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Physics 504, Lecture 10
Feb. 24, 2011

1 Geometrical Fiber Optics

The wave guides considered so far contained their fields within conducting
walls, but we know from studying total internal reflection in elementary optics
that it is also possible to contain fields by changes in the index of refraction.
An extremely important application is fiber optics.

A fiber optic cable is a silica fiber with an index of refraction which varies
as a function of radius. The simplest form is a core of radius a and index of
refraction n1, surrounded by a shell of outer radius b and having an index of
refraction n0 < n1. If the angle of inci-
dence α > αc = sin−1(n0/n1), there will be
total internal reflection and the light will
be confined. It is more convenient, in dis-
cussing optical fibers, to use the angle θ
which the light makes with the axis of the
fiber, so the condition for total internal re-
flection is θ < θmax = cos−1(n0/n1).

α αθ
b

a

Of course this discussion was in terms of geometrical optics, suitable if the
wavelength of the light is negligible compared to the geometrical distances,
λ � a. Optical fibers come in two categories, multimode and single mode.
For multimode fibers, a ≈ 25µm, b ≈ 75µm, and the light used is generally
near infrared, λ ∼ 0.85µm, so geometrical optics is a reasonable approach,
though we shall see that interference effects are still relevant. Single mode
fiber is smaller, a ≈ 2µm, and we need to treat these as waveguides.

Consider the simple multimode fiber, and define

∆ =
n2

1 − n2
0

2n2
1

≈ 1− n0

n1
,

which is often about 0.01. As it is small, cos θmax ≈ 1− 1
2
θ2
max = 1−∆, so

θmax ≈
√

2∆. There is an uncertainty principle between the localization of
a wave and its wave number, which limits the number of modes that can be
transmitted. We may think of this quantum mechanically, where the density
of modes is given by

∫
(dpdq/2πh̄)D for each mode (in D dimensions). The
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coordinate integral is
∫
d2q = πa2, and as |~k⊥| ≤ kz tan θmax = kz

√
2∆,∫

d2p = h̄2 ∫ d2k = 2πh̄2k2
z∆. There are 2 polarizations, so the number of

modes that can propagate is roughly N = k2
za

2∆ = 1
2
V 2, where V := ka

√
2∆

is called the fiber parameter. For a multimode fiber N is about 100, but for
a single mode it is 2, one for each polarization.

There is a problem with this simple ar-
rangement, as the distance light travels to
get a distance z down the fiber is z sec θ, so
light with different θ values will travel dif-
ferent optical distances to get to the same
point, and will interfere. This can be ame-
liorated by having more than one transi-
tion, or even a continuum. In fact, for next
week you will find how it can be fixed with
a continuous distribution of n(r).

θ

To analyze such a situation, where ε(~x) varies smoothly, and assuming
µ = µ0 as the fiber is not magnetic, we may write Maxwell’s equations,
having fourier transformed time to discuss a particular frequency, as

~∇ · ε ~E = 0 =
(
~∇ε
)
· ~E + ε~∇ · ~E

~∇× ~E = −µ0
∂ ~H

∂t
= iµ0ω ~H

~∇× ~H =
∂ε ~E

∂t
= −iωε ~E

~∇ · ~H = 0.

So

~∇×
(
~∇× ~E

)
= −∇2 ~E + ~∇

(
~∇ · ~E

)
= iµ0ω~∇× ~H = µ0ω

2ε ~E

= −∇2 ~E − ~∇
(

1

ε

(
~∇ε
)
· ~E
)

~∇×
(
~∇× ~H

)
= −∇2 ~H + ~∇

(
~∇ · ~H

)
= −iω~∇×

(
ε ~E
)

−∇2 ~H = −iω
(
~∇ε
)
× ~E − iωε~∇× ~E = −iω

(
~∇ε
)
× ~E + µ0ω

2ε ~H.

or

∇2 ~E + µ0ω
2ε ~E + ~∇

(
1

ε

(
~∇ε
)
· ~E
)

= 0

∇2 ~H + µ0ω
2ε ~H − iω

(
~∇ε
)
× ~E = 0
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We can simplify these equations if we assume that ε varies slowly compared
to a wavelength, so

∇ε� ε

λ
=
εω

c
.

The other terms in the equations are of order ω2/c2 times E orH respectively,
(εE ∼ H/c) so the ∇ε terms may be dropped as small. Then the components

of both ~E and ~H satisfy1

(
∇2 +

ω2

c2
n2(~r)

)
ψ(~r) = 0. (1)

This equation, which describes the rapidly oscillating function ψ, can be
replaced by a more gradually varying function by using the Eikonal, writing

ψ(~r) = eiωS(~r)/c

so ∇2ψ = ~∇ ·
(
iω

c
~∇SeiωS(~r)/c

)
=

[
iω

c
∇2S − i

(
ω

c

)2 (
~∇S

)2
]
eiωS(~r)/c.

This is −(ω2n2/c2)eiωS/c from (1), so

n2(~r)− ~∇S · ~∇S = −i c
ω
∇2S.

c/ω ∼ λ, so as ∇S varies on the same scale as n(~r), which is slowly com-
pared to 1/λ, the right hand side can be dropped, and we have the eikonal
approximation

~∇S · ~∇S = n2(~r). (2)

This equation doesn’t tell us the direction in which S changes but it does
tell us that the rate is just n(~r), so in following a particular ray’s path we

can define a unit vector k̂(~r) such that ~∇S = n(~r)k̂(~r). Near a point r0 we
may expand

ψ(~r) = e
iω
(
S(~r0) + (~r − ~r0) · ~∇S

)
/c

= eiωS(~r0)/c eiωk̂ · (~r − ~r0)n(~r)/c,

1Jackson uses ~x instead of ~r in most of these equations, to emphasize that n depends
only on the transverse location, and not on the axial coordinate z. But clearly the wave
function ψ and the eikonal S do depend on z along a given ray.
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so it is locally a plane wave with |~k| = ωn(~r)/c, suitable for a wave with
speed c/n(~r) as one might expect. If s is the distance measured along the

path of the ray, d~r/ds = k̂, n(~r)d~r/ds = ~∇S, so

d

ds

(
n(~r)

d~r

ds

)
=

d

ds
~∇S = ~∇ dS

ds

∣∣∣∣∣
Γ

= ~∇n(~r). (3)

(In the penultimate expression Γ represents the ray’s path.)
In general, a ray will be directed in a direction with a large axial compo-

nent, a radial component, and an aximuthal component. If the latter is zero,
the ray will pass through the axis, and the ray is called meridional. Rays
with a nonzero azimuthal component will never pass directly through the
axis, and are called skew rays. In terms of wave functions, such rays corre-
spond to azimuthal ‘quantum’ numbers m 6= 0, and have vanishing intensity
at ρ = 0 (on the axis). Following Jackson we will avoid complication and
discuss only meridional rays, which is also equivalent (for geometric optics,
at least) to discussing a plane slab. So the ρ direction will be renamed x, and
we consider a ray confined to the xz plane, where z is the overall direction
of motion. We assume n doesn’t depend on z.

The x and z components of Eq (3) are

d

ds
(n(x) sin θ) =

dn(x)

dx
,

d

ds
(n(x) cos θ) =

dn(~r)

dz
= 0.

Thus n(x) cos θ is a constant along the path, and if θ < θmax the path will
turn around at xmax, at which cos θ = 1, so the constant value of n(x) cos θ
is just n̄ := n(xmax), but it is also, of course, n(0) cos θ(0).

Note that dz/ds = cos θ = n̄/n, so the path is determined by rewriting
the x component of Eq. (3) as

n̄

n(x)

d

dz

(
n(x)

n̄

n(x)

dx

dz

)
=

n̄

n(x)

d

dz

(
n̄
dx

dz

)
=
dn

dx

so n̄2d
2x

dz2
= n(x)

dn(x)

dx
=

1

2

d

dx
n2(x).

Whether by inspiration from mechanics, viewing −1
2
n2(x) as a potential, or

otherwise, if we multiply this equation by x′ := dx/dz we get

1

2
n̄2 d

dz

(
dx

dz

)2

=
1

2

d

dz
n2(x) =⇒ n̄2x′ 2 = n2(x)− n̄2,
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where the constant of integration n̄2 is determined by x′ = 0 at xmax, n(xmax) =
n̄. So the axial distance traveled from the point the ray crossed the axis to
reaching radius x is

z(x) =
∫ x

0

dz

dx
dx = n̄

∫ x

0

dx√
n2(x)− n̄2

.

The path is important because if different rays have different path lengths
to get to the same (large) displacement z down the fiber, they will interfere.
From one crossing of the axis to the next, the ray moves in z a distance

Z = 2n̄
∫ xmax

0

dx√
n2(x)− n̄2

.

The distance travelled is not important, but the optical distance,
∫
n(x)ds

is, because that determines the change in phase, and the optical distance
corresponding to the axial displacement Z is

Lopt = 2
∫ xmax

0
n(x)

ds

dz

dz

dx
dx = 2

∫ xmax

0
n(x)

n(x)

n̄

n̄√
n2(x)− n̄2

dx

= 2
∫ xmax

0

n2(x)√
n2(x)− n̄2

dx.

The phase difference in a single half-period is not likely to be important,
but when the rays travel a large distance z, the total optical path will be
Loptz/Z. Thus it is ideal if Lopt/Z is independent of n̄, that is, it is the
same for all rays. In problem 8.14 you will show how to accomplish that.

In addition to geometrical dispersion coming from not having Lopt/Z
independent of n̄, there can also be frequency dispersion due to the variation
of n(~x) with frequency. This will not effect a very narrow bandwidth signal
(one with a very narrow range of ω), but the rate at which information can
be carried is proportional to the bandwidth, so we would like to have little
dispersion in frequency as well. We also want minimal absorption. These
two issues for silica encourage using λ ∼ 1.4µm.

We will skip Jackson §8.11.
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2 Sources of Waves in Wave Guides

We now turn our attention to the sources of waves in waveguides. With given
sources (i.e. ignoring back reactions) the equations are still linear (inhomoge-
neous) in the fields and time-independent, so we can assume everything has a
e−iωt time dependence. The normal modes of free waves in a waveguide form
a complete set of states for the source-free solutions to Maxwell’s equations
in the guide, though we need to include all the modes, including those whose
cutoff frequency is above ω. Far from the sources, however, only the real
values of k, for modes with ωλ < ω, will have appreciable amplitude.

We will expand our fields in the normal modes, which will be indexed by
a composite index λ, which includes information about whether the mode is
TE or TM (or of other nature, e.g. TEM), and also the indices which specify
which mode (roughly the angular and radial ‘quantum’ numbers) For a given
mode we have two values of k, either positive (right moving) and negative
(left moving), or ±i|k| for cutoff modes. We will lump the +i|k| modes in
with the positive k ones, and write the (+) part of the λ mode as

~E+
λ (x, y, z) =

[
~Eλ(x, y) + ẑEz λ(x, y)

]
eikλz

~H+
λ (x, y, z) =

[
~Hλ(x, y) + ẑHz λ(x, y)

]
eikλz

where ~E and ~H are purely transverse, and were given in terms of Ez or Hz

for TM or TE modes respectively earlier. There are also modes travelling in
the negative z direction. The equations are symmetric under z ↔ −z, under
which the transverse ~Eλ(x, y) is unchanged but Ez λ(x, y) changes sign. The

magnetic field is a pseudo-vector, so for it the transverse ~Hλ(x, y) changes
sign but Hz λ(x, y) is unchanged. Thus

~E−
λ (x, y, z) =

[
~Eλ(x, y)− ẑEz λ(x, y)

]
e−ikλz

~H−
λ (x, y, z) =

[
− ~Hλ(x, y) + ẑHz λ(x, y)

]
e−ikλz

The transverse fields ~Eλ form a basis which we can choose to be real and
normalized, ∫

A

~Eλ · ~Eµ = δλµ.
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That this can be done, and what this normalization requires for the basis of
normal modes for Ez and Hz is elaborated in the slides. With this normal-
ization, and from ~Hλ = Z−1

λ ẑ × ~Eλ we also have

∫
A

~Hλ · ~Hµ =
1

Z2
λ

δλµ,

and in the time-averaged power expression 〈P 〉 = 1
2

∫
A

(
~E × ~H

)
· ẑ we have

∫
A

(
~Eλ × ~Hµ

)
· ẑ =

1

Zλ
δλµ

The above normalization for the ~Eλ comes from requiring that the z compo-
nents satisfy orthogonality conditions and normalization conditions adjusted
appropriately. For TM waves, ~Eλ = ikλγ

−2
λ
~∇Ez λ, so

δλµ =
∫
A

~Eλ · ~Eµ = −kλkµ
γ2
λγ

2
µ

∫
A

~∇Ez λ · ~∇Ez µ =
kλkµ
γ2
λγ

2
µ

∫
A
Ez λ∇2Ez µ

= −kλkµ
γ2
λ

∫
A
Ez λEz µ,

where in the integration by parts (third =) the surface term vanishes as
E|S = 0, and for the fourth ∇2Ez µ = −γ2

µEz µ, so

∫
A
Ez λEz µ = −γ

2
λ

k2
λ

δλµ,

while for TE waves the same argument for H gives

∫
A
Hz λHz µ = − γ2

λ

Z2
λk

2
λ

δλµ.
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For a rectangular waveguide, 0 ≤ x ≤ a × 0 ≤ y ≤ b, the modes are
labelled by integers m and n, with

TM waves: ψ|S = 0

Ez mn = ψ =
−2iγmn

kλ
√
ab

sin
(
mπx

a

)
sin

(
nπy

b

)
,

Exmn =
2πm

γmna
√
ab

cos
(
mπx

a

)
sin

(
nπy

b

)
,

Eymn =
2πn

γmnb
√
ab

sin
(
mπx

a

)
cos

(
nπy

b

)
,

TE waves: ∂ψ
∂n

∣∣∣
S

= 0

Hzmn = ψ =
−2iγmn

kλZλ
√
ab

cos
(
mπx

a

)
cos

(
nπy

b

)
,

Exmn =
−2πn

γmnb
√
ab

cos
(
mπx

a

)
sin

(
nπy

b

)
,

Eymn =
2πm

γmna
√
ab

sin
(
mπx

a

)
cos

(
nπy

b

)
,

where

γ2
mn = π2

(
m2

a2
+
n2

b2

)
.

The functional form of ψ is immediately apparent from the boundary condi-
tions, and for TM modes ~E = ik~∇ψ/γ2, and for TE modes ~E = −iZkẑ ×
~∇ψ/γ2. The overall constants are determined from the normalization

∫
AE

2
x+

E2
y = 1, except that for TE modes, we need an extra factor of 1/

√
2 for each

n or m which is zero, as
∫

cos2(mπx/a) = a(1 + δm0)/2.

2.1 Expansion of free waves

In our waveguide, an arbitrary field configuration in the absence of sources
can be described by expanding in normal modes with positive and negative
(or +i and −i) wave numbers, as described above. Thus a total field

~E = ~E+ + ~E−, ~H = ~H+ + ~H−,
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with
E± =

∑
λ

A±
λ
~E±
λ , H± =

∑
λ

A±
λ
~H±
λ ,

can describe an arbitrary field configuration in a region that has no sources,
with the A’s constant (independent of z) in such a section of the wave guide.

The coefficients are determined by the transverse components ~E and ~H along
any cross section, for ~E has expansion coefficients A+

λ e
ikλz + A−

λ e
−ikλz while

~H has expansion coefficients A+
λ e

ikλz − A−
λ e

−ikλz. This gives the expansion
coefficients (taking z = 0) as

A±
λ =

1

2

∫
A

~E · ~Eλ ± Z2
λ
~H · ~Hλ.

2.2 Localized Sources

We have described the waves that can propagate in the waveguide, but what
actually produces such waves? We will consider a localized source with cur-
rent density ~J(~x)e−iωt confined to some region z ∈ [z−, z+], at the ends of
which we imagine cross sections denoted by S−, S+. We will assume there
are no sources or obstacles to the right of S+ or to the left of S−, so at S+

there is no amplitude for any mode with negative k or with −i|k|, which
would represent left-moving waves or exponential blow up (as z → +∞).
The reverse is true at S−, so

~E =
∑
λ′
A+
λ′
~E+
λ′ ,

~H =
∑
λ′
A+
λ′
~H+
λ′ at S+

~E =
∑
λ′
A−
λ′
~E−
λ′ ,

~H =
∑
λ′
A−
λ′
~H−
λ′ at S−

In between, we have the full Maxwell equations (with sources),

~∇× ~E = −∂
~B

∂t
= iωµ0

~H, ~∇× ~H = ~J + ε0
∂ ~E

∂t
= ~J − iωε0 ~E,

while the normal modes obey Maxwell equations without sources:

~∇× ~H±
λ = −iωε0 ~E±

λ ,
~∇× ~E±

λ = iωµ0
~H±
λ .

If we apply the identity

~∇ ·
(
~A× ~B

)
=
(
~∇× ~A

)
· ~B − ~A ·

(
~∇× ~B

)
,
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we find

~∇ ·
(
~E × ~H±

λ − ~E±
λ × ~H

)
=
(
~∇× ~E

)
· ~H±

λ − ~E ·
(
~∇× ~H±

λ

)
−
(
~∇× ~E±

λ

)
· ~H + ~E±

λ ·
(
~∇× ~H

)
= iωµ0

~H · ~H±
λ + iωε0 ~E · ~E±

λ − iωµ0
~H±
λ · ~H + ~E±

λ ·
(
~J − iωε0 ~E

)
= ~J · ~E±

λ

If we integrate this over the volume between S− and S+, using Gauss’
theorem and the boundary condition that ~E‖ = 0 at the conductor’s surface,∫

S

(
~E × ~H±

λ − ~E±
λ × ~H

)
· n̂ =

∫
V

~J · ~E±
λ ,

where S consists of S+ with n̂ = ẑ, and S− with n̂ = −ẑ.
Let’s take the upper sign. The contribution from S+ is can be reduced to

an integral over A at z = 0:

∑
λ′
A+
λ′

∫
S+

(
~E+
λ′ × ~H+

λ − ~E+
λ × ~H+

λ′
)
z

=
∑
λ′
A+
λ′

∫
S+

(
~Eλ′ × ~Hλ − ~Eλ × ~Hλ′

)
z
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′

∫
A

(
~Eλ′ ×

(
Z−1
λ ẑ × ~Eλ

)
− ~Eλ ×

(
Z−1
λ′ ẑ × ~Eλ′

))
z
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′

∫
A

(
1

Zλ
~Eλ′ · ~Eλ − 1

Zλ′
~Eλ · ~Eλ′

)
ei(kλ+kλ′)z

=
∑
λ′
A+
λ′δλλ′

(
1

Zλ
− 1

Z ′
λ

)
ei(kλ+kλ′)z = 0.

On the other hand, the contribution from S− is

∑
λ′
A−
λ′

∫
S−
−
(
~E−
λ′ × ~H+

λ − ~E+
λ × ~H−

λ′
)
· ẑ

=
∑
λ′
A−
λ′

∫
S−
−
(
~Eλ′ × ~Hλ + ~Eλ × ~Hλ′

)
· ẑ ei(kλ−kλ′)z

= −∑
λ′
A−
λ′

2

Zλ
δλλ′ = − 2

Zλ
A−
λ

so

A−
λ = −Zλ

2

∫
V

~J · ~E+
λ .
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The same argument for the lower sign, as spelled out in the book, gives the
equation with the superscript signs reversed, so both are

A±
λ = −Zλ

2

∫
V

~J · ~E∓
λ .

In addition to sources due to currents, we may have contributions due
to obstacles or holes in the conducting boundaries. These can be treated as
additional surface terms in Gauss’ law (by excluding obstacles from the region
of integration V ), but this requires knowing the full fields at the surface of
the obstacles or the missing parts of the waveguide conductor. This is treated
in §9.5B, but we won’t discuss it here.

So finally we are at the end of Chapter 8.


