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1 Frequency and Angular Distribution

We have found the expression for the power radiated in a given solid angle,
as a function of time, to be

dP(t) < .1 N
— = AP where A(t) =/ — [RE|.,.

[Note A is not the vector potential here!] The energy into a solid angle, over
all times, is

o o [ 7 \2
o= 1Ak = [ 1AW,

where A(w) is the Fourier transform of A(t),

Alw) = ) e tdt.

v
w) = (Aw))*, so

——2/ Zdw

and we can define the energy per unit solid angle per unit frequency,
d*1
dwdS)

Our expression for the radiative part of the electric field,

As A(t) is real, A(—

= 2|A(w)|*.
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where t = t, + R(t.)/c, dt/dt, = 1+ (dR/cdt,) = 1 —a - (t.), So expressing

the integral over t., we have

n X ((ﬁ — ) x ﬁ)
te“rR(te /C) - dtc’
e (1=

and now that there are not references to ¢ left we can drop the subscript e.

Assuming the region in which 5 is nonzero is small compared to R, we can
write R(t) = R —n-7(t), where the observer is a distance R from the origin,
which is near the region where the scattering occurs, and 7(t) is the position
of the particle relative to that origin. Then

nx{(n—
uuR/c/ zw(t n-r(t)/c) ( 1 ) dt.
V 87T2 (1—n-p3)2

In calculating d?I/dwd( the phase factor ¢#/¢ will be irrelevant. We note
that the piece in the integrand multiplying the exponential can be written
as a total time derivative:

d [ x (7 x f) _ ﬁx(ﬁxﬁﬂ)%_ﬁx(Axﬂ)(ﬁ'ﬁ)
dt 1_ﬁ.3 1—-n-0 (1—n-p)?
[ By A= #-8) + [ B)n — G- )
| (=B
_ (B —F) -1 —n-p)
(1—7- )2
B ﬁx((ﬁ—ﬂ)x@
(-2

Thus we have

sz/c w(t—n-r(t)/c) 2 d nX(nXﬂ)
V 871'26 / dt | 1—n- ﬂ dt. (1)

It may be useful to integrate by parts, but we will also see, when we discuss
the low frequency limit of bremsstrahlung, that this is useful as is.
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Integrating by parts, assuming that boundary terms at ¢t = +o0o can be
discarded, and inserting in the intensity, we have

/°° = T(t)/e) <ﬁ y 5) (1)

—00

I Pw?

2
dwdQ — 4r2c dt.

2 Wigglers and Undulators

We saw that the pulse of radiation received by an observer from an ultrarela-
tivistic charged particle undergoing transverse acceleration consists of many
frequencies up to an X-ray cutoff. This unintentional effect of early high en-
ergy accelerators was tapped into by condensed matter experimentalists and
biologists who could make use of very intense short pulses of X-rays. But for
many purposes a monochromatic rather than broad-spectrum source would
be useful.

Enhanced radiation is also possible if you want it. To achieve this, one can
produce periodic motion of the particles with a sequence of magnets, called
either wigglers or undulators, depending on how significant the oscillations
are. A sequence of alternately directed magnets can produce a charged parti-
cle path with transverse sinusoidal oscillations, x = asin 2wz/\,. The angle
of the beam will vary by ¢y = A0 = dz/dz = 2mwa/Ng. The spread in angle
of the forward radiation is 6, ~ 1/, centered on the momentary direction of
the beam. Thus if 19 > 6,, an observer will be within the field only part of
each oscillation, and will see the source turning on and off. In this case we
have a wiggler. At the
source, that frequency is
Bc/No. Each wiggle sends a
pulse of time duration a frac-
tion roughly (6,/1g) of one
period, so

Ate = (Xo/Be)(Br /1),

but this is compressed for the observer by a factor of 1 — 7 - B ~ 1/2792, so
the received pulse has At = \g/2¢3v%1)y and has frequencies up to f ~ é ~
2v31oc/No. Each pulse is incoherent, so the intensity is N times that of a
single wiggle.

In the other limit, ¥y < 6,., the observer is always in the intense region of
the beam, but the beam is radiating coherently. In the particle’s rest frame
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the disturbing fields have a Fitzgerald-contracted wavelength Ao/, going by
at e, so the particle sees it-
self oscillating at

W' =2mey/ Ao & 2mey/ No-

But the observer in the
lab would say the par-
ticle’s clock is running
slow and therefore the
source frequency is w'/7,
but the Doppler con-
traction of the pulse
increases_the frequency by
1/(1=i-B) = 297/ (14+%6%).
So all together the frequency observed is

2w’

dey?

= —

w =
Y1 —n-5)

Note this is coherent radiation, so the intensity is proportional to N? and
the frequency has a spread proportional to 1/N

We will be content with this rather qualitative discussion and skip the
fine details of pp 686-694.

Ao(1+~262)

3 Thomson Scattering

We saw (14.18) that in the particle’s rest frame the electric field is given by

E= é i x (% ©),
so the amplitude corresponding to a particular polarization vector € is
5*-E:£€*-(ﬁx(ﬁxﬁ»:%?ﬁ,
as € - n = 0. The power radiated with this polarization per sterradian is
P ¢
dQ  4nc3

€ v

o -‘2
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If a free electron has an electric field
E(f, t) = goEoeiE.fiiwt

incident on it, it will have an acceleration

. e o
17(t) — E—*O_Eoezkmfzwt
m

If the motion is sufficiently limited to ignore the change in position and keep
the particle non-relativistic, (z & eEy/mw? < A = 27c/w), the time average

2 . .
of |0 = (& - 0)(¥ - &) is
162|E‘0|2 —k 2
2 m2 € el
and

dP c 2\’
N B () e
<dQ> 8m o <m02> € &
Dividing this by the incident energy flux c|Ey|*/8 we get the cross section
do e \? e L2
o \ma) 1€ o

If the scattering angle is # and the incident beam is unpolarized and the cross
section summed over final polarizations, the factor of

1 1 2m o
522’6} 6;2 — 2—772/0 dgb,»/o d[(cos O cos ¢y, sin gy, —sin b cos ¢ )
i f
“(cos ¢, sin ¢, 0)]
1 2 2T ' . ,
— ﬁ/@ d¢i/() doy [(cos @ cos ¢gcos ¢; + sin ¢ sin ¢;]

= % [C0820+ 1]2

where I have taken the incident direction to be z and the final (sin 8, 0, cos ).
Thus the unpolarized cross section is

do < e? >2 1+ cos? 0

mc?

aQ - 2
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This is called the Thomson formula. The corresponding total cross section

is ,
8 e?
or = 3 \me?2/)

The quantity in parentheses is called the classical electron radius, roughly
the radius at which a conducting sphere of charge e would have electrostatic
energy e®/2r = mc?. (The factor of 1/2, or of 3/5 for a uniformly charged
sphere, is discarded.)

This formula disregarded recoil of the electron when hit by the elec-
tromagnetic wave. Of course classically the cross section could have been
measured with an arbitrarily weak field, so recoil could be neglected, but
quantum-mechanically the minimum energy hitting the electron is iw, which
gives a significant recoil if fiw ~ mc?. In fact, if we take quantum mechanics
into account we are considering Compton scattering, for which, we learned
as freshman, energy and momentum conservation insure that the outgoing
photon has a increased wavelength,

/
)\':)\Jri(lfcos@), or M = ! :
me & 1+—w2(1—(30520)
mc

It turns out that the quantum mechanical calculation (for a scalar particle)
is the classical result times (k'/k)%:

2 \2 /71\?2
> .
QM, scalar mc k

do
dx




