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Wave guide traveling modes in z direction Shapiro Last slide assumed perfectly conducting walls. Real walls Shapiro
L o have energy lose, attenuation, k develops small positive
E, B oc et imaginary part i3 (so extra e~%% factor for E and for H).
Wavc_ i . . .
yelocities Find g by comparing power lost per unit length to power e
with dispersion rela'ntion k2= ;waz - 7?\. . transmitted.
Same form as for high-frequencies in dielectrics (Jackson Power is quadratic in fields. Only real parts of fields are
7.61), with wy ~ plasma frequency. real
w_ 1 ! ! Poynti 5 s % 1 d
Phase velocity v, = - = —_— oynting vector Sphes = Eppys X Hppyg needs
ke /1_ (%)2 e - -
greater than for unbounded. Ephys(:v,y, z,t)
1/~ I _ _—
dw 1k 11 1 . (E k ikz—iwt E* k —zkz+7,wt) .
Group velocity vy = —— = —— = —— < ——, less than 2 @y, w)e + B (@ kw)e
’ dk  pew  pev, \/pe
for the unbounded medium. (I used kdk = pewdw) and similarly for H.
So e e
Electricity 1 Electr(iicity
" L ~ and . ~ ~ an,
Sphys = Ephys X Hphys o (s) = Z<E*(x,y, k,w) x H(z,y, k,w) o
1 Shapiro . = Shapiro
-3 ((E(x, g, ko w)e L By, hw)eqkzﬂm) % +E(x,y, k,w) x H*(z,y, k,w))

[ .
Energy Flow = §Re (E(I’ Y k’ Ld) x H (17 Y k’ UJ)) Energy Flow

~—~

H(w,y, k,w)ek=wt ﬁ*(x7y7k’w)e—ikz+iwt)>
Define the complex S := % E x ﬁ*>7 with the physical

_ 1 E(l Y.k, w) X ﬁ(z y k w)e%kz—%wt average flux given by the real part.
4 e T Power flow o fé -Re S, so only the transverse parts of £
+E (z,y. k w) x ﬁ( y, k,w) and H are needed. Recall
b b b K ’ k)
7l (7% .
. ko= . .
HE@,y, k) x H(2,9,k, ) TM: B.=v, E =iV, H=i—txV
~ ~ ) ) 25 25)
—2ikz+2iwt
+E*(x7y7k‘7w) XH*('Z‘1y’k7w)e tht i . _ ra — k = = _ /J/UJA =
TE: H, = '(Z}, H, = z—QVﬂ/;, E, = —1—5 2z X VL’(Z}
Ix Ix
First and last terms rapidly oscillating, average to zero, so
, Soing 2011 Energy Density Soing 2011
— — — Electricit; . Electricit;
As 5. <Vﬂ/) % 3 x VH/J*) _ ‘Vﬂ/}‘ . we have P Yy Energy per unit length = y
ognetism 1 =) 5 3 o agnetism
i e U= fA U=z fA (Ephys : Dphys + Bphys : thys)7 Shapiro
P:é-/Re S:“—kflﬁtw\2~{6 (for TM) L
4 278 Ja j (for TE) ) = Z/ el BJ? + p| P
A
The integral SO Eoersy
Need z components (¢ or 0) as well as transverse ones. Density
S o b - Plugging in is straightforward (see notes), and we find
[ 9w =gl [wvto—orag [ww. BEing 8 (see notes)
S JA A

W € TM mode
)= @/AM x {u TE mode
In either case,
1 w\? w? e (for TM)
P=_—"—(— 1— 2 [ vy
2\/;E<au> V oﬂ/AM’ {u (for TE) Py L e
o)~ va\l e

Energy flux = energy density times group velocity.

As wy =/ /1E k= wy/pey /1 — wf Jw?,




Attenuation and Power Loss

At an interface, we found power loss per unit area is
1 |42

2 g )

200 ’ I
with conductivity o and skin depth 6 = \/2/pcow. As the

20 ‘

power drops off as the square of the fields, so as e~252
P osp() —77ﬂan’ d,
dz

where the integral d/ is over the loop I' around the
interface at fixed z.

[ will depend on the mode being considered, so we will
call it ).

Note resistivity can couple modes, but we will not discuss
that.

Attenuation for TE modes

For a TE mode, 7 x H = x Hy, +# x 2H, so
S 2 L2 ) kO 2 L2 )
‘ﬁ X H} - ‘ﬁ X Ht‘ VH? = (—2) )ﬁ x vtzp‘ + .
by
Again let us write

[

where () is another dimensionless number of order one,
and &) is somewhat differently defined. Then

[l sl / [ 1o =356

Note that ) diverges as we approach the cutoff frequency
w— wy,

and 3y ~ /w as w — oo.

Thus there is a minimum, at /3w, for TM, and at a
geometry-dependent value for TE modes.

We will skip section 8.6

_C ) s C
o [wr/ [ =So.
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Attenuation for TM modes
For a TM mode,
_ iew = iew =
nx H=nx =—nXxX(EZxVu)=— (n-V) 2
(=g ex V) = 5 (i Vi)

SO

B

wke ‘2

27/\

(e
406 'y)\

\W\

CéA/A

where C' is the length of T" and A the area, and &) is a
mode— and geometry—dependent dimensionless number,
the average size of the normal derivative to the gradient,
which we would expect to be of order 1.

Frequency Dependence
The conductivity, permeability and permittivity may be
considered approximately frequency-independent, but the
skin depth 8§ goes as w12, so let us write § = dy+/wy /w.
Then we can extract the frequency dependence of the
attenuation factors

TM mode:
By = C \/w/w)\
AT u O'(S)\ 2A
B ﬁ
TE mode:

e s [ (2)7

2A
“ﬁ

where 1y = () — &)

Attenuation in a circular wave guide
We found the modes for a circular wave guide of radius r
are given by

dJm
53 = Jm(a?'(mnp/r) Cos nl¢7 with T(x;nn) = 07
x
bt = T (Timnp/T) COS M, with  Jp(2),,) =0

The cutoff wavenumbers and frequencies are

B =gl Jrand YN = @, /7, with wy = Y.

We also found for general cylindrical wave guides that the
attenuation coefficients are

5 C
AT ua5>\2A

B C
A uaé,\2A

TM mode:

TE mode:

\/w/wA
B ﬁ
\/w/wA

= [oom (2]
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C N _ 2
Qar = [laxvuf [ [ e,
T A
c TE 2 2 =
AN = /FWJI /AW)M Citeulsn
and ,r]')l\'kl — C')l\‘l‘] _ E}\‘H'

As (p, ¢) = Jm(yp) cosmae.

o
S = () cosmo,

The dimensionless quantities £y, () and 7y are given by

51/)

ngM _

fx Ve = % () sinme.

The angular integrals are in all case trivial (and even
more so if we used the complex modes e™™).
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r Shapiro
NG / uduJ?, (),
JO 0

where x is either @, (for TM) or a7, (for TE). The

integral is related to the orthonormalization properties of

Bessel functions. From Arfken (or “Lecture Notes” — —
“Notes on Bessel functions”) we find cullndor

1 . 1
[ @ ud = 572 )

/01 [T ()] udu = % <1 B (xr,n2)2> e

mn

For the TE modes,

Spring 2011

C ; . 9 Electricity
e = [xvwt /eme [ ==
_ m 7TJ2( mn)/7 Shapiro
ROREIPT2L 1~ (21, ) T
2m?

r@g, )’
Circular

Y 9 ard2 (xlm) cylinder
- /F'¢' / J= T (1 (wh)?)) T2, ()

T(Tifm —m?)’

So the attenuation coefficient is

[+ ()]

nzn

mn 'u 7‘0'5,\

w?

For TM:

2 2T
LIS =7 [ doaom coso = xrr2520m) (1460,
r 0
For TE:

2m
/\w\ = rJ2 mn)/ cos?me dp = wrJ2 () (140m0),
0

. . o2 2
forsar - ["o()

1 2T
= 7J3,(x£,m)/ (msinma)?
T 0

2
T™m
= r an(ﬁimz)(l + §m0)~,

For both modes, we need the nontrivial
- 27
[t = [ oanrin | dvcos?ne)
A 0

= 71+ bmo) /0 pdpJ2,(1p)

Thus for the TM modes, we have

gTM %2/ ,YT\I /¢2: 71;7‘]/2(1L‘mn)
rlon mn) 2 72 1 (o)
2 JrZ(@mn)
r Jm+1(77mn)

In fact, there is an identity (see footnote again)
(@) = 2 Jm(2) — Jyg1(z), which means, as

an(xvnn) = 01 that Jyln(frwvn) = _JIIL-FI(‘/I"’NUL)v Z ;LI\;IL = r’

T™M \/7 w/ W
mn
rod
© A w?\

2
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s W2
for all TM modes.
For TM modes, wph = Tync/7. 1;33;;:;0141,
For copper, the resistivity is p = ¢! = 1.7 x 1078 Q- m. Electrizle
Take p1. = po. Also wy = yye. 0\ = \/m Magnetism
€0 = 8.854 x 10712 C%/N - m?, so Shapiro

e 1 CEOYA 6 /
[ — =4.75 x 107" /7,
\/;(76,\ 20
475 x 1076 m!/2. | [Zmn —
T cylinder

The units combine to m'/? as Q = v_Jye_ Nms/C2.
A C/s
In comparison to the TM;2 mode for a square of side a,
we see that ™ = ;3?2‘ M As the cutoff frequencies are
2.4048¢/r and /5 7TC/ a respectively, we see that the
comparable dimensions are r = (2.4048/v/57)a = 0.342a,
much smaller, and then a/2r = 1.46, so the smaller pipe
does have faster attenuation.



For TE modes, there is an extra factor of

1 n (w)\)2

which for the lowest mode is 0.4185 4 (wy/w)? compared
t0 0.5+ (wy/w)? for the square. But the cutoff frequencies
are now 1.841¢/r and v/27c/a, so comparable dimensions
have r = 1.841a/v/27 = 0.414a.

Thus the TM fields are

E, = cos (%) ¥(z,y)
5> prz

s —
E; = *LQ sin ( ) Vi for TM modes
dvy d .
. w przy L with p € Z
Ht:z—zcos( )zxvtw
X d
Note that in choosing signs we must keep track that half
the wave has wavenumber —£k.
For TE modes, H, determines all, and must vanish at
endcaps (as 7 - B vanishes at boundaries). So

prz

H, :sin< Yz, y)
ﬁt — Lﬂ; cos (@) ﬁtw { for TE modes
dry d . .
. wp P . with p € Z,p # 0.
t L7§ sin ( p] ) x Vi

Lowest TM mode, w19 = czo1/R = 2.405¢/R,
independent of d.
For TE modes, p # 0, so lowest mode with v = 2/, /R has

Wiy = 1.841% 1+2.912R? /2.

As this depends on d, such a cavity can be tuned by
having a movable piston for one endcap.
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Resonant Cavities

In infinite cylindrical waveguide, have waves with
(angular) frequency w for each arbitrary definite

Shapiro
wavenumber k, with w = ¢y/k? + v?\A For each mode A

and each w > wy = ¢y, there are two modes,

k=2y/w?/c2 — 43 .-

Standing waves by superposition.

Flat conductors at z=0 and z=d. 3 .

For TM, the determining field is = ¢ Trssonant

Cavities

B = (w(k)eikz +w(—k)e—ikz) et

. k- . k- o
Ey = iy VpWetks 20y (h ik
I\ X
Ey =0 at endcap so p® = (k) (at 2=0) and sinkd = 0
(at z=d). So k= pr/d, p € Z.
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Generally the 2D mode A requires two indices. Electricity

For a circular cylinder, we have angular index m,
and radial index n specifying which root of .J,,, (for TM)

and
Magnetism

Shapiro
or of dJ(z)/dz (for TE).
[ pn/R (TM modes)  Jm(2mn) =0
Jmn 2}, /R (TE modes) Lm(zf ) =0"
with R the radius of the cylinder.
Now we have a third index, p. Sttt

72 22
1 Lmn pT

Wmnp = e V' R2 d?

/2 2.2
L T i)

Wmnp = JieV R? 42

with p > 0 for TM modes,

with p > 0 for TE modes.
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Power Loss and Quality Factor

What if conductor not perfect? Power losses in sides and e
in endcaps. Rate is proportional to U(t), the energy LR i e
stored inside. Let Shapiro

—AU = energy loss per cycle, Q:=2nU/|AU| .

One period is At = 27 /w. Assume Q > 1, so |AU| < U,
AU = -27U/Q = (27 /w)dU/dt, so

U(t) = U(0)e M.

@ is called the resonance “quality factor” or “Q-value”. Q: power loss
So if an oscillation excited at time ¢t = 0 by momentary

external influence,
U(t) e — E(t) = EOC*"WO(1*1'/2Q)t@(t)7

The Heaviside function ©(¢) =1 for ¢t > 0, = 0 for t < 0.
This 6(t) excitation consists of equal amounts at all
frequencies.
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It produces a frequency response e

Bw) — \/% 1 * B(t)etar

1 © i( iT/2)t
= —E ellwmwot dt
V2T 0 ~/0
i1Ey 1

Vorw—wy—il'/2’

Shapiro

with I' := wy/Q.

r el
|E(w)|? gives the response to ex- n S
citations of any frequency, with
1
2 )
‘E(M)‘ X (w _ w0)2 + F2/4' 100 zuowo 300

This is called the Breit-Wigner response. I' is mistakenly
called the half-width. Really full-width at half-maximum.

Calculation of power loss as for waveguide, but need to
include power loss in endcaps as well. Jackson, pp
373-374. We will skip this.

Earth and Ionosphere:

Not all cavities cylindrical. Consider surface of Earth, and
ionosphere, an ionized layer about 100 km up. Concentric
conducting spheres acting as endcaps, of a waveguide with
no walls, but topology!

Need spherical coordinates, of course. More generally,
may need other curvilinear coordinates (as you will for
your projects).

So we will digress to discuss curvilinear coordinates.
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Q: power loss



