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1 Frequency and Angular Distribution

We have found the expression for the power radiated in a given solid angle,
as a function of time, to be

dP (t)

dΩ
= | ~A(t)|2 where ~A(t) :=

√
c

4π

[
R ~E

]
ret .

[Note ~A is not the vector potential here!] The energy into a solid angle, over
all times, is

dW

dΩ
=
∫ ∞

−∞
|A(t)|2dt =

∫ ∞

−∞
|Ã(ω)|2dω,

where Ã(ω) is the Fourier transform of A(t),

Ã(ω) :=
1√
2π

∫ ∞

−∞
~A(t) eiωtdt.

As ~A(t) is real, Ã(−ω) = (Ã(ω))∗, so

dW

dΩ
= 2

∫ ∞

0
|Ã(ω)|2dω,

and we can define the energy per unit solid angle per unit frequency,

d2I

dωdΩ
= 2| ~A(ω)|2.

Our expression for the radiative part of the electric field,

R~E(t) =
q

c

n̂×
(
(n̂− ~β)× ~̇β

)

(1− n̂ · ~β)3

∣∣∣∣∣∣∣∣
te

.

A(ω) =

√
q2

8π2c

∫ ∞

−∞
eiωt



n̂×

(
(n̂− ~β)× ~̇β

)

(1− n̂ · ~β)3




te

dt
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where t = te +R(te)/c, dt/dte = 1 + (dR/cdte) = 1− n̂ · ~β(te), So expressing
the integral over te, we have

A(ω) =

√
q2

8π2c

∫ ∞

−∞
eiω(te+R(te)/c)



n̂×

(
(n̂− ~β)× ~̇β

)

(1− n̂ · ~β)2


 dte,

and now that there are not references to t left we can drop the subscript e.

Assuming the region in which ~̇β is nonzero is small compared to R, we can
write R(t) = R− n̂ ·~r(t), where the observer is a distance R from the origin,
which is near the region where the scattering occurs, and ~r(t) is the position
of the particle relative to that origin. Then

A(ω) =

√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c)



n̂×

(
(n̂− ~β)× ~̇β

)

(1− n̂ · ~β)2


 dt.

In calculating d2I/dωdΩ the phase factor eiωR/c will be irrelevant. We note
that the piece in the integrand multiplying the exponential can be written
as a total time derivative:

d

dt


 n̂× (n̂× ~β)

1− n̂ · ~β


 =

n̂× (n̂× ~̇β)

1− n̂ · β +
n̂× (n̂× ~β)(n̂ · ~̇β)

(1− n̂ · β)2

=
[(n̂ · ~̇β)n̂− ~̇β](1− n̂ · β) + [(n̂ · β)n̂− ~β](n̂ · ~̇β)

(1− n̂ · β)2

=
(n̂ · ~̇β)(n̂− ~β)− ~̇β(1− n̂ · β)

(1− n̂ · β)2

=
n̂×

(
(n̂− ~β)× ~̇β

)

(1− n̂ · ~β)2
.

Thus we have

A(ω) =

√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c) d

dt


 n̂× (n̂× ~β)

1− n̂ · ~β


 dt. (1)

It may be useful to integrate by parts, but we will also see, when we discuss
the low frequency limit of bremsstrahlung, that this is useful as is.



504: Lecture 24 Last Latexed: April 27, 2011 at 10:33 3

Integrating by parts, assuming that boundary terms at t = ±∞ can be
discarded, and inserting in the intensity, we have

d2I

dωdΩ
=
q2ω2

4π2c

∣∣∣∣
∫ ∞

−∞
eiω(t−n̂·~r(t)/c) n̂×

(
n̂× ~β

)
(t) dt

∣∣∣∣2 .

2 Wigglers and Undulators

We saw that the pulse of radiation received by an observer from an ultrarela-
tivistic charged particle undergoing transverse acceleration consists of many
frequencies up to an X-ray cutoff. This unintentional effect of early high en-
ergy accelerators was tapped into by condensed matter experimentalists and
biologists who could make use of very intense short pulses of X-rays. But for
many purposes a monochromatic rather than broad-spectrum source would
be useful.

Enhanced radiation is also possible if you want it. To achieve this, one can
produce periodic motion of the particles with a sequence of magnets, called
either wigglers or undulators, depending on how significant the oscillations
are. A sequence of alternately directed magnets can produce a charged parti-
cle path with transverse sinusoidal oscillations, x = a sin 2πz/λ0. The angle
of the beam will vary by ψ0 = ∆θ = dx/dz = 2πa/λ0. The spread in angle
of the forward radiation is θr ≈ 1/γ, centered on the momentary direction of
the beam. Thus if ψ0 � θr, an observer will be within the field only part of
each oscillation, and will see the source turning on and off. In this case we
have a wiggler. At the
source, that frequency is
βc/λ0. Each wiggle sends a
pulse of time duration a frac-
tion roughly (θr/ψ0) of one
period, so

∆te ≈ (λ0/βc)(θr/ψ0),

λ 0

0
ψ γ1

λ
0 γ ψ0

but this is compressed for the observer by a factor of 1 − n̂ · ~β ≈ 1/2γ2, so
the received pulse has ∆t = λ0/2cβγ

3ψ0 and has frequencies up to f ≈ 1
∆t
≈

2γ3ψ0c/λ0. Each pulse is incoherent, so the intensity is N times that of a
single wiggle.

In the other limit, ψ0 � θr, the observer is always in the intense region of
the beam, but the beam is radiating coherently. In the particle’s rest frame
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the disturbing fields have a Fitzgerald-contracted wavelength λ0/γ, going by
at βc, so the particle sees it-
self oscillating at

ω′ = 2πcγβ/λ0 ≈ 2πcγ/λ0.

But the observer in the
lab would say the par-
ticle’s clock is running
slow and therefore the
source frequency is ω′/γ,
but the Doppler con-
traction of the pulse
increases the frequency by
1/(1−n̂·~β) ≈ 2γ2/(1+γ2θ2).

So all together the frequency observed is

ω =
2ω′

γ(1− n̂ · ~β)
=

4πcγ2

λ0(1 + γ2θ2)
.

Note this is coherent radiation, so the intensity is proportional to N2 and
the frequency has a spread proportional to 1/N

We will be content with this rather qualitative discussion and skip the
fine details of pp 686-694.

3 Thomson Scattering

We saw (14.18) that in the particle’s rest frame the electric field is given by

~E =
q

c2R
n̂× (n̂× ~̇v),

so the amplitude corresponding to a particular polarization vector ~ε is

~ε ∗ · ~E =
q

c2R
~ε ∗ ·

(
n̂× (n̂× ~̇v)

)
=

q

c2R
~ε ∗ · ~̇v,

as ~ε ∗ · n̂ = 0. The power radiated with this polarization per sterradian is

dP

dΩ
=

q2

4πc3

∣∣∣~ε ∗ · ~̇v∣∣∣2 .
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If a free electron has an electric field

~E(~x, t) = ~ε0E0e
i~k·~x−iωt

incident on it, it will have an acceleration

~̇v(t) = ~ε0
e

m
E0e

i~k·~x−iωt

If the motion is sufficiently limited to ignore the change in position and keep
the particle non-relativistic, (x ≈ eE0/mω

2 � λ = 2πc/ω), the time average

of
∣∣∣~ε ∗ · ~̇v∣∣∣2 = (~ε ∗ · ~̇v)(~̇v ∗ · ~ε) is

1

2

e2|E0|2
m2

|~ε ∗ · ε0|2

and 〈
dP

dΩ

〉
=

c

8π
|E0|2

(
e2

mc2

)2

|~ε ∗ · ~ε0|2 .

Dividing this by the incident energy flux c|E0|2/8π we get the cross section

dσ

dΩ
=

(
e2

mc2

)2

|~ε ∗ · ~ε0|2 .

If the scattering angle is θ and the incident beam is unpolarized and the cross
section summed over final polarizations, the factor of

1

2

∑
i

∑
f

∣∣∣~ε∗f · ~ε0∣∣∣2 =
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf [(cos θ cosφf , sinφf ,− sin θ cos φf)

·(cosφi, sinφi, 0)]2

=
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf [(cos θ cosφf cosφi + sinφf sinφi]

2

=
1

2

[
cos2 θ + 1

]

where I have taken the incident direction to be z and the final (sin θ, 0, cos θ).
Thus the unpolarized cross section is

dσ

dΩ
=

(
e2

mc2

)2
1 + cos2 θ

2
.
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This is called the Thomson formula. The corresponding total cross section
is

σT =
8π

3

(
e2

mc2

)2

.

The quantity in parentheses is called the classical electron radius, roughly
the radius at which a conducting sphere of charge e would have electrostatic
energy e2/2r = mc2. (The factor of 1/2, or of 3/5 for a uniformly charged
sphere, is discarded.)

This formula disregarded recoil of the electron when hit by the elec-
tromagnetic wave. Of course classically the cross section could have been
measured with an arbitrarily weak field, so recoil could be neglected, but
quantum-mechanically the minimum energy hitting the electron is h̄ω, which
gives a significant recoil if h̄ω ≈ mc2. In fact, if we take quantum mechanics
into account we are considering Compton scattering, for which, we learned
as freshman, energy and momentum conservation insure that the outgoing
photon has a increased wavelength,

λ′ = λ+
h

mc
(1− cos θ), or

k′

k
=

1

1 +
h̄ω

mc2
(1− cos2 θ)

.

It turns out that the quantum mechanical calculation (for a scalar particle)
is the classical result times (k′/k)2:

dσ

dΩ

∣∣∣∣∣
QM, scalar

=

(
e2

mc2

)2 (
k′

k

)2

|~ε ∗ · ~ε0|2 .


