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Electromagnetic Waves
We begin with waves in a non-conducting uniform linear
medium, so we are discussing solutions of Maxwell’s
equations without sources. As we are assuming no
time-dependence of the properties of the medium, we will
fourier transform in time and consider the “harmonic”
fields, so
~∇ · ~B = 0 ~∇× ~E − iω ~B = 0 ~B = µ ~H

~∇ · ~D = 0 ~∇× ~H + iω ~D = 0 ~D = ε ~E

where the permittivity ε and permeability µ are constant
in space.

So ∇2 ~E = −~∇×
(
~∇× ~E

)
= −~∇× (iωB) = −iωµ~∇× ~H

= −ω2µ~D = −ω2µε ~E,

which tells us
(
∇2 + µεω2

)
~E = 0, and by taking the curl

of this, the same equation holds for ~B.
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Plane Waves

If we have a plane wave, ~E(~x, t) ∝ ei(~k·~x−ωt), this will
satisfy the equation provided the wave number
k :=

√
~k 2 =

√
µεω. A fixed phase of this wave moves at

~v = ~kω/k2 so v = 1/
√
µε, which is called the phase

velocity. The index of refraction is defined as n =
√

µε

µ0ε0
,

and so v = c/n.
If we consider plane waves in the x direction, uniform in y
and z, we have uk(x, t) = aeik(x−vt) + be−ik(x+vt),
corresponding to right and left moving sinusoidal waves
respectively.
If the medium is nondispersive, so n is constant, we may
superimpose these waves with different k to have vaves of
arbitrary shape, u(x, t) = f(x− vt) + g(x+ vt), but if
there is dispersion, having created such a wave packet at
t = 0 will not produce pulses of unchanged shape at later
times, because the vt terms in the phase will vary with k.
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Thus a general solution of Maxwell’s sourceless equations
will be a linear superposition of (the real parts of)

~E(~x, t) = ~Eei~k·~x−iωt
~B(~x, t) = ~Bei~k·~x−iωt

}
with k2 = µεω2,

but with constraints on ~E and ~B coming from the rest of
Maxwell’s equations.
The divergence equations require ~k · ~E = 0 and ~k · ~B = 0
while one curl equation gives i~k × ~E = iω ~B or√
µεk̂ × ~E = ~B. The magnetic field ~H = ~B/µ so
~H = k̂ × ~E/Z where Z =

√
µ/ε is an impediance.

The impediance of free space is
√
µ0/ε0 = 376.7 Ω.

We have not specified that k and ω are real, which one or
the other might not be, as the permittivity and
permeability are in general complex. Still, in many
contexts they are close to real and if we take ~k to be real,
E and B will be in phase, with v ~B and ~E equal in
magnitude.
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Polarization

From these constraints we see that ~E is a vector
perpendicular to the wavenumber ~k, and if we set up
orthonormal basis vectors ~ε1 and ~ε2 for that plane, with ~ε1
and ~ε2 for that plane, with ~ε1 × ~ε2 = k̂, we have
~E = E1~ε1 + E2~ε2, and then ~B =

√
µε(E1~ε2 − E2~ε1).

The amplitudes E1 and E2 may be complex. If only one of
them is nonzero, say E1, ~E(~x, t) = Re

(
E1e

i~k·~x−iωt
)
~ε1 =

|E1| cos(~k · ~x− ωt+ argE1)~ε1 so the argument of E1 is
just a phase shift, pretty much irrelevant. In this case, the
electric field is linearly polarized, oscillating but always in
the direction ~ε1. The same is true if E1 and E2 are not
zero but have the same phase, with the resulting ~E
oscillating in the direction |E1|~ε1 + |E2|~ε2.
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But if E2/E1 = Aeiφ is not real, the electric field
components in the two directions are out of phase, and at
a given ~x the field sweeps out an ellipse in time.
If |A| = 1 and φ = π/2, this is a circle, we have the
complex ~E(~x, t) = E1(ε1 + iε2)ei~k·~x−iωt. The real field
∝ ε1 cos~k · ~x− ε2 sin~k · ~x then spirals clockwise as ~x moves
along ~k, if we are looking into the wave. It spirals
counterclockwise as time progresses. This is called a left
circularly polarized wave, or a wave of positive helicity. Of
course the opposite phase, with E1/E2 = −i, is a right
circularly polarized wave of negative helicity.
Define ~ε± = 1√

2
(~ε1 ± i~ε2). Then the electric field can be

decomposed into ~ε± components rather than ~εj (j = 1, 2)
components, and each of these is complex. In either case
there are four real parameters giving the amplitude of the
wave. I think we will not need to discuss the Stokes
parameters that give these in terms of measurable
quantities.
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Reflection and Refraction
Consider a planar interface between two uniform linear
media. In each medium,
the fields must be a com-
bination of plane waves.
Suppose a wave

~E = ~E0 e
i~k·~x−iωt,

~B =
√
µε k̂ × ~E

n
r

i
r’

k

k’

k’’

x

z

µ , ε

µ , ε

’’

(k̂ is a unit vector) is incident from below, inducing a
refracted wave in the upper medium:

~E ′ = ~E ′0 e
i~k ′·~x−iωt, ~B ′ =

√
µ′ε′ k̂′ × ~E ′

and a reflected wave in the lower medium

~E ′′ = ~E ′′0 e
i~k ′′·~x−iωt, ~B ′′ =

√
µε k̂′′ × ~E ′′.

As all the equations are linear with time-independent
parameters, only the one fourier component is involved.
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Kinematics

That is, all the waves have the same frequency. This can
also be viewed as saying the boundary values must
oscillate together in time.
The x and y dependence of the fields at the boundary will
also need to match whatever the boundary conditions.
This tells us kx = k′x = k′′x and ky = k′y = k′′y . The
magnitudes of the three k’s are determined by ω and the
material parameters, k = |~k| = |~k ′′| = ω

√
µε,

k′ = |~k ′| = ω
√
µ′ε′. The x, y matching means

k sin i = k′ sin r = k′′ sin r′, so k = k′′ implies i = r′, or
the angle of reflection is equal to the angle of
incidence.

But we also have
sin i
sin r

=
k′

k
=

√
µ′ε′

µε
=
n′

n
, where n and

n′ are the indices of refraction above and below the
interface. This is Snell’s Law.
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The Boundary Conditions
Assume we are considering non-conducting materials with
no free charges, so within each material the fields must be
differentiable, and at the interface, Gauss’ law tells us the
normal components of ~B and ~D are continuous, while the
other two, integrated on a path just below and just above
the interface, tells us the components of ~E and vecH
perpendicular to ~n are continuous. Of course below the
interface we need to add the incident and reflected fields,
so we have
~D · ~n continuous:

[
ε( ~E0 + ~E ′′0)− ε′~E ′0

]
· ~n = 0

ω ~B · ~n continuous:
(
~k× ~E0 +~k ′′×~E ′′0 −~k ′×~E ′0

)
· ~n = 0

~E × ~n continuous:
(
~E0 + ~E ′′0 − ~E ′0

)
× ~n = 0

~H × ~n continuous:[
1
µ

(
~k × ~E0 +~k ′′ × ~E ′′0

)
− 1
µ′
~k ′ × ~E ′0

]
× ~n = 0
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Plane of Incidence
The transverse conditions on the k’s means that they all
lie in the plane of incidence, defined by the incident
direction and the interface normal ~n (assuming i 6= 0).
The solution of the interface equations in general is
messy, but we can consider separately the two linear
polarizations of the incident electric field, in that plane
and perpendicular to that plane. Take that plane to
be the xz plane.
First consider the incident
~E into the plane, so ~B is
in the direction shown, and
E0x = B0 y = E0 z = 0.
Consider a reflection in the
plane of incidence, where

n
r

i

x

z

µ , ε

µ , ε

’’

i

k’’k

k’

B

E

B’’

E’’

E’

B’

all Ey, Bx and Bz should change sign, but not the other
components, because ~E is a vector and ~B a pseudovector.
But this simply reverses the incident fields, and therefore
all components must change sign.
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~E perpendicular (continued)

Thus E′x, E′z, B
′
y, E

′′
x , E′′z and B′′y must all vanish, and the

reflected and transmitted waves are linearly polarized as
shown, with all ~E’s ⊥ the plane of incidence.
Thus E0 +E′′0 −E′0 = 0 from the continuity of ~E × ~n, and√
ε/µ cos i (E0 − E′′0 ) =

√
ε′/µ′ cos r E′0 from the

continuity of ~H × ~n. The two equations enable solving for
the ratios E′0/E0 and E′′0/E0 whose squares give the
transmission and reflection coefficients.

E′0
E0

=
2nµ′ cos i

nµ′ cos i+ n′µ cos r
,

E′′0
E0

=
nµ′ cos i− n′µ cos r
nµ′ cos i+ n′µ cos r

We see they depend on the ratios n′/n and µ′/µ of the
indices of refraction and the permeabilities, but for
optical frequencies we may usually take µ′/µ = 1. The
expression is still somewhat complicated. Jackson
eliminates the r dependence using
n′ cos r =

√
n′ 2 − n′ 2 sin2 r =

√
n′ 2 − n2 sin2 i.
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~E in the plane of incidence
The argument for the op-
posite linear polarization,
with ~E in the plane of in-
cidence and ~B perpendicu-
lar to it proceeds similarly.
The ~E × ~n equation gives
(E − E′′) cos i = E′ cos r

n
r

i

x

z

µ , ε

µ , ε

’’

i

k’’k

k’

B

E
E’’

B’’

B’

E’

and the ~H × ~n equation gives us

1
µ

(E0 + E′′0 ) =
1
µ′
E′0
k′

k
=

1
µ′
E′0
n′

n

Again the results are not simple. We get

E′0
E0

=
2nµ′ cos i

n′µ cos i+ nµ′ cos r
E′′0
E0

=
n′µ cos i− nµ′ cos r
n′µ cos i+ nµ′ cos r
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Normal Incidence

If the angle of incidence goes to zero, the two results must
converge, as the plane of incidence is not well defined. As
i = r = 0 in that limit, the ~E⊥ results give

E′0
E0

=
2

1 +
n′

n

µ

µ′

,
E′′0
E0

= 1− 2
1

1 +
n

n′
µ′

µ

,

and so does the ~E in the plane, except that the sign of
E′′0/E0 is reversed, but that is because the directions
defining E′′0 are reversed in the two cases.
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Simplification if µ = µ′

We are often interested in visible light in dielectric
materials which have little magnetic susceptibility, so let
us assume µ = µ′. Then for ~E⊥,

E′0
E0

=
2n cos i

n cos i+ n′ cos r
=

2 cos i sin r
sin(i+ r)

E′′0
E0

=
n cos i− n′ cos r
n cos i+ n′ cos r

=
sin(r − i)
sin(r + i)

.

and for ~E‖,

E′0
E0

=
2n cos i

n′ cos i+ n cos r
=

4 sin r cos i
sin(2i) + sin(2r)

E′′0
E0

=
sin(2i)− sin(2r)
sin(2i) + sin(2r)

=
tan(i− r)
tan(i+ r)

.
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Normal incidence, again, with µ = µ′

For normal incidence, we need to not use the sines, which
vanish. Using the ~E⊥ definition where positive values are
all in the same direction, we see

E′0
E0

=
2n

n+ n′
,

E′′0
E0

=
n− n′

n+ n′
.

Note that if the reflection is off a more dense medium
(n′ > n), the sign of ~E is reversed on reflection, which is
the origin of the rule we use in elementary discussions of
interference, that there is an extra phase shift by π under
reflection off a more-dense medium.
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Brewster angle

For the electric field in the plane of incidence, there is an
angle for which E′′0 vanishes, called Brewster’s angle.
Assuming µ′ = µ for simplicity (and it is nearly true for
optics in dielectric materials), this is when
n′ cos i = n cos r, and as n sin i = n′ sin r, multiplying
them, we see sin 2i = sin 2r, or r = π/2− i, and the
reflected and refracted waves are perpendicular to each
other. Then n′ = n sin i/ sin r = n tan i, so

Brewster’s angle: iB = tan−1

(
n′

n

)
.

This is a way to get complete linear polarization of light.
It also indicates that even at other angles, the
transmission of one polarization will be greater than the
other.
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Total Internal Reflection

Earlier we derived Snell’s law, n sin i = n′ sin r, which
shows that, if n > n′, for an angle of incidence i greater
than sin−1(n′/n) we need a refraction angle with a sine
greater than 1. How do we interpret that? Really we got
this by requiring kx = k′x with k′ = n′k/n, from which
k′z =

√
k′ 2 − k2

x which is imaginary (say iκ under these
circumstances. Then the fields

~E ′ = ~E ′0e
ikxx−κz−iωt, ~H ′ =

1
µ′ω

~k′ × ~E ′.

Note the fields fall off exponentially with depth z into the
less dense medium for angles beyond that of total internal
reflection, so there is no continuing beam of refracted
light, though there is field close to the interface.
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There is no flow of energy into the n′ medium, because
the Poynting vector’s z component is

~S · ~n =
1
2

Re
[
~n ·
(
~E ′ × ~H ′∗

)]
=

1
2ωµ′

Re ~n ·
[
~E ′ ×

(
~k ′ × ~E ′∗

)]
=

1
2ωµ′

Re ~n ·~k ′
∣∣∣~E ′0∣∣∣2 = 0,

as ~n ·~k ′ is pure imaginary.
The naive geometrical picture of well defined beams that
are reflected exactly at the boundary should be doubted.
Perhaps it is effectively off a plane somewhat inside the
boundary, and the reflected ray would intersect the
incident ray inside the second medium. This is called the
Goos-Hänchen effect. To really describe how much the
reflected beam is moved from the naive path, we would
need wave packets in x rather than pure wavenumber. We
are not going to pursue this.
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