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Power Loss
How much power is dissipated (per unit area?). 2 ways:
1) Flow of energy into conductor: Energy flow given by
~S = ~E × ~H, for real fields ~E and ~H.
so1 〈~S〉 = 1

2Re
(
~E × ~H∗

)
, and dPloss/dA = −n̂ · 〈~S〉, so

dPloss
dA

= −1
2

√
µcω

2σ
n̂ · Re

[
(1− i)(n̂× ~H‖)× ~H∗‖

]
=

µcωδ

4
| ~H‖|2 =

1
2σδ
| ~H‖|2

Method 2, Ohmic heating, power lost per unit volume
1
2
~J · ~E∗ = | ~J |2/2σ, | ~J | = σ ~Ec =

√
2
δ | ~H‖|e

−ξ/δ, the power
loss per unit area is

dPloss
dA

=
1
δ2σ
| ~H‖|2

∫ ∞
0

dξ e−2ξ/δ =
1

2δσ
| ~H‖|2.

Agrees with method 1.

1The 1
2
, Re, and * discussed in lectures B and H.
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In terms of surface current

~Keff =
∫ ∞

0
dξ ~J(ξ) =

1
δ
n̂× ~H‖

∫ ∞
0

dξ (1− i)e−ξ(1−i)/δ

= n̂× ~H‖.

Thus
dPloss
dA

=
1

2σδ
| ~Keff|

2.

1
σδ

is surface resistance (per unit area) and
~E‖
~Keff

=
1− i
σδ

is the surface impediance Z.
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Wave Guides
For electromagnetic fields with a fixed geometry of linear
materials, fourier transform decouples, and we can work
with frequency modes,

~E(~x, t) = ~E(x, y, z) e−iωt

~B(~x, t) = ~B(x, y, z) e−iωt

Actually the fields are the real parts of these complex
expressions.
If ρ = 0, ~J = 0, Maxwell gives

~∇× ~E = −∂
~B

∂t
= iω ~B, ~∇ · ~E = 0, ~∇ · ~B = 0,

~∇× ~B = µ~∇× ~H = µ
∂ ~D

∂t
= µε

∂ ~E

∂t
= −iωµε ~E.

Then

∇2 ~E = −~∇×(~∇× ~E)+~∇
(
~∇ · ~E

)
= −~∇×(iω ~B) = −ω2µε ~E.
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and similarly for ~B, so we get Helmholtz equations(
∇2 + ω2µε

)
~E = 0,

(
∇2 + ω2µε

)
~B = 0.

Consider a waveguide, a cylinder of arbitrary cross section
but uniform in z. Fourier transform in z

~E(x, y, z, t) = ~E(x, y)eikz−iωt

~B(x, y, z, t) = ~B(x, y)eikz−iωt

k can take either sign (and a standing wave is a
superposition of k = ±|k|). The Helmholtz equations give

[
∇2
t + (µεω2 − k2)

]( ~E(x, y)
~B(x, y)

)
= 0, ∇2

t :=
∂2

∂x2
+

∂2

∂y2
.
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Decompose longitudinal and transverse
Let

~E = Ez ẑ + ~Et
~B = Bz ẑ + ~Bt

with
~Et ⊥ ẑ
~Bt ⊥ ẑ

(~∇× ~E)z = (~∇t × ~Et)z = iωBz,

(~∇× ~E)⊥ = ẑ × ∂ ~Et
∂z
− ẑ ×∇tEz = iω ~Bt.

For any vector ~V , ẑ × (ẑ × ~V ) = −~V + ẑ(ẑ · V ), so for a
transverse vector ẑ × (ẑ × ~Vt) = −~Vt. Taking ẑ × last
equation,

∂ ~Et
∂z
− ~∇tEz = −iωẑ × ~Bt. (1)

Similarly decomposition of ~∇× ~B = −iωµε ~E gives(
~∇t × ~Bt

)
z

= −iωµεEz

∂ ~Bt
∂z
− ~∇tBz = iωµεẑ × ~Et. (2)
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Divergencelessness:

~∇t · ~Et +
∂Ez
∂z

= 0, ~∇t · ~Bt +
∂Bz
∂z

= 0.

Equations (1) and (2), with the fourier transform in z,
give

ik ~Et + iωẑ × ~Bt = ~∇tEz (3)
ik ~Bt − iωµεẑ × ~Et = ~∇tBz (4)

Solving 4 for ~Bt and plugging into 3, and then the reverse
for ~Et, give

Et = i
k~∇tEz − ωẑ × ~∇tBz

ω2µε− k2
(5)

Bt = i
k~∇tBz + ωµεẑ × ~∇tEz

ω2µε− k2
(6)

Unless k2 = k2
0 := µεω2, Ez and Bz determine the rest.
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We have seen that Ez and Bz largely determine the fields,
and these satisfy the two-dimensional Helmholtz equation(

∇2
t + γ2

)
ψ = 0 with γ2 = µεω2 − k2 (7)

If the walls of the waveguide are very good conductors, we
may impose the perfect conductor conditions E‖ ≈ 0 and
B⊥ ≈ 0 on the boundary S of the two-dimensional cross
section. Ez is parallel to the boundary so Ez|S = 0. Also
the component of ~Et parallel to the boundary vanishes at
the wall, so ~Et is in the ±n̂ direction. Then from the n̂
component of (2) (normal to the boundary)

∂n̂ · ~Bt
∂z

− n̂ · ~∇tBz = iωµεn̂ ·
(
ẑ × ~Et

)
=⇒ 0− ∂Bz

∂n
= 0,

where ∂/∂n is the derivative normal to the surface. So we
have Dirichlet conditions on Ez and Neumann conditions
for Bz.
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In general, nonzero solutions exist only for discrete values
of γ, and those values are generally different for Dirichlet
and for Neumann. So we need to consider

I TEM modes, with Ez(x, y) = Bz(x, y) ≡ 0. That is,
there are no longitudinal fields, both electric (E) and
magnetic (M) fields are purely transverse to the
direction z of propagation.

I TE modes, Ez(x, y) ≡ 0, and the transverse fields are
determined by the gradiant of Bz = ψ, a solution of
(7) with Neumann conditions.

I TM modes, Bz(x, y) ≡ 0, and the transverse fields
are determined by Ez = ψ, a solution of (7) with zero
boundary conditions.
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TEM modes

With Ez(x, y) = Bz(x, y) ≡ 0, (5) and (6) =⇒ everything
vanishes or the denominator vanishes,

k = ±k0 with k0 =
√
µεω

Wave travels ‖ z with speed 1/
√
µε, same as for infinite

medium. No dispersion.
~∇t · ~Et = 0 and ~∇t × ~Et = iωBz = 0, so ∃Φ 3 ~Et = −~∇tΦ
(though Φ might not be single valued) and ∇2Φ = 0.
As ~E‖

∣∣∣
S

= 0, Φ = constant on each boundary. If cross

section simply connected, Φ = constant, ~E = 0
No TEM modes on simply connected cylinder
Yes TEM modes on coaxial cable, or two parallel wires.
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TE and TM modes

Equations (5) and (6) simplify for
I TM modes, Bz = 0, γ2 ~Et = ik~∇tEz,
γ2 ~Bt = iµεωẑ × ~∇tEz, so ~Ht = εωk−1ẑ × ~Et.

I TE modes, Ez = 0, γ2 ~Bt = ik~∇tBz,
γ2 ~Et = −iωẑ × ~∇tBz, so

~Et = −ωẑ × ~Bt/k =⇒
ẑ×

Ht = kẑ × Et/µω.

In either case, ~Ht = 1
Z ẑ × ~Et, with

Z =

{
k/εω = (k/k0)

√
µ/ε TM

µω/k = (k0/k)
√
µ/ε TE
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To Summarize
Solutions given by ψ(x, y), with

(
∇2
t + γ2

)
ψ = 0,

γ2 = µεω2 − k2, by

TM: Ez = ψeikz−iωt, ~Et = ikγ−2~∇tψeikz−iωt

with ψ|Γ = 0
TE: Hz = ψeikz−iωt, ~Ht = ikγ−2~∇tψeikz−iωt

with n̂ · ~∇tψ|Γ = 0

By looking at 0 =
∫
A ψ
∗ (∇2

t + γ2
)
ψ we can show γ2 ≥ 0.

There are solutions for discrete values γλ, so only certain
wave numbers kλ for a given frequency can propagate:

k2
λ = µεω2 − γ2

λ,

and only frequencies ω > ωλ := γλ/
√
µε can propagate,

and kλ <
√
µεω, the infinite medium wavenumber. Phase

velocity vp = ω/kλ is greater than in the infinite medium.
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Example: Circular Wave Guide
Jackson does rectangle. You should too. Needed to do
homework.

We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates ρ, φ, with

∇2
t =

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

1
ρ2

∂2

∂φ2
, try ψ(ρ, φ) = R(ρ)Φ(φ),

(
∇2
t + γ2

)
ψ =(

1
ρ

∂

∂ρ
ρ
∂R

∂ρ
+ γ2R(ρ)

)
Φ(φ) +

1
ρ2
R(ρ)

∂2Φ(φ)
∂φ2

= 0.

Divide by R(ρ)Φ(φ) and multiply by ρ2:

1
R(ρ)

(
ρ
∂

∂ρ
ρ
∂R

∂ρ
+ γ2ρ2R(ρ)

)
+

1
Φ(φ)

∂2Φ(φ)
∂φ2

= 0.
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Example: Circular Wave Guide
Jackson does rectangle. You should too. Needed to do
homework.

We will consider a circular pipe of (inner) radius r. Of
course we should use polar coordinates ρ, φ, with

∇2
t =

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

1
ρ2

∂2

∂φ2
, try ψ(ρ, φ) = R(ρ)Φ(φ),

(
∇2
t + γ2

)
ψ =(

1
ρ

∂

∂ρ
ρ
∂R

∂ρ
+ γ2R(ρ)

)
Φ(φ) +

1
ρ2
R(ρ)

∂2Φ(φ)
∂φ2

= 0.

Divide by R(ρ)Φ(φ) and multiply by ρ2:

1
R(ρ)

(
ρ
∂

∂ρ
ρ
∂R

∂ρ
+ γ2ρ2R(ρ)

)
= C

1
Φ(φ)

∂2Φ(φ)
∂φ2

= −C.
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Solving it

Φ first:
∂2Φ(φ)
∂φ2

+ CΦ(φ) = 0

Φ(φ) = e±i
√
Cφ. Periodicity =⇒

√
C = m ∈ Z.

Now R(ρ): (
ρ
∂

∂ρ
ρ
∂

∂ρ
+ γ2ρ2 −m2

)
R(ρ) = 0

Bessel equation, solutions regular at origin are

R(ρ) ∝ Jm(γρ), so ψ(ρ, φ) =
∑
m,n

Am,nJm(γmnρ)eimφ.

γmn is determined by boundary conditions...
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Boundary conditions:

For TM, ψ(r, φ) =
0 =⇒ Jm(γr) = 0, so
γTM
mn = xmn/r where xmn

is the n’th value of x > 0
for which Jm(x) = 0,
given on page 114.

For TE, n̂ · ~∇tψ(r, φ) =
0 =⇒ dJm

dr (γr) = 0, so
γTM
mn = x′mn/r where x′mn

is the n’th value of x > 0
for which dJm(x)/dx = 0,
given on page 370.

J0

J1
J2

J3

Thus the lowest cutoff frequency is the m = 1 TE mode,
with x′11 = 1.841 while the lowest TM mode or circularly
symmetric mode has x01 = 2.405.
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For a waveguide 5 cm in diameter, with air or vacuum
inside, the cutoff frequencies are f = ω

2π = 3.5 GHz for
the lowest TE and 4.6 GHz for the lowest TM modes.
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