Generalized Coordinates Physics 504,
Cartesian coordinates r’,i = 1,2,... D for Euclidean Blectricity
space. Magnetism
Distance by Pythagoras: (ds)? = Z(&rz)Q. Shapiro

i
Unit vectors é;, displacement A7 =", Arié;
Fields are functions of position, or of 7 or of {r'}. s o ED
Scalar fields ®(7),  Vector fields V(7)
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VxV = Ze”k ~é;, 3D only
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Functions (fields) hysies 501,
A scalar field f (P) = f(7) can also be specified by a Eleoniey
function of the ¢’s, f(q) = (r(q)) Magnetism
What about vector fields? V(F') has a meaning Shapiro

independent of the coordinates used to describe it, but
components depend on the basis vectors. Should have
basis vectors €; aligned with the direction of ¢". How to

Generalized

define? Coordinates
Consider
6= g T H0de% ) e ¢ d) Z ér

5qt—0 0s dq' /911

and the similarly defined é2 and é3. In general not good
orthonormal bases, because

Z o W/m N

which need not be zero.

In fact
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= 51']'7 so g is the inverse matrix to g...

If Vgt - Vg =0 for i # j, g7 = 0 for i # j, ¢ is diagonal,
so ¢g.. is also diagonal. And as (55)2 > 0 for any non-zero
07, g.. is positive definite, so for an orthogonal coordinate
system the diagonal elements are positive, g;; = h?éij.,
and g¥ = h725;;. Then the unit vectors are

i, OorF R
€; = h’i ! Zekaiql = ZBkiek (1)
k k
with the inverse relation
f’k = Z h PLa E = Z Ath Z Ak, Z B[,jég. (2)
i [

As the éj, are independent, this implies ), Ay; By = e
or ABT = 1.

Generalized
Coordinates

Other smooth coordinatization ¢*,i =1,...D =

¢'() and 7({¢'}) are well defined (invsome domain) o
mostly 1-—1, so Jacobian det(dq'/0r?) # 0. e
Distance between P = {¢'} and P’ = {¢’ + d¢'} is given Shapiro
by
_ ) )
(6" = Xk:(‘sr Z (Z > dqi e
= Y 9045,
j
where

- Z ark ork

j = o ' Dgi
gij s a real symmetric matrix called the metric tensor.
In general a nontrivial function of the position, g;;(q).

To repeat:
2
(6s)* = Zguaq oq’.
Another problem: &, is not normal to the surface ¢* = Physics 504,
Spring 2011
constant. Electricity

et
What to do? Two approaches:

Shapiro
» Give up on orthonormal basis vectors Deﬁne

differential forms, such as d® = Z —dx The

Generalized

cocfficients of dz* transform as covdnamt vectors. Goordinates
Contravariant vectors may be considered coefficients
of directional derivatives 9/dq¢". This is the favored
approach for working in curved spaces, differential
geometry and general relativity.
> Restrict ourselves to orthogonal coordinate systems
surface ¢' = constant intersects ¢/ = constant at
right angles. Then V¢'- V¢’ = 0.
i, I oq* O¢?
In general define 7 =Vq V¢ = — .

Note that ¢¥ is not the same as Gij-

The set {é;} and the set {€;} are each orthonormal, e

and é; = >, Ayi€;, so A is orthogonal, and .-, B = A. Spring 2011

Dot
Can also check as e
> Auidiy = hihy (00 ()0’ [0r) = hihyg¥ = by;.  swamie
k k

Thus A can be written two ways,

oq' ork S
Agi = hi— 9 _ h;l —,
ork aq
Note that Aj is a function of position, not a constant. In
Euclidean space we say that é, is the same vector
regardless of which point # the vector is at'. But then

& = Z Aji(P)é; is not the same vector at different

J
points P.

'That is, Euclidean space comes with a prescribed parallel
transport, telling how to move a vector without changing it.



Vector Fields

So for a vector field

(P) = Zf/j(q)éj = Z Vi(P)é; = ZVi(F)Aikékx
i i ik
so Vi(q Z Vi(7(q)) A (q).-
Also Vi(7) = ZAm(F)Vi(Q(FJ)-
i

Let’s summarize some of our previous relations:

b= Apéi, &=y Aj(P)

i J

aq' _,ork

Yok~ g
gij = hidij, g9 = h;%

Api = hi

Velocity of a particle
drk ark dq’
- LT (S5 (The
dg?
Z L }L]5”c] Zhﬂ €j.

<y
|

Note it is hjdg’ which has the right dimensions for an
infinitesimal length, while dg’ by itself might not.

Example, spherical coordinates.

r spherical shells
Surfaces of constant ¢ 6 cone, vertex at 0
¢ plane containing z

with the shells centered at the origin. These intersect at

right angles, so they are orthogonal coords.

Derivatives of Vectors

ord
1 0 . i ot
= 5 S G (74
ark 9A,
_ -1 or 4i
= h]. E g7 orF €

ZAkya ZzA

L =0

Euclidean parallel transport:
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Derivatives of
Vectors

Gradient of a scalar field

- af . af a4 ~
= Ak = a7 Ak Am “m
B af dq AN )
- £ (5) (et - 5 e
of af
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fon ¢° £ = Z
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Both f(7) and f(g) represent the same function f(P) on
space, so we often carelessly leave out the twiddle.

By looking at distances from varying one coordinate,
comparing to (ds)? = h?(dr)? + hj(df)® + h%(d)?,
we see that

hr=1, hp=r, hy=rsinb.

Thus
7€, + 10y + rsin e,

<
Il

and ) )
2 =2 4202 + 12 sin 09°.

Differential Forms

A general 1-form over a space coordinatized by ¢ is
w= ZAi(P)dqi,
i

and is associated with a vector. But if we are using
orthogonal curvilinear coordinates, it is more natural to
express the coefficients as multiplying the “normalized”
I-forms w; == h;dg', with w = >, A; dq = Viw;.

Then w is associated with the vector V = 3, Vié;.

Note that if

of 4, Of
w=df = oia—qidq’ = EL h; 1(97(1"%’
the associated vector is V = E ot of € = ﬁf
i b og ! '
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Forms



2-forms

General 2-form: w® =

In three dimensions, this can be associated with a vector

= = = 1
B= ZBIGI with Bi = 5 ZfijkBjk‘v
i ik

IR
IfV =w® and w® = dw®, then

1 _ )
W@ = 5 Z Bijw; Aw; =d <Z l/ihidqz>

> (gh>dJ/\dq

ij

E hilhjil 6(‘/”11)“}] N wj,
— g’
ij

Thus lB
2

= L (20i)
EARE R aq' dq’

V - B and 3-forms

Finally, let’s consider a vector B= Zl Biéi and its

associated 2-form

0(%))

Bjk = Z eijk'Bi-
@

1 = 1 - . i
w® = B Z €ijkBiw; AN wy, = 5 Z eijrBihshrdg? A dq".

i i

The exterior derivative is a three-form

OB; hjh
dw® 726%de Adg’ A dgF
ijkt qe
B; ]hk
= qukiel]k d /\dq /\dq
zjkf

1 0 ([ hihohs =
= — - Bi A A ws.
hihahs ; 0q; ( h; wrAwa s

So we see that if w(® = g, dw® = f, with

1 0 [ hihohs =
hlhzhg Z 8ql < hi BZ) '

In cartesian coordinates this just reduces to V- B, but
this association is coordinate-independent, so we see that

in a general curvilinear coordinate system,

- = 1 J hlhzhg ~
V-B= -
hihohs ; aq* ( h;

V2p =V .-V =

B).

Finally, let’s examine the Laplacian on a scalar:

f =

o 1 0 hihohs 0®
- h1h2h328q< h?  Oqt

i

1 0 hihshs
h1h2h328q< o

100

)

Jq

ZBuwz Awj, with Bj; = —Bj;.
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The associated vector has coefficients

N 1 1 /9 -
B = =S en— (ZLVon, —
k 2%:”’“hmj (aqt g
10 /-
iZjEijk hﬂ@-@Tﬁ (th]> ’

For cartesian coordinates h; = 1, and we recognize this as
the curl of V, so dw® = V x V, which is a
coordinate-independent statement. Thus we have for any
orthogonal curvilinear coordinates

(thj) e (4

17}
g Vh2>

1 9
VXZVCZZZ z]khh Bq

ij

A 3-form in three dimensions is associated with a scalar
function f(P) by

. . 1
w® = fdrt Adr? Adr® = Ef Z €abedr® A dr® A dre

abc

1 or*ort ore i k
= gf Z Eabcaf(faquaqudql Ndg’ A dg
abcijk

or or? are
— -1 -1 -1
= ot e (50) (5 (5

abcijk

wi N wj N\ wg
1
= EfdetA ijjsz'/\w‘j/\wk
ijk
= fdetAw; Awa Aws
= fwi AwyAws,

where det A = 1 because A is orthogonal, but also we
assume the ¢; form a right handed coordiate system.

Summary

- dg’
v = Zhjﬁej
J

Vf= th % mem,

- . 1 9 N
VX(;VM) = Z]Z}f%ﬁ@( V)Ek,

hihohs ~
(322).

hihahs 0P
( h; f)qi)
For the record, even for generalized coordinates that are
not orthogonal, we can write

1 0
7%%:8(11'

hihahs ; aq'

Ve =

hlhg h3 ZL: Z‘)qi

9
gl]\/gaquv

where g :=detg...
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Cylindrical Polar Coordinates

Although we have developed this to deal with esoteric
orthogonal coordinate systems, such as those for your
homework, let us here work out the familiar cylindrical
polar and spherical coordinate systems.

Cylindrical Polar: r, ¢, z,
(65)% = (67)% + 1%(39)*
50 hy = h. = 1,hy = r. Then

of . 10f, af~
T e T 9.

+(62)?,

Vi

Polar, continued further

12 (:2) . 2 (1)
rlor \' or dp \r 0P
2 (o)
0z 0z
19 (0% 1 d?®  d*®
= o (7) g T az

Spherical Coordinates, continued

V7V = 7'si1n€ [;(Emev@ (%vg] é
+{ﬁ% a 75(%)] &
+ {; (V) — geu-] &,
V.B = ﬁ[; (r smaB) 69 (rsinGB(;)
+55 (18.)]
- éi(wf);mﬂleﬁa(ﬁn@e)

+rsm08¢ ¢
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Polar, continued

) LoV, orVy n ov. IV
o 8¢5 9z )& 0z ar )
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Spherical

Spherical Coordinates:

r radius, 6
azimuth

(68)% = (67)2472(60)%+12 sin? 0(56)?,

so h, =1, hg

<1
X
<t

Spherical,

Vo =

oV 1OV V. 1
.

o g

Coordinates

polar angle, ¢

=7, hg = rsinf.
_of, 1or. 1 of,
N 8TET 1"6060 rsin@@gf)e@

1 (0
= 1Zsing (60”“19% a¢’%>

1 0 a . .
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1/0 0 -
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continued further
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