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Course Information
I Instructor:

I Joel Shapiro
I Serin 325
I 5-5500 X 3886, shapiro@physics

I Book: Jackson: Classical Electrodynamics (3rd Ed.)
I Web home page:

www.physics.rutgers.edu/grad/504
contains general info, syllabus, lecture and other
notes, homework assignments, etc.

I Classes: ARC 207, Monday and Thursday,
10:20 (sharp!) - 11:40

I Homework: there will be one or two projects, and
homework assignments every week or so. Due dates
to be discussed.

I Exams: a midterm and a final.
I Office Hour: Tuesdays, 3:30–4:30, in Serin 325, or by

arrangement.
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Course Content

Last term you covered Jackson, Chapters 1—6.3
We will cover a large fraction of the rest of Jackson, but
we will have to leave out quite a bit.

Everything comes from Maxwell’s Equations and the
Lorentz Force. We will discuss:

I EM fields in matter, and at boundaries
I EM fields confined: waveguides, cavities, optical

fibers
I Sources of fields: antennas and their radiation,

scattering and diffraction
I Relativity, and relativistic formalism for E&M
I Relativistic particles
I other gauge theories (maybe)
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Maxwell’s Equations

At a fundamental level, electromagnetic fields obey
Maxwell’s equations with sources given by all charges and
currents:

~∇ · ~E =
1

ε0
ρall Gauss for E

~∇ · ~B = 0 Gauss for B

~∇× ~B − 1

c2

∂ ~E

∂t
= µ0

~Jall Ampère (+Max)

~∇× ~E +
∂ ~B

∂t
= 0 Faraday

and charged particles experience the Lorentz force:

~F = q
(

~E + ~v × ~B
)
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Potentials
As ~B has zero divergence1 (~∇ · ~B = 0), there are vector
fields ~A(~r) for which ~B(~r) = ~∇× ~A(~r). Then

∂ ~B

∂t
= ~∇× ∂ ~A

∂t
,

so Faraday’s law tells us

~∇×
(

~E +
∂ ~A

∂t

)
= 0,

and the term in parenthesis is2 the gradient of some
function, −Φ. Then

~E = −~∇Φ− ∂ ~A

∂t
.

1 ~B corresponds to a closed 2-form, which in Euclidean space
means it is exact, B = dA for some 1-form A.

2So the 1-form E + ∂A/∂t is closed, and exact, and equal to
d(−Φ).
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Gauge Invariance

Because only the curl of ~A is determined by ~B, ~A is
determined only up to a divergence3. Though such an
ambiguity will affect ~E, this can be compensated for in
our choice of Φ. Thus the electromagnetic fields are
unchanged by a gauge transformation:

~A → ~A + ~∇Λ,

Φ → Φ− ∂Λ

∂t
.

Because of gauge invariance, the physical equations
(Maxwell) do not fully determine ~A and Φ, but we may
impose a gauge condition. Two popular choices are:

~∇ · ~A +
1

c2

∂Φ

∂t
= 0 Lorenz gauge,

~∇ · ~A = 0 Coulomb gauge.

3a closed or exact form
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Solving the Wave Equation

Either gauge choice is possible because a Λ to adjust ~A
can be found by Green function for the wave or Laplace
equation.
With the Lorenz gauge, Maxwell’s equations give

∇2Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~J

Both of these are wave equations with specified source:

∇2Ψ− 1

c2

∂2Ψ

∂t2
= −4πf(~x, t),

with some form of boundary condition. If there are no
boundaries, solution by Fourier transform is best.
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Fourier transforms
Let’s review Fourier transforms.
Given an integrable real or complex-valued function on
the real line <, f : < → C, we define its Fourier transform
f̃ : < → C by

f̃(ω) =

∫ ∞

−∞
dt f(t)eiωt.

This can be inverted, because

1

2π

∫ ∞

−∞
dω f̃(ω)e−iωt =

1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dt′ f(t′)eiω(t′−t)

=
1

2π

∫ ∞

−∞
dt′ f(t′)

∫ ∞

−∞
dω eiω(t′−t)

=

∫ ∞

−∞
dt′ f(t′)δ(t′ − t) = f(t).

so f(t) =
1

2π

∫ ∞

−∞
dω f̃(ω)e−iωt.
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Fourier transforms convert derivatives to
algebra

If g(t) =
d

dt
f(t),

g̃(ω) =

∫ ∞

−∞
dt eiωt d

dt
f(t)

=

∫ ∞

−∞
dt eiωt d

dt

(
1

2π

∫ ∞

−∞
dω′ f̃(ω′)e−iω′t

)

= −i

∫ ∞

−∞
dω′ ω′

1

2π

∫ ∞

−∞
dt ei(ω−ω′)t

= −iωf̃(ω).
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Confusion and Inconsistencies

There are lots of arbitrary choices made here, and not
made consistently by different authors.

Which is the fourier transform, f(t) → f̃(ω) or the
reverse, and which is the reverse transform?

Which one gets the minus sign in the exponential? In
fact, everyone chooses exp(iωt) for f(t) → f̃(ω) but
exp(−ikx) for f(x) → f̃(k) for spatial functions.

Which transform gets the 1/2π factor?
f̃ → f does here, in §6.4
or do they each get a

√
1/2π, as on p. 69,

or should we transform to frequency ν instead of angular
frequency ω, with e2πiνt, in which case we don’t need any
factors of 2π in front.
That’s what Wikipedia does, but no physics book I know
of does.
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Back to solving the wave equation

So if we fourier transform in time, our wave equation(
∇2 − 1

c2

∂2

∂t2

)
Ψ = −4πf(~x, t)

transforms to(∇2 + k2
)
Ψ̃(~x, ω) = 4πf̃(~x, ω),

with k := ω/c. For a fixed ω this is now just a
three-dimensional differential equation, depending on ~x.
It is the inhomogeneous Helmholtz equation. It can be
solved by finding the suitable Green function:

Gk(~x,~x ′) 3 (∇2 + k2
)
Gk(~x,~x ′) = −4πδ3(~x− ~x ′).

In general we might be interested in the Green function
with some specified spatial boundary conditions. Let us
first consider, however, an unrestricted region, for which
the Green function will be translationally invariant,
Gk(~x,~x ′) = Gk(~x− ~x ′), and rotationally symmetric,
Gk(~x,~x ′) = Gk(|~x− ~x ′|).
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Free space Helmholtz Green function

In that case, with R = |~x − ~x ′|, we have4

1

R

d2

dR2
(RGk(R)) + k2Gk(R) = 0 for R > 0.

Thus Gk(R) = AG(+)(R) + BG(−)(R), with

G
(±)
k (R) =

e±ikR

R
.

As ~∇ · ~∇Gk(~r) = −k2Gk(~r) − 4πδ3(~r), if we integrate
inside a small sphere of radius ε and use Gauss’ law:∫

|r|≤ε

~∇ · ~∇Gk(~r) =

∫
|r|=ε

êr · ~∇Gk(~r).

4In spherical coordinates, ∇2Ψ is given by Jackson’s equation 3.1,
which on a function with no angular dependence reduces to
r−1d2(rΦ)/dr2. We will derive 3.1 and generalizations of other
coordinate systems in a few weeks.
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On the small sphere, the radial component of the gradient
of Gk(~r) is

êr·~∇Gk(~r) =
−1 + ikε

ε2
Aeikε+

−1− ikε

ε2
Be−ikε −→

ε→0
−A + B

ε2

so the surface integral is −4π(A + B).
On the other hand, when integrating −k2Gk(~r)− 4πδ3(~r),
over the small sphere, the first term vanishes as the
volume integral (∝ r3) dominates the Green function
(∝ 1/r), and the integral of δ3(~r) = 1. Thus

A + B = 1.

Again, G
(±)
k (~r ) =

e±ik|~r |

|~r | . and AG(+) + (1−A)G(−) is a

Green function for the Helmholtz equation.
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Time Dependent Green Function

Green functions depend on boundary conditions. We left
ambiguity in behavior for t → ±∞, so have arbitrariness
in A,B.
The Green function for wave equation in space-time:(
∇2

~x −
1

c2

∂2

∂t2

)
G(±)(~x, t,~x ′, t′) = −4πδ3(~x− ~x ′)δ(t− t′)

can be found by fourier transforming (t → ω) the source
into −4πδ3(~x− ~x ′)eiωt′ , so the fourier transform of the
Green function is G

(±)
k (~x− ~x ′)eiωt′ = G

(±)
k (R)eiωt′ , where

R = |~x− ~x ′|. Taking the inverse transform (ω → t) we
have

G(±)(~x, t,~x ′, t′) =
1

2π

∫ ∞

−∞
dω G

(±)
ω/c(R) e−iω(t−t′)

=
1

2π

∫ ∞

−∞
dω

e±iωR/c

R
e−iωτ

where τ = t− t′.
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Note, as we might expect, that it depends only on the
difference of the two points in spacetime (on ~x− ~x ′ and
t− t′). Also note the integral over ω gives a simple delta
function,

G(±)(~x, t,~x ′, t′) = G(±)(R, τ) =
1

R
δ

(
τ ∓ R

c

)

=
δ
(
t′ − [

t∓ |~x− ~x ′|/c
])

|~x− ~x ′| .

The delta function requires t′ = t∓R/c to contribute,
and R/c is always nonnegative, so for G(+) only t′ ≤ t
contibutes, or sources only affect the wave function after
they act. Thus G(+) is called a retarded Green function,
as the affects are retarded (after) their causes. On the
other hand, G(−) is the advanced Green function, giving
effects which preceed their causes.
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In and Out Fields

If the sources f(~x, t) are only nonzero in a finite time
interval [ti, tf ], any solution of the wave equation Ψ(~x, t)
must obey the homogeneous wave equation for t < ti and
for t > tf . As that equation is deterministic, if we define
Ψin(~x, t) and Ψout(~x, t) to be solutions, for all t, of the
homogeneous equation which agree with Ψ(~x, t) for t < ti
and for t > tf respectively, we must have

Ψ(~x, t) = Ψin(~x, t)+

∫
d3x′

∫ ∞

−∞
dt′G(+)(~x−~x ′, t−t′)f(~x ′, t′)

= Ψout(~x, t)+

∫
d3x′

∫ ∞

−∞
dt′G(−)(~x−~x ′, t−t′)f(~x ′, t′).
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alone, because we could have an arbitrary free wave
coming from t = −∞, but we may view the difference
Ψout −Ψin as the field produced by the sources after they
have acted. If the sources are considered fixed,
independent of the field, this will not depend on the
incident wave, but if the sources are there because of the
incident wave, we may view this difference as the
scattered wave.

We will skip Jackson §6.5
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In “Ponderable Media”
Up to now, we have talked fundamental fields interacting
with all charges. Restricting our focus to distances large
compared to 10−14 m ∼ 10 fm, matter consists of point
charge nuclei Ze and electrons with charge −e. On an
atomic scale we would have wildly fluctuating fields
dependent on the detailed positions on innumerable
atoms. For many purposes we are not interested in the
detailed fields, which we will now call ~e and ~b, but in their
averages over regions large compared to an atom, say
R = 10−8 m. With a smearing function such as

f(~x ′) =
1

π3/2R3
e|~x

′|2/R2
, which gives

∫
f(~x)d3x = 1,

we define macroscopic fields

~E(~x, t) = 〈~e(~x, t)〉 :=

∫
d3x′f(~x ′)~e(~x− ~x ′, t),

~B(~x, t) = 〈~b(~x, t)〉 :=

∫
d3x′f(~x ′)~b(~x− ~x ′, t).
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These averaged fields are known as the electric field and
magnetic induction. The latter is an unfortunate
historical necessity, as the magnetic field will be defined
differently in a moment.
The homogeneous Maxwell equations are linear, so the
averaging passes right through, and we have

~∇ · ~B = 0, ~∇× ~E +
∂ ~B

∂t
= 0.

The averaging of the charges, however, is more
interesting. We divide the charges into some we consider
free, with a charge density ηfree, and some we consider to
be there in response to the fields, with a charge density
we call ηbound, because it is usually identified as charges
bound to the molecules.

The free charges can be described by their positions ~xj ,
with ηfree(~x) =

∑
j qjδ

3(~x− ~xj). The bound charges are
better described in terms of the center of mass of the
molecule ~xn and the charge’s displacement from it, ~xjn

with ~xj = ~xn + ~xjn.
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The bound density ηn(~x, t) for one molecule n is a sum
over its bound charges j(n), so
ηbound(~x, t) =

∑
n ηn(~x, t) =

∑
n

∑
j(n) qjδ(~x− ~xn − ~xjn),

and the smeared density for molecule n is

〈ηn(~x, t)〉 =
∑
j(n)

qj

∫
d3x′f(~x ′)δ(~x− ~x ′ − ~xn − ~xjn)

=
∑
j(n)

qjf(~x− ~xn − ~xjn)

≈
∑
j(n)

qj

(
f(~x−~xn)−

∑
α

xjn α
∂

∂xα
f(~x−~xn)

+
1

2

∑
αβ

xjn α xjn β
∂2

∂xα∂xβ
f(~x−~xn) + ...

)
.

The displacements of the bound charges ~xjn from their
molecule’s center is small compared to the averaging scale
R, so we may expand f in a power series, which separates
out the xjn dependence from the ~x− ~xn.
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Multipole Moments

We define the multipole moments for the molecule:

qn =
∑
j(n)

qj , ~pn =
∑
j(n)

qj~xjn,

Qn αβ = 3
∑
j(n)

qj xjn α xjn β

are the monopole (or charge), dipole and quadripole
moments of the molecule about the center of mass.

Aside: Jackson uses Q′, presumably because this includes a

monopole monopole moment 3
P

qjx
2
jn in addition to the true

quadripole part.
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The averaged charge density is then equivalent to a
density of charges, dipoles and quadripoles given by the
density of molecules. Let us define a macroscopic charge
density

ρ(~x, t) =

〈
ηfree +

∑
n

qnδ(~x − ~xn)

〉
,

where the
∑

n is over the molecules, and considers the net
charge of any molecule n as located at its center of mass.
Performing the smearing for the bound charges,

ρ(x, t) = 〈ηfree〉 +
∑

n

qnf(~x − ~xn).

This gives the first term in 〈ηn(~x, t)〉.
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Polarization

Define the macroscopic polarization

~P (~x, t) =

〈∑
n

~pnδ(~x − ~xn)

〉

=

∫
d3x′f(~x − ~x ′)

∑
n

~pnδ(~x ′ − ~xn)

=
∑
n

~pnf(~x − ~xn) =
∑
n,j

~qj~xjnf(~x − ~xn)

which is the smeared out dipole moment of the molecules.
Then

~∇ · ~P (~x, t) =
∑
n,j,α

~qj xjn α
∂

∂xα
f(~x − ~xn).

This gives the second term in 〈ηn(~x, t)〉.
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Quadripole Moment

Next define the macroscopic quadripole density5

Qαβ(~x, t) =
1

6

〈∑
n

Qn αβδ(~x − ~xn)

〉

=
1

6

∫
d3x′f(~x − ~x ′)

∑
n

Qn αβ δ(~x ′ − ~xn)

=
1

6

∑
n

Qn αβf(~x−~xn) =
1

2

∑
n,j

qjxjn αxjn βf(~x−~xn)

Then
∑
αβ

∂

∂xα

∂

∂xβ
Qαβ(~x, t)

=
1

2

∑
n,j

qj xjn α xjn β
∂2

∂xα∂xβ
f(~x − ~xn).

This gives the third term in 〈ηn(~x, t)〉.
5Caution: note the apparent inconsistency by a factor of 6

between Q and Qn
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Maxwell’s Gauss’ Law
We see comparing these to our first expansion that

〈η(~x, t)〉 = ρ(~x, t) − ~∇ · ~P (~x, t) +
∑
αβ

∂

∂xα

∂

∂xβ
Q(~x, t).

Then upon smearing Gauss’ law for the microscopic
electric field ~e(~x, t), ε0~∇ · ~E(~x, t) = 〈η(~x, t)〉, gives us

ρ(~x, t) = ε0~∇ · ~E(~x, t) + ~∇ · ~P (~x, t) −
∑
αβ

∂2

∂xα∂xβ
Qαβ .

Let ~Dα(~x, t) = ε0 ~Eα(~x, t) + ~Pα(~x, t) −
∑
β

∂

∂xβ
Qαβ ,

so that
~∇ · ~D(~x, t) = ρ(~x, t).

This is the macroscopic Gauss’ Law for ~D.


