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with dispersion relation k? = prew? — 7)2\.
Same form as for high-frequencies in dielectrics (Jackson
7.61), with wy ~ plasma frequency.
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greater than for unbounded.

do 1k 11

k" pew  pevy e
for the unbounded medium. (I used kdk = pewdw)

Group velocity vy = , less than



Attenuation

Last slide assumed perfectly conducting walls. Real walls
have energy lose, attenuation, k develops small positive

imaginary part i3 (so extra e~%* factor for E and for H ).

Find § by comparing power lost per unit length to power
transmitted.

Power is quadratic in fields. Only real parts of fields are
real.

Poynting vector S X ﬁp needs

phys = Fphys hys

Ephys(x> Y, z, t)
1
2

and similarly for H.

_ = (E(ZL’, n k’w)eikz—iwt + E’*(x’ Y, k,w)e—ikz—l—iwt) ]
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Energy Flow

ﬁ x T w) tkz— Wt—l—H*(x y, k, w) zkz+iwt>>
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- 4< Ty, k,w) x ﬁ(x’y’k’w)eﬁk272iwt
+E(

(z,y, k,w) x H(z,y, k,w)
(:I: y7k7 W)XH (:L' y’k CU)

+E* (2, y, k,w) x H*(z,y, k, w)eQiszrint)

First and last terms rapidly oscillating, average to zero, so



Define the complex § :=

~ >

1/ 4 .
Z(E*(x,y,k,w) x H(x,y,k,w)

+E(az, y, k,w) X ﬁ*(m, y, k, w))

(E(az, Y, k,w) X FI*(@", y, k, w))

average flux given by the real part.
Power flow o< [ 2 - Re S so only the transverse parts of E

and H are needed. Recall

TM:

TE:

=,

k =

Et =1— Vt@b,
g
k =

Ht =i Vtwv

7,\

1 <E X ﬁ*), with the physical

Ht = ze Z % Vﬂ/}
VA
By = —it s x Yy
’Y,\
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As 2 - (V“ﬁ X 2 X Vtw*) = ‘Vﬂﬁ‘ ; we have it
A Wk ) . (for TM) Shapiro
P:Z/RQS:/V 2'{
4 2 LV (o T
The integral

[ 19wk = § st [wrviv—0+ag [ vw,

As wy =/ Ve k= w/pey /1 — wi/w?,

1 w > w? . € (for TM)
P‘2m<w> S [l e

Energy Flow
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Energy per unit length Ele‘;:édty
Magnetism
U=Jau=3 fA ( phys * Dphys T Bphys HPhYS)7 Shapiro

1 . .
©) = [ ABP+ AP
A
Need z components (1) or 0) as well as transverse ones. Density
Plugging in is straightforward (see notes), and we find

/ 2 x € TM mode
2wA ! TE mode
In either case,

(P) 1 w?
(L EY PR

o) " Ve w

Energy flux = energy density times group velocity.




Attenuation and Power Loss
At an interface, we found power loss per unit area is

nx H| |

1 4‘2

%50 | A0 1

_ 1
- 20

with conductivity ¢ and skin depth § = \/2/ucow. As the
power drops off as the square of the fields, so as e~2%*

dP 1

where the integral d¢ is over the loop I' around the
interface at fixed z.

6 will depend on the mode being considered, so we will
call it 3.

Note resistivity can couple modes, but we will not discuss
that.

nxH

2
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For a TM mode, and

Magnetism

ﬁxﬁ:ﬁxﬁt:%—;}ﬁx(éX§t¢):g(ﬁ-ﬁﬂﬁ)é
25

15
1 <6w>2 2 ] ke
T,
406 Ty r 27y Ja
- s 5/
© 2kod Jp|On A

C&/A
where C' is the length of I' and A the area, and &) is a
mode— and geometry—dependent dimensionless number,
the average size of the normal derivative to the gradient,
which we would expect to be of order 1.

Shapiro

SO

817[} — 2 Attenuation
n vy
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Attenuation for TE modes

For a TE mode, & x H =7 x Hy + 7 x 2H, so

L2 L2 N ENZ . - 2 )
ix H :’ant‘ +|H| :<v2> nxV,ﬂ/}‘ e
A

Again let us write

/F‘ﬁxﬁtqp’?//A‘ﬁﬂ?_jgh /FW’Q//AW‘Q_iCA'

where (), is another dimensionless number of order one,
and ¢, is somewhat differently defined. Then

Llax gl / [ 1wr=+35e.
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Frequency Dependence
The conductivity, permeability and permittivity may be
considered approximately frequency-independent, but the
skin depth & goes as w™ /2, so let us write § = Iny/wy/w.
Then we can extract the frequency dependence of the
attenuation factors

TM mode:
Br = \/7 ¢ m
[T N 24
W_E
TE mode:

m%m&gJ@“[@+w il
-2

where 1) = () — &\
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Note that 8y diverges as we approach the cutoff frequency
W — w>\7

and 3\ ~ /w as w — oc.

Thus there is a minimum, at v/3w), for TM, and at a
geometry-dependent value for TE modes.

We will skip section 8.6
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Attenuation in a circular wave guide

We found the modes for a circular wave guide of radius r
are given by

dJm,
U = Tn(hapfrycosme,  with D2, o
Vv = Ty (Tmnp/T) COSMO, with  Jy(2),,) =0

The cutoff wavenumbers and frequencies are

ol =gl Jrand YN = g e with wy = ey,

We also found for general cylindrical wave guides that the
attenuation coefficients are

TM mode: Oy = \/> O Vwjon w/wA
p ooy

TE mode: Oy = \/> ; C w/W)\ [fA + 1A (M)Q] )
H 00N w
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C
28 =

C e ]
Ser = [laxval /3 [1wr,
r A
C TE __ 2 2 .
Sar = [we/ [we
and 7" = (3" — &§\".

As Y(p, @) = Jm(7p) cosma.

oy = ~J],(yr) cos mo, X Vi = % m(p) sinme.

Shapiro

on

The angular integrals are in all case trivial (and even
more so if we used the complex modes e~?).



For TM:

J- o
r

an
For TE: Shapiro

27
J 10 =t [ cos? mods = w2 (aly,) (1-m0),
r 0

) s 21 aw 2
/F ‘n 8 Vt¢| B T/O d¢ <7la¢> Circular

1 ot cylinder
= L Ta) [ msinmo)?
0
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=1 [ o3 m cos® & = e R m (L),
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Magnetism

2
= T2 (@) (1 + Gno),

For both modes, we need the nontrivial

/A P = /0 " pdp T2 (4p) /O deqﬁcosz(mqﬁ)

= 7(14 o) /0 pdpJs,(vp)
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T 9 9 1 9 Shapiro
/0 pdpJy,(vp) =T /0 uduJ;, (zu),
where z is either x,,, (for TM) or /.. (for TE). The
integral is related to the orthonormalization properties of
Bessel functions. From Arfken (or “Lecture Notes” — .
cylinder

“Notes on Bessel functions”) we find

1
1
/0 [Jm (wmnu)]Q udu = §J31+1(xmn)

/0 [ ()] = ! (1 _ Ti)2> P2 )

(@,
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i

and
ggTM — /
A mn T on

Magnetism
12
2 J 2 (xmn)

2
T™M 2 2 _ M Shapiro
(an) w  r2 192
A 5 St (Tmn)

r an_H (Zmn)

In fact, there is an identity (see footnote again)

Circular
J)(x) = 2 Jp(x) — Jmy1(x), which means, as cylinder
C 2
Jm($mn) =0, that J;n(xmn) = - m+1(l‘mn)7 Z g@hﬁ = ;7
and
™ _ (€ 1 w/wx
mm W rody 2
w2

for all TM modes.



For the TE modes,

Cere /mwi/ )T /w
i .

m2rJ2 (xh ) /7

27’2% (1 - (m/xmn ) Jg@(x;nn)
2

T(VEE)

2m

(@i =)

Gam = [ / /. V=g (e li)m%):f,%(x;m

r (l‘;,%n - m2>

So the attenuation coefficient is

)
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For TM modes, wi = x,,,¢/r. Spemg 2011
For copper, the resistivity is p =01 = 1.7 x 1078 Q- m. S
Take pe = po. Also wy = yae. Oy = /2/pcowy. Magnetism
€0 = 8.854 x 10712 C%/N - m?, so Shapiro

e 1 CEOYA 6 /m C2
- = =475 x 107"/ ——=0
[ ody V' 20 % PV N m2 ™

-6 1/2 Tmn
= 4.75x10 m / . - . Circular
r cylinder

X = JC//CS} — Nms,/C?.
In comparison to the TM72 mode for a square of side a,
we see that f™ = SLATH™. As the cutoff frequencies are
2.4048¢/r and v/57c/a respectively, we see that the

comparable dimensions are r = (2.4048/+/57)a = 0.342a,
much smaller, and then a/2r = 1.46, so the smaller pipe

does have faster attenuation.

The units combine to m'/2 as Q =
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For TE modes, there is an extra factor of
1 Wy ) 2
(l‘;?%n - m2) - ( w ‘
which for the lowest mode is 0.4185 + (wy /w)? compared Cieulaer

to 0.5+ (wy/w)? for the square. But the cutoff frequencies
are now 1.841¢/r and v/27c/a, so comparable dimensions
have r = 1.841a/v/27 = 0.414a.
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In infinite cylindrical waveguide, have waves with Magnetism
(angular) frequency w for each arbitrary definite Shapiro
wavenumber k, with w = ¢y/k? + 7)2\. For each mode A
and each w > wy = c¢7v), there are two modes,
k=+y/w?/c? -3
Standing waves by superposition.
Flat conductors at z=0 and z=d.
For TM, the determining field is Resonant

Cavities

E, = (d)(k)eikz +w(fk)efikz> et
=g k = - —]{j — .
By =i VipFe i v, phemiks
Ix 05\
E; = 0 at endcap so »*) = ¢(=%) (at 2=0) and sinkd = 0
(at z=d). So k =pn/d, p € Z.



Thus the TM fields are

E, = cos <]?) Y(x,y)

N

5 — P (P
E; = d’yg\ sin ( 4 ) Vtzl)
ﬁt = z% cos (pﬂz> Z X Vtz/J
5\ d

Y

{

for TM modes
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with p € Z

Note that in choosing signs we must keep track that half

the wave has wavenumber —k.

For TE modes, H, determines all, and must vanish at
endcaps (as 7 - B vanishes at boundaries). So

H. = sin (22 (a.y)

I:_it _ cos <I%) 6751/1

Et = —zw—'l; sin (%) Z X ﬁtw

Resonant
Cavities

for TE modes
withpe Z,p#0.
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Generally the 2D mode A requires two indices. Eloctricity
. . . d
For a circular cylinder, we have angular index m, Magnotism

and radial index n specifying which root of J,, (for TM)

Shapiro
or of dJ(z)/dx (for TE).
[ Tma/R (TM modes)  Ji(zmn) =0
T = 2t /R - (TE modes) Zm(zf, ) =0

with R the radius of the cylinder.
Now we have a third index, p. Covition

1 22 2.2 ‘
Winnp = = ;{”2” + P 7 with p > 0 for TM modes,

1 22 272 ‘
Wmnp = = }%”2” + p 2 with p > 0 for TE modes.
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Lowest TM mode, wgio = cxo1/R = 2.405¢/R,
independent of d.
For TE modes, p # 0, so lowest mode with v = 2/, /R has
Wi = 1.841%\/1 + 2.912R2/d2.
As this depends on d, such a cavity can be tuned by Covition

having a movable piston for one endcap.



Power Loss and Quality Factor s B

Electricity

What if conductor not perfect? Power losses in sides and and
in endcaps. Rate is proportional to U(t), the energy Magnetism
stored inside. Let Shapiro

—AU = energy loss per cycle, Q :=2nU/|AU]| .

One period is At = 27 /w. Assume @ > 1, so |AU| < U,
AU = —27U/Q = (27 /w)dU/dt, so

U(t) = U(0)e <.

Q is called the resonance “quality factor” or “Q-value”. Q: power loss
So if an oscillation excited at time ¢ = 0 by momentary
external influence,

U(t) x e 9 — B(t) = Ege 0(171/2Q)tg(¢),

The Heaviside function ©(¢) =1 for ¢ > 0, =0 for ¢ < 0.
This §(t) excitation consists of equal amounts at all
frequencies.



Breit-Wigner

It produces a frequency response

Bw) = \/12? /_ © EB()etdt

1 = iT/2)t

_ Ey [ elw—wo—il/2)t g

Vor 0/0
iE 1

V2w —wy — /2’

with ' := wp/Q. -
|E(w)|? gives the response to ex- n
citations of any frequency, with
1
2 W
|E(w)| x (w — W0)2 + I‘2/4' lo 200, 300

0

This is called the Breit-Wigner response. I' is mistakenly

called the half-width. Really full-width at half-maximum.
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Calculation of power loss as for waveguide, but need to Magnotism
include power loss in endcaps as well. Jackson, pp S

373-374. We will skip this.

Earth and Ionosphere:

Not all cavities cylindrical. Consider surface of Earth, and
ionosphere, an ionized layer about 100 km up. Concentric
conducting spheres acting as endcaps, of a waveguide with
no walls, but topology!

Q: power loss

Need spherical coordinates, of course. More generally,
may need other curvilinear coordinates (as you will for
your projects).

So we will digress to discuss curvilinear coordinates.
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