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1 The Optical Theorem

The optical theorem relates the scattering amplitude in the forward direc-
tion to the total scattering cross section. It may be familiar from quantum
mechanics, where it is related to conservation of probability, but it first arose
in optics, hence its name.

To follow Jackson’s presentation in §10.11 requires following sections in
which he gives details of diffraction and scattering that we are skipping. I
will present an alternate argument which doesn’t require such details.

Consider the scattering by a scatterer of finite size of an incident plane
wave

~Ei = E0~εi e
i~ki·~x−iωt

~Bi =
1

ω
~ki × ~Ei =

1

ω
~ki ×~εi E0 ei~ki·~x−iωt

The scattered fields will also have a e−iωt dependence, assuming the scatterer
responds linearly in a time-invariant fashion, so we will drop all such factors.

The scattered wave is proportional to the incident wave and is given at
large distances by the scattering amplitude ~f(~k,~ki) as1

~Es(~x) =
eikr

r
~f(~k,~ki)E0

~Bs(~x) =
1

ω
~k × ~Es =

eikr

ωr
E0

~k × ~f(~k,~ki).

The total fields are ~E = ~Ei + ~Es and ~B = ~Bi + ~Bs.
The total power removed from the incident beam must be the incident

power flux times the total cross section, which includes both the absorption
cross section and the scattering cross section. If we measure the power far

1Here ~k is in the direction of ~r, and we are looking only at “elastic scattering” with
k = |k| = |ki|. It would probably be better to define f as a tensor multiplying ~εiE0, but
we will not need that generality. Though we haven’t made it explicit, ~f depends on ~εi.
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downfield from the scatterer, “behind” the scatterer, we must find that the
scatterer has reduced that power by the appropriate amount. If we take ~ki

in the z direction, and measure the power crossing a plane of constant large
z, the power flux is given by

P =
1

2µ0

∫
ρ dρ dφ Re

[(
~Ei + ~Es

)
×
(
~B∗

i + ~B∗
s

)]
z
.

The power that would have arrived without the scatterer is the term without
the scattered fields. As they fall off as 1/r at large r, we can ignore the
term with two scattered fields, and thus the power removed from the beam
is −∆P , where

∆P =
1

2µ0

∫
ρ dρ dφ Re

[
~Ei × ~B∗

s + ~Es × ~B∗
i

]
z

=
|E0|2
2ωµ0

∫
ρ

r
dρ dφ

Re
[
~εi ×

(
~k × ~f ∗(~k,~ki)

)
e−ikr+i~ki·~x

+eikr−i~ki·~x ~f(~k,~ki)×
(
~ki ×~εi

∗)]
z

The contribution for very large values of z will come from ρ ∼ √
z so the

angle goes to zero, ~k = ~ki, kr−~ki ·~x = k(r−z) = k(
√

z2 + ρ2−z) ≈ kρ2/2z,
so

∫
ρ dρ dφ

eikr−i~ki·~x
√

z2 + ρ2
≈ 2π

z

∫ ∞

0
ρ dρ eikρ2/2z =

2π

z

∫ ∞

0
du eiku/z = i

2π

k
.

Thus

∆P =
π |E2

0 |
ωµ0k

Re
(
−i~εi · ~f ∗(~ki, ~ki)~k + i~εi · ~k ~f ∗(~ki, ~ki)

i~εi
∗ · ~f(~ki, ~ki)~ki − i(~ki · ~f(~ki, ~ki))~εi

∗
)

z

=
π |E2

0 |
ωµ0

Re
(
−i~εi · ~f ∗(~k,~ki) + 0 + i~εi

∗ · ~f(~ki, ~ki)− 0
)

= −2π |E2
0 |

ωµ0
Im

(
~εi

∗ · ~f(~ki, ~ki)
)
.
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The power flux in the incident beam is

1

2µ0
Re ( ~Ei × ~B∗

i )z =
|E0|2
2ωµ0

Re
(
~εi ×

(
~k ×~εi

))
z

=
|E0|2k
2ωµ0

so the total cross section must be

σTot =
−2∆Pωµ0

|E0|2k =
4π

k
Im

(
~εi

∗ · ~f(~ki, ~ki)
)
.

This is the optical theorem.

1.1 Index of Refraction
I mentioned that the forward scattering is
related to the index of refraction. To see
this, consider a thin slab of scattering ma-
terial, of number density N , thickness d,

with an incident wave ~Ei = E0~εie
i~ki·~x, with

~ki = kêz in the z direction, normal to the
surfaces of the slab. Let us observe the
field at a large distance z0. Each d3x in
the slab has Nd3x scatterers contributing
a scattered wave

z0

x

z

k

k

d 0

w
av

ef
ro

nt

θ
R

ρ

i

d ~Es =
eikR

R
~f(k, θ, φ;~ki)E0e

i~ki·~xNd3x

~Es = NE0

∫ d

0
dzeikz

∫ 2π

0
dφ
∫ ∞

0
ρ dρ

eikR

R
~f
(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)

As R2 = ρ2 + (z0 − z)2, ρ dρ = R dR, so

∫ ∞

0
ρ dρ

eikR

R
~f
(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)

=
∫ ∞

|z0−z|
dR eikR ~f

(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)

=
1

ik
eikR ~f

(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)∣∣∣∣∞
R=|z0−z|

− 1

ik

∫ ∞

|z0−z|
eikR dR

d

dR
~f
(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)
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where we integrated by parts for the last expression. The last term is

1

ik

∫ ∞

|z0−z|
eikR dR

z0 − z

R2

d

d cos θ
~f (k, θ, φ; kêz)

which, provided the indicated derivative is not singular, falls off like 1/R.
Dropping that term, we have

~Es = i
NE0

k

∫ d

0
dzeikz

∫ 2π

0
dφeik(z0−z) ~f (k, 0, φ; kêz)

= 2πi
NE0d

k
eikz0 ~f (k, 0, 0; kêz)

Thus the total electric field at points far beyond the slab is

~E(~x) = E0e
ikz

(
~εi +

2πiNd

k
~f(k, 0)

)
,

which is a plane wave with a shifted phase, amplitude and polarization, but
is still an exact solution of the free space wave equation. Therefore this
expression should hold right up to the edge of the slab. If we project on the
original polarization, we see the effect of a thickness dz of material on ~εi

∗ · ~E
is to multiply it by 1 + 2πik−1N~εi

∗ · ~f(k, 0)dz, so integrating this effect for
a larger distance would give

~εi
∗ · ~E(~x) = e2πik−1N~εi

∗·~f(k,0)zE0e
ikz,

that is, we have the vacuum value k replaced by nk, where the index of
refraction n is given by

n = 1 +
2πN~εi

∗ · ~f(k, 0)

k2
.

Thus we see that the index of refraction is given by the forward scattering
amplitude.

Jackson makes some comments about improving the assumptions, in par-
ticular that the field experienced by each scatterer is unaffected by the others.
He tells us the principal effect of fixing this is to evaluate the scattering cross
section at the wavenumber suitable for the dielectric rather than for free
space.
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One effect we can certainly handle is the absorption — as the forward
scattering has an imaginary part which gives the total scattering, and the
optical theorem relates that to the absorption from the beam, and hence the
imaginary part of the k = nki = Re k + i

2
αki, so

α = Nσtot =
4πN

k
Im

(
~εi

∗ · ~f(~k,~k)
)
.

Jackson also warns us that the optical theorem requires the full, correct
scattering amplitude f , and that various approximations for f may give
an imaginary part inconsistent with the total cross section which depends
on |f 2|. For a small loss-less dielectric sphere we found a real scattering
amplitude because εr is real, which would give zero for σtot by the optical
theorem, which is clearly wrong. But in section §7.10D you discussed the
Kramers-Kronig relation, in which analyticity based on causality gave an
integral relationship giving the real part of εr as an integral over frequency
of its imaginary part, so a purely real εr − 1 is inconsistent.


