by
an azimuthal angle φ and the polar angle with the upwards direction, θ, in
terms of which

z = ` cos θ, x = ` sin θ cosφ, y = ` sin θ sinφ,

and T = 1
2
m`2(θ̇2 + sin2 θφ̇2). With an arbitrary potential U(θ, φ), the La-

grangian becomes

L =
1

2
m`2(θ̇2 + sin2 θφ̇2)− U(θ, φ).

From the two independent variables θ, φ there are two Lagrange equations of
motion,

m`2θ̈ = −∂U
∂θ

+
1

2
sin(2θ)φ̇2, (2.14)

d

dt

(
m`2 sin2 θφ̇

)
= −∂U

∂φ
. (2.15)

Notice that this is a dynamical system with two coordinates, similar to ordi-
nary mechanics in two dimensions, except that the mass matrix, while diag-
onal, is coordinate dependent, and the space on which motion occurs is not
an infinite flat plane, but a curved two dimensional surface, that of a sphere.
These two distinctions are connected—the coordinates enter the mass ma-
trix because it is impossible to describe a curved space with unconstrained
cartesian coordinates.

Often the potential U(θ, φ) will not actually depend on φ, in which case
Eq. 2.15 tells us m`2 sin2 θφ̇ is constant in time. We will discuss this further
in Section 2.4.1.

2.3 Hamilton’s Principle

The configuration of a system at any moment is specified by the value of the
generalized coordinates qj(t), and the space coordinatized by these q1, . . . , qN
is the configuration space. The time evolution of the system is given by
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the trajectory, or motion of the point in configuration space as a function of
time, which can be specified by the functions qi(t).

One can imagine the system taking many paths, whether they obey New-
ton’s Laws or not. We consider only paths for which the qi(t) are differen-
tiable. Along any such path, we define the action as

S =
∫ t2

t1
L(q(t), q̇(t), t)dt. (2.16)

The action depends on the starting and ending points q(t1) and q(t2), but
beyond that, the value of the action depends on the path, unlike the work
done by a conservative force on a point moving in ordinary space. In fact,
it is exactly this dependence on the path which makes this concept useful
— Hamilton’s principle states that the actual motion of the particle from
q(t1) = qi to q(t2) = qf is along a path q(t) for which the action is stationary.
That means that for any small deviation of the path from the actual one,
keeping the initial and final configurations fixed, the variation of the action
vanishes to first order in the deviation.

To find out where a differentiable function of one variable has a stationary
point, we differentiate and solve the equation found by setting the derivative
to zero. If we have a differentiable function f of several variables xi, the
first-order variation of the function is ∆f =

∑
i(xi−x0i) ∂f/∂xi|x0

, so unless
∂f/∂xi|x0

= 0 for all i, there is some variation of the {xi} which causes a
first order variation of f , and then x0 is not a stationary point.

But our action is a functional, a function of functions, which represent
an infinite number of variables, even for a path in only one dimension. In-
tuitively, at each time q(t) is a separate variable, though varying q at only
one point makes q̇ hard to interpret. A rigorous mathematician might want
to describe the path q(t) on t ∈ [0, 1] in terms of Fourier series, for which
q(t) = q0 + q1t+

∑
n=1 an sin(nπt). Then the functional S(f) given by

S =
∫
f(q(t), q̇(t), t)dt

becomes a function of the infinitely many variables q0, q1, a1, . . .. The end-
points fix q0 and q1, but the stationary condition gives an infinite number of
equations ∂S/∂an = 0.

It is not really necessary to be so rigorous, however. Under a change
q(t) → q(t) + δq(t), the derivative will vary by δq̇ = d δq(t)/dt, and the
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functional S will vary by

δS =
∫ (

∂f

∂q
δq +

∂f

∂q̇
δq̇

)
dt

=
∂f

∂q̇
δq

∣∣∣∣∣
f

i

+
∫ [

∂f

∂q
− d

dt

∂f

∂q̇

]
δqdt,

where we integrated the second term by parts. The boundary terms each have
a factor of δq at the initial or final point, which vanish because Hamilton tells
us to hold the qi and qf fixed, and therefore the functional is stationary if
and only if

∂f

∂q
− d

dt

∂f

∂q̇
= 0 for t ∈ (ti, tf ) (2.17)

We see that if f is the Lagrangian, we get exactly Lagrange’s equation. The
above derivation is essentially unaltered if we have many degrees of freedom
qi instead of just one.

2.3.1 Examples of functional variation

In this section we will work through some examples of functional variations
both in the context of the action and for other examples not directly related
to mechanics.

The falling particle

As a first example of functional variation, consider a particle thrown up in
a uniform gravitional field at t = 0, which lands at the same spot at t = T .
The Lagrangian is L = 1

2
m(ẋ2 + ẏ2 + ż2)−mgz, and the boundary conditions

are x(t) = y(t) = z(t) = 0 at t = 0 and t = T . Elementary mechanics tells
us the solution to this problem is x(t) = y(t) ≡ 0, z(t) = v0t − 1

2
gt2 with

v0 = 1
2
gT . Let us evaluate the action for any other path, writing z(t) in

terms of its deviation from the suspected solution,

z(t) = ∆z(t) +
1

2
gT t− 1

2
gt2.

We make no assumptions about this path other than that it is differentiable
and meets the boundary conditions x = y = ∆z = 0 at t = 0 and at t = T .
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The action is

S =
∫ T

0

{
1

2
m

ẋ2 + ẏ2 +

(
d∆z

dt

)2

+ g(T − 2t)
d∆z

dt
+

1

4
g2(T − 2t)2


−mg∆z − 1

2
mg2t(T − t)

}
dt.

The fourth term can be integrated by parts,

∫ T

0

1

2
mg(T − 2t)

d∆z

dt
dt =

1

2
mg(T − 2t)∆z

∣∣∣∣T
0

+
∫ T

0
mg∆z(t) dt.

The boundary term vanishes because ∆z = 0 where it is evaluated, and the
other term cancels the sixth term in S, so

S =
∫ T

0

1

2
mg2

[
1

4
(T − 2t)2 − t(T − t)

]
dt

+
∫ T

0

1

2
m

ẋ2 + ẏ2 +

(
d∆z

dt

)2
 .

The first integral is independent of the path, so the minimum action requires
the second integral to be as small as possible. But it is an integral of a non-
negative quantity, so its minimum is zero, requiring ẋ = ẏ = d∆z/dt = 0.
As x = y = ∆z = 0 at t = 0, this tells us x = y = ∆z = 0 at all times, and
the path which minimizes the action is the one we expect from elementary
mechanics.

Is the shortest path a straight line?

The calculus of variations occurs in other contexts, some of which are more
intuitive. The classic example is to find the shortest path between two points
in the plane. The length ` of a path y(x) from (x1, y1) to (x2, y2) is given5 by

` =
∫ x2

x1

ds =
∫ x2

x1

√√√√1 +

(
dy

dx

)2

dx.

5Here we are assuming the path is monotone in x, without moving somewhere to the
left and somewhere to the right. To prove that the straight line is shorter than other paths
which might not obey this restriction, do Exercise 2.2.
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We see that length ` is playing the role of the action, and x is playing the role
of t. Using ẏ to represent dy/dx, we have the integrand f(y, ẏ, x) =

√
1 + ẏ2,

and ∂f/∂y = 0, so Eq. 2.17 gives

d

dx

∂f

∂ẏ
=

d

dx

ẏ√
1 + ẏ2

= 0, so ẏ = const.

and the path is a straight line.

2.4 Conserved Quantities

2.4.1 Ignorable Coordinates

If the Lagrangian does not depend on one coordinate, say qk, then we say
it is an ignorable coordinate. Of course, we still want to solve for it, as
its derivative may still enter the Lagrangian and effect the evolution of other
coordinates. By Lagrange’s equation

d

dt

∂L

∂q̇k
=
∂L

∂qk
= 0,

so if in general we define

Pk :=
∂L

∂q̇k
,

as the generalized momentum, then in the case that L is independent of
qk, Pk is conserved, dPk/dt = 0.

Linear Momentum

As a very elementary example, consider a particle under a force given by a
potential which depends only on y and z, but not x. Then

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− U(y, z)

is independent of x, x is an ignorable coordinate and

Px =
∂L

∂ẋ
= mẋ

is conserved. This is no surprize, of course, because the force is F = −∇U
and Fx = −∂U/∂x = 0.
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Note that, using the definition of the generalized momenta

Pk =
∂L

∂q̇k
,

Lagrange’s equation can be written as

d

dt
Pk =

∂L

∂qk
=
∂T

∂qk
− ∂U

∂qk
.

Only the last term enters the definition of the generalized force, so if the
kinetic energy depends on the coordinates, as will often be the case, it is
not true that dPk/dt = Qk. In that sense we might say that the generalized
momentum and the generalized force have not been defined consistently.

Angular Momentum

As a second example of a system with an ignorable coordinate, consider an
axially symmetric system described with inertial polar coordinates (r, θ, z),
with z along the symmetry axis. Extending the form of the kinetic energy
we found in sec (1.3.4) to include the z coordinate, we have T = 1

2
mṙ2 +

1
2
mr2θ̇2 + 1

2
mż2. The potential is independent of θ, because otherwise the

system would not be symmetric about the z-axis, so the Lagrangian

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
mż2 − U(r, z)

does not depend on θ, which is therefore an ignorable coordinate, and

Pθ :=
∂L

∂θ̇
= mr2θ̇ = constant.

We see that the conserved momentum Pθ is in fact the z-component of the
angular momentum, and is conserved because the axially symmetric potential
can exert no torque in the z-direction:

τz = −
(
~r × ~∇U

)
z

= −r
(
~∇U

)
θ

= −r2∂U

∂θ
= 0.

Finally, consider a particle in a spherically symmetric potential in spher-
ical coordinates. In section (3.1.2) we will show that the kinetic energy in
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spherical coordinates is T = 1
2
mṙ2 + 1

2
mr2θ̇2 + 1

2
mr2 sin2 θφ̇2, so the La-

grangian with a spherically symmetric potential is

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
mr2 sin2 θφ̇2 − U(r).

Again, φ is an ignorable coordinate and the conjugate momentum Pφ is
conserved. Note, however, that even though the potential is independent of
θ as well, θ does appear undifferentiated in the Lagrangian, and it is not an
ignorable coordinate, nor is Pθ conserved6.

If qj is an ignorable coordinate, not appearing undifferentiated in the
Lagrangian, any possible motion qj(t) is related to a different trajectory
q′j(t) = qj(t) + c, in the sense that they have the same action, and if one
is an extremal path, so will the other be. Thus there is a symmetry of the
system under qj → qj + c, a continuous symmetry in the sense that c can
take on any value. As we shall see in Section 8.3, such symmetries generally
lead to conserved quantities. The symmetries can be less transparent than
an ignorable coordinate, however, as in the case just considered, of angular
momentum for a spherically symmetric potential, in which the conservation
of Lz follows from an ignorable coordinate φ, but the conservation of Lx and
Ly follow from symmetry under rotation about the x and y axes respectively,
and these are less apparent in the form of the Lagrangian.

2.4.2 Energy Conservation

We may ask what happens to the Lagrangian along the path of the motion.

dL

dt
=

∑
i

∂L

∂qi

dqi
dt

+
∑
i

∂L

∂q̇i

dq̇i
dt

+
∂L

∂t

In the first term the first factor is

d

dt

∂L

∂q̇i

6It seems curious that we are finding straightforwardly one of the components of the
conserved momentum, but not the other two, Ly and Lx, which are also conserved. The
fact that not all of these emerge as conjugates to ignorable coordinates is related to the fact
that the components of the angular momentum do not commute in quantum mechanics.
This will be discussed further in section (6.6.1).
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by the equations of motion, so

dL

dt
=

d

dt

(∑
i

∂L

∂q̇i
q̇i

)
+
∂L

∂t
.

We expect energy conservation when the potential is time invariant and there
is not time dependence in the constraints, i.e. when ∂L/∂t = 0, so we rewrite
this in terms of

H(q, q̇, t) =
∑
i

q̇i
∂L

∂q̇i
− L =

∑
i

q̇iPi − L

Then for the actual motion of the system,

dH

dt
= −∂L

∂t
.

If ∂L/∂t = 0, H is conserved.
H is essentially the Hamiltonian, although strictly speaking that name

is reserved for the function H(q, p, t) on extended phase space rather than
the function with arguments (q, q̇, t). What is H physically? In the case
of Newtonian mechanics with a potential function, L is an inhomogeneous
quadratic function of the velocities q̇i. If we write the Lagrangian L = L2 +
L1 + L0 as a sum of pieces purely quadratic, purely linear, and independent
of the velocities respectively, then

∑
i

q̇i
∂

∂q̇i

is an operator which multiplies each term by its order in velocities,

∑
i

q̇i
∂Ln
∂q̇i

= nLn,
∑
i

q̇i
∂L

∂q̇i
= 2L2 + L1,

and
H = L2 − L0.

For a system of particles described by their cartesian coordinates, L2 is
just the kinetic energy T , while L0 is the negative of the potential energy
L0 = −U , so H = T + U is the ordinary energy. There are, however, con-
strained systems, such as the bead on a spoke of Section 2.2.1, for which the
Hamiltonian is conserved but is not the ordinary energy.

52 CHAPTER 2. LAGRANGE’S AND HAMILTON’S EQUATIONS

2.5 Hamilton’s Equations

We have written the Lagrangian as a function of qi, q̇i, and t, so it is a
function of N +N + 1 variables. For a free particle we can write the kinetic
energy either as 1

2
mẋ2 or as p2/2m. More generally, we can7 reexpress the

dynamics in terms of the 2N + 1 variables qk, Pk, and t.
The motion of the system sweeps out a path in the space (q, q̇, t) or a

path in (q, P, t). Along this line, the variation of L is

dL =
∑
k

(
∂L

∂q̇k
dq̇k +

∂L

∂qk
dqk

)
+
∂L

∂t
dt

=
∑
k

(
Pkdq̇k + Ṗkdqk

)
+
∂L

∂t
dt

where for the first term we used the definition of the generalized momentum
and in the second we have used the equations of motion Ṗk = ∂L/∂qk. Then
examining the change in the Hamiltonian H =

∑
k Pkq̇k−L along this actual

motion,

dH =
∑
k

(Pkdq̇k + q̇kdPk)− dL

=
∑
k

(
q̇kdPk − Ṗkdqk

)
− ∂L

∂t
dt.

If we think of q̇k and H as functions of q and P , and think of H as a function
of q, P , and t, we see that the physical motion obeys

q̇k =
∂H

∂Pk

∣∣∣∣∣
q,t

, Ṗk = − ∂H

∂qk

∣∣∣∣∣
P,t

,
∂H

∂t

∣∣∣∣∣
q,P

= − ∂L

∂t

∣∣∣∣∣
q,q̇

The first two constitute Hamilton’s equations of motion, which are first
order equations for the motion of the point representing the system in phase
space.

Let’s work out a simple example, the one dimensional harmonic oscillator.
Here the kinetic energy is T = 1

2
mẋ2, the potential energy is U = 1

2
kx2, so

7In field theory there arise situations in which the set of functions Pk(qi, q̇i) cannot be
inverted to give functions q̇i = q̇i(qj , Pj). This gives rise to local gauge invariance, and
will be discussed in Chapter 8, but until then we will assume that the phase space (q, p),
or cotangent bundle, is equivalent to the tangent bundle, i.e. the space of (q, q̇).
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L = 1
2
mẋ2− 1

2
kx2, the only generalized momentum is P = ∂L/∂ẋ = mẋ, and

the Hamiltonian is H = Pẋ−L = P 2/m−(P 2/2m− 1
2
kx2) = P 2/2m+ 1

2
kx2.

Note this is just the sum of the kinetic and potential energies, or the total
energy.

Hamilton’s equations give

ẋ =
∂H

∂P

∣∣∣∣∣
x

=
P

m
, Ṗ = − ∂H

∂x

∣∣∣∣∣
P

= −kx = F.

These two equations verify the usual connection of the momentum and ve-
locity and give Newton’s second law.

The identification of H with the total energy is more general than our
particular example. If T is purely quadratic in velocities, we can write T =
1
2

∑
ijMij q̇iq̇j in terms of a symmetric mass matrix Mij. If in addition U is

independent of velocities,

L =
1

2

∑
ij

Mij q̇iq̇j − U(q)

Pk =
∂L

∂q̇k
=
∑
i

Mkiq̇i

which as a matrix equation in a n-dimensional space is P = M · q̇. Assuming
M is invertible,8 we also have q̇ = M−1 · P , so

H = P T · q̇ − L

= P T ·M−1 · P −
(

1

2
q̇T ·M · q̇ − U(q)

)
= P T ·M−1 · P − 1

2
P T ·M−1 ·M ·M−1 · P + U(q)

=
1

2
P T ·M−1 · P + U(q) = T + U

so we see that the Hamiltonian is indeed the total energy under these cir-
cumstances.

8If M were not invertible, there would be a linear combination of velocities which
does not affect the Lagrangian. The degree of freedom corresponding to this combination
would have a Lagrange equation without time derivatives, so it would be a constraint
equation rather than an equation of motion. But we are assuming that the q’s are a set
of independent generalized coordinates that have already been pruned of all constraints.
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2.6 Don’t plug Equations of Motion into the

Lagrangian!

When we have a Lagrangian with an ignorable coordinate, say θ, and there-
fore a conjugate momentum Pθ which is conserved and can be considered
a constant, we are able to reduce the problem to one involving one fewer
degrees of freedom. That is, one can substitute into the other differential
equations the value of θ̇ in terms of Pθ and other degrees of freedom, so
that θ and its derivatives no longer appear in the equations of motion. For
example, consider the two dimensional isotropic harmonic oscillator,

L =
1

2
m
(
ẋ2 + ẏ2

)
− 1

2
k
(
x2 + y2

)
=

1

2
m
(
ṙ2 + r2θ̇2

)
− 1

2
kr2

in polar coordinates. The equations of motion are

Ṗθ = 0, where Pθ = mr2θ̇,

mr̈ = −kr +mrθ̇2 =⇒ mr̈ = −kr + P 2
θ

/
mr3.

The last equation is now a problem in the one degree of freedom r.

One might be tempted to substitute for θ̇ into the Lagrangian
and then have a Lagrangian involving one fewer degrees of free-
dom. In our example, we would get

L =
1

2
mṙ2 +

P 2
θ

2mr2
− 1

2
kr2,

which gives the equation of motion

mr̈ = − P 2
θ

mr3
− kr.



This is
wrong

Notice that the last equation has the sign of the P 2
θ term reversed from

the correct equation. Why did we get the wrong answer? In deriving the
Lagrange equation which comes from varying r, we need

d

dt

∂L

∂ṙ

∣∣∣∣∣
r,θ,θ̇

=
∂L

∂r

∣∣∣∣∣
ṙ,θ,θ̇

.
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But we treated Pθ as fixed, which means that when we vary r on the right
hand side, we are not holding θ̇ fixed, as we should be. While we often
write partial derivatives without specifying explicitly what is being held fixed,
they are not defined without such a specification, which we are expected to
understand implicitly. However, there are several examples in Physics, such
as thermodynamics, where this implicit understanding can be unclear, and
the results may not be what was intended.

2.7 Velocity-dependent forces

We have concentrated thus far on Newtonian mechanics with a potential
given as a function of coordinates only. As the potential is a piece of the
Lagrangian, which may depend on velocities as well, we should also entertain
the possibility of velocity-dependent potentials. Only by considering such a
potential can we possibly find velocity-dependent forces, and one of the most
important force laws in physics is of that form. This is the Lorentz force9

on a particle of charge q in the presence of electromagnetic fields ~E(~r, t) and
~B(~r, t),

~F = q

(
~E +

~v

c
× ~B

)
. (2.18)

If the motion of a charged particle is described by Lagrangian mechanics with
a potential U(~r,~v, t), Lagrange’s equation says

0 =
d

dt

∂L

∂vi
− ∂L

∂ri
= mr̈i − d

dt

∂U

∂vi
+
∂U

∂ri
, so Fi =

d

dt

∂U

∂vi
− ∂U

∂ri
.

We want a force linear in ~v and proportional to q, so let us try

U = q
(
φ(~r, t) + ~v · ~C(~r, t)

)
.

Then we need to have

~E +
~v

c
× ~B =

d

dt
~C − ~∇φ−∑

j

vj ~∇Cj. (2.19)

9We have used Gaussian units here, but those who prefer S. I. units (rationalized MKS)
can simply set c = 1.
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The first term is a stream derivative evaluated at the time-dependent position
of the particle, so, as in Eq. (2.5),

d

dt
~C =

∂ ~C

∂t
+
∑
j

vj
∂ ~C

∂xj
.

The last term looks like the last term of (2.19), except that the indices on the

derivative operator and on ~C have been reversed. This suggests that these
two terms combine to form a cross product. Indeed, noting (A.17) that

~v ×
(
~∇× ~C

)
=
∑
j

vj ~∇Cj −
∑

vj
∂ ~C

∂xj
,

we see that (2.19) becomes

~E+
~v

c
× ~B =

∂ ~C

∂t
− ~∇φ−∑

j

vj ~∇Cj +
∑
j

vj
∂ ~C

∂xj
=
∂ ~C

∂t
− ~∇φ−~v×

(
~∇× ~C

)
.

We have successfully generated the term linear in ~v if we can show that
there exists a vector field ~C(~r, t) such that ~B = −c~∇× ~C. A curl is always

divergenceless, so this requires ~∇· ~B = 0, but this is indeed one of Maxwell’s
equations, and it ensures10 there exists a vector field ~A, known as the mag-
netic vector potential, such that ~B = ~∇× ~A. Thus with ~C = − ~A/c, we
need only to find a φ such that

~E = −~∇φ− 1

c

∂ ~A

∂t
.

Once again, one of Maxwell’s laws,

~∇× ~E +
1

c

∂ ~B

∂t
= 0,

guarantees the existence of φ, the electrostatic potential, because after
inserting ~B = ~∇× ~A, this is a statement that ~E + (1/c)∂ ~A/∂t has no curl,
and is the gradient of something.

10This is but one of many consequences of the Poincaré lemma, discussed in section 6.5
(well, it should be). The particular forms we are using here state that if ~∇ · ~B = 0 and
~∇× ~F = 0 in all of R

3, then there exist a scalar function φ and a vector field ~A such that
~B = ~∇× ~A and ~F = ~∇φ.
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Thus we see that the Lagrangian which describes the motion of a charged
particle in an electromagnetic field is given by a velocity-dependent potential

U(~r,~v) = q
(
φ(r, t)− (~v/c) · ~A(~r, t)

)
.

Note, however, that this Lagrangian describes only the motion of the charged
particle, and not the dynamics of the field itself.

Arbitrariness in the Lagrangian In this discussion of finding the La-
grangian to describe the Lorentz force, we used the lemma that guaranteed
that the divergenceless magnetic field ~B can be written in terms of some
magnetic vector potential ~A, with ~B = ~∇× ~A. But ~A is not uniquely spec-
ified by ~B; in fact, if a change is made, ~A → ~A + ~∇λ(~r, t), ~B is unchanged

because the curl of a gradient vanishes. The electric field ~E will be changed
by −(1/c)∂ ~A/∂t, however, unless we also make a change in the electrostatic
potential, φ → φ − (1/c)∂λ/∂t. If we do, we have completely unchanged
electromagnetic fields, which is where the physics lies. This change in the
potentials,

~A→ ~A+ ~∇λ(~r, t), φ→ φ− (1/c)∂λ/∂t, (2.20)

is known as a gauge transformation, and the invariance of the physics
under this change is known as gauge invariance. Under this change, the
potential U and the Lagrangian are not unchanged,

L→ L− q

(
δφ− ~v

c
· δ ~A

)
= L+

q

c

∂λ

∂t
+
q

c
~v · ~∇λ(~r, t) = L+

q

c

dλ

dt
.

We have here an example which points out that there is not a unique
Lagrangian which describes a given physical problem, and the ambiguity is
more that just the arbitrary constant we always knew was involved in the
potential energy. This ambiguity is quite general, not depending on the gauge
transformations of Maxwell fields. In general, if

L(2)(qj, q̇j, t) = L(1)(qj, q̇j, t) +
d

dt
f(qj, t) (2.21)

then L(1) and L(2) give the same equations of motion, and therefore the same
physics, for qj(t). While this can be easily checked by evaluating the Lagrange
equations, it is best understood in terms of the variation of the action. For
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any path qj(t) between qjI at t = tI to qjF at t = tF , the two actions are
related by

S(2) =
∫ tF

tI

(
L(1)(qj, q̇j, t) +

d

dt
f(qj, t)

)
dt

= S(1) + f(qjF , tF )− f(qjI , tI).

The variation of path that one makes to find the stationary action does not
change the endpoints qjF and qjI , so the difference S(2) − S(1) is a constant
independent of the trajectory, and a stationary trajectory for S(2) is clearly
stationary for S(1) as well.

The conjugate momenta are affected by the change in Lagrangian, how-
ever, because L(2) = L(1) +

∑
j q̇j∂f/∂qj + ∂f/∂t, so

p
(2)
j =

∂L(2)

∂q̇j
= p

(1)
j +

∂f

∂qj
.

This ambiguity is not usually mentioned in elementary mechanics, be-
cause if we restict our attention to Lagrangians consisting of canonical kinetic
energy and potentials which are velocity-independent, a change (2.21) to a
Lagrangian L(1) of this type will produce an L(2) which is not of this type, un-
less f is independent of position q and leaves the momenta unchanged. That
is, the only f which leaves U velocity independent is an arbitrary constant.

Dissipation Another familiar force which is velocity dependent is friction.
Even the “constant” sliding friction met with in elementary courses depends
on the direction, if not the magnitude, of the velocity. Friction in a viscous
medium is often taken to be a force proportional to the velocity, ~F = −α~v.
We saw above that a potential linear in velocities produces a force perpen-
dicular to ~v, and a term higher order in velocities will contribute a force
that depends on acceleration. This situation cannot handled by Lagrange’s
equations. More generally, a Lagrangian can produce a force Qi = Rij q̇j with
antisymmetric Rij, but not for a symmetric matrix. An extension to the La-
grange formalism, involving Rayleigh’s dissipation function, can handle such
a case. These dissipative forces are discussed in Ref. [6].

Exercises
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2.1 (Galelean relativity): Sally is sitting in a railroad car observing a system of
particles, using a Cartesian coordinate system so that the particles are at positions
~r

(S)
i (t), and move under the influence of a potential U (S)({~r (S)

i }). Thomas is in
another railroad car, moving with constant velocity ~u with respect to Sally, and so
he describes the position of each particle as ~r (T )

i (t) = ~r
(S)
i (t)− ~ut. Each takes the

kinetic energy to be of the standard form in his system, i.e. T (S) = 1
2

∑
mi

(
~̇r

(S)
i

)2

and T (T ) = 1
2

∑
mi

(
~̇r

(T )
i

)2
.

(a) Show that if Thomas assumes the potential function U (T )(~r (T )) to be the same
as Sally’s at the same physical points,

U (T )(~r (T )) = U (S)(~r (T ) + ~ut), (2.22)

then the equations of motion derived by Sally and Thomas describe the same
physics. That is, if r (S)

i (t) is a solution of Sally’s equations, r (T )
i (t) = r

(S)
i (t)− ~ut

is a solution of Thomas’.
(b) show that if U (S) ({~ri}) is a function only of the displacements of one particle
from another, {~ri − ~rj}, then U (T ) is the same function of its arguments as U (S),
U (T )({~ri}) = U (S)({~ri}). This is a different statement than Eq. 2.22, which states
that they agree at the same physical configuration. Show it will not generally be
true if U (S) is not restricted to depend only on the differences in positions.
(c) If it is true that U (S)(~r) = U (T )(~r), show that Sally and Thomas derive the
same equations of motion, which we call “form invariance” of the equations.
(d) Show that nonetheless Sally and Thomas disagree on the energy of a particular
physical motion, and relate the difference to the total momentum. Which of these
quantities are conserved?

2.2 In order to show that the shortest path in two dimensional Euclidean space
is a straight line without making the assumption that ∆x does not change sign
along the path, we can consider using a parameter λ and describing the path by
two functions x(λ) and y(λ), say with λ ∈ [0, 1]. Then

` =
∫ 1

0
dλ
√
ẋ2(λ) + ẏ2(λ),

where ẋ means dx/dλ. This is of the form of a variational integral with two
variables. Show that the variational equations do not determine the functions
x(λ) and y(λ), but do determine that the path is a straight line. Show that the
pair of functions (x(λ), y(λ)) gives the same action as another pair (x̃(λ), ỹ(λ)),
where x̃(λ) = x(t(λ)) and ỹ(λ) = y(t(λ)), where t(λ) is any monotone function
mapping [0, 1] onto itself. Explain why this equality of the lengths is obvious
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in terms of alternate parameterizations of the path. [In field theory, this is an
example of a local gauge invariance, and plays a major role in string theory.]

2.3 Consider a circular hoop of radius R rotating about a vertical diameter at
a fixed angular velocity Ω. On the hoop there is a bead of mass m, which slides
without friction on the hoop. The only external force is gravity. Derive the
Lagrangian and the Lagrange equation using the polar angle θ as the unconstrained
generalized coordinate. Find a conserved quantity, and find the equilibrium points,
for which θ̇ = 0. Find the condition on Ω such that there is an equilibrium point
away from the axis.

2.4 Early steam engines had a feedback device, called a governor, to automat-
ically control the speed. The engine rotated a vertical shaft with an angular

velocity Ω proportional to its speed. On oppo-
site sides of this shaft, two hinged rods each
held a metal weight, which was attached to
another such rod hinged to a sliding collar, as
shown.

As the shaft rotates faster, the balls move
outwards, the collar rises and uncovers a hole,
releasing some steam. Assume all hinges are
frictionless, the rods massless, and each ball
has mass m1 and the collar has mass m2.

(a) Write the Lagrangian in terms of the gen-
eralized coordinate θ.

(b) Find the equilibrium angle θ as a func-
tion of the shaft angular velocity Ω. Tell
whether the equilibrium is stable or not.

m
1 1

m

L

m
2

Ω

L

Governor for a steam en-
gine.

2.5 A transformer consists of two coils of conductor each of which has an induc-
tance, but which also have a coupling, or mutual inductance.
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If the current flowing into the upper posts of coils
A and B are IA(t) and IB(t) respectively, the volt-
age difference or EMF across each coil is VA and VB
respectively, where

VA = LA
dIA
dt

+M
dIB
dt

VB = LB
dIB
dt

+M
dIA
dt

A B

V

0

V

0

I IA B

A B

Consider the circuit shown, two
capacitors coupled by a such a trans-
former, where the capacitances are
CA and CB respectively, with the
charges q1(t) and q2(t) serving as the
generalized coordinates for this prob-
lem. Write down the two second or-
der differential equations of “motion”
for q1(t) and q2(t), and write a La-
grangian for this system.

q

−q

q

−q

1 2
A B

1 2

2.6 A cylinder of radius R is held horizontally in a fixed position, and a smaller
uniform cylindrical disk of radius a is placed on top of the first cylinder, and is
released from rest. There is a coefficient of
static friction µs and a coefficient of kinetic
friction µk < µs for the contact between the
cylinders. As the equilibrium at the top is
unstable, the top cylinder will begin to roll on
the bottom cylinder.

(a) If µs is sufficiently large, the small disk
will roll until it separates from the fixed
cylinder. Find the angle θ at which the
separation occurs, and find the mini-
mum value of µs for which this situation
holds.

(b) If µs is less than the minimum value
found above, what happens differently,
and at what angle θ does this different
behavior begin?

θ

a

R

A small cylinder rolling on
a fixed larger cylinder.

2.7 (a) Show that if Φ(q1, ..., qn, t) is an arbitrary differentiable function on ex-
tended configuration space, and L(1)({qi}, {q̇j}, t) and L(2)({qi}, {q̇j}, t) are two
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Lagrangians which differ by the total time derivative of Φ,

L(1)({qi}, {q̇j}, t) = L(2)({qi}, {q̇j}, t) +
d

dt
Φ(q1, ..., qn, t),

show by explicit calculations that the equations of motion determined by L(1) are
the same as the equations of motion determined by L(2).
(b) What is the relationship between the momenta p

(1)
i and p

(2)
i determined by

these two Lagrangians respectively.

2.8 A particle of mass m1 moves in two dimensions on a frictionless horizontal
table with a tiny hole in it. An inextensible massless string attached to m1 goes
through the hole and is connected to another particle of mass m2, which moves
vertically only. Give a full set of generalized unconstrained coordinates and write
the Lagrangian in terms of these. Assume the string remains taut at all times
and that the motions in question never have either particle reaching the hole, and
there is no friction of the string sliding at the hole.
Are there ignorable coordinates? Reduce the problem to a single second order
differential equation. Show this is equivalent to single particle motion in one
dimension with a potential V (r), and find V (r).

2.9 Consider a mass m on the end of a massless rigid rod of length `, the other
end of which is free to rotate about a fixed point. This is a spherical pendulum.
Find the Lagrangian and the equations of motion.

2.10 (a) Find a differential equation for θ(φ) for the shortest path on the surface
of a sphere between two arbitrary points on that surface, by minimizing the length
of the path, assuming it to be monotone in φ.
(b) By geometrical argument (that it must be a great circle) argue that the path
should satisfy

cos(φ− φ0) = K cot θ,

and show that this is indeed the solution of the differential equation you derived.

2.11 Consider some intelligent bugs who live on a turntable which, according
to inertial observers, is spinning at angular velocity ω about its center. At any
one time, the inertial observer can describe the points on the turntable with polar
coordinates r, φ. If the bugs measure distances between two objects at rest with
respect to them, at infinitesimally close points, they will find


