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Lectures 25-26 April 29, May 4 2010

Electromagnetism controls most of physics from the
atomic to the planetary scale, and we have spent nearly a
year exploring the concrete consequences of Maxwell’s
equations and the Lorentz force.

But electromagnetism holds one clue to set our
imagination free to go further.
In the gauge invariance of the vector potential, it points
to the elegant structure of

LOCAL SYMMETRY

a generalization of a global symmetry of electromagnetism
which is not obvious classically.
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Topics we need to introduce

We first need to discuss several topics from outside the
realm of classical electromagnetism:

I Lattice approach to field theories
I Internal field variables
I Global internal symmetries
I Quantum mechanics of a charged particle
I How to make global symmetries local

This will give us
I minimal substitution
I covariant derivatives
I electromagnetic field strengths as a form of curvature
I non-Abelian gauge theories (QCD, GSW, standard

model)
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Lattice approach to field theories

Field theories may be approached as the continuum limit
of discrete degrees of freedom on a lattice.

Matter fields have their degrees of freedom defined only at
sites ~x = (anx, any, anz), with integers ni and lattice
spacing a.

For relativistic treatments we will also discretize time.

What are the degrees of freedom φj at each site j?
φj lives in some domain: reals? complex numbers? a
finite set (like for spin 1/2 Ising model)? a real vector?
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Spins on a Lattice
Consider having at each site a spin ~Sj of fixed length but
of variable direction, with an interaction H = J

∑
nn

~Si · ~Sj

between nearest-neighbor lattice sites i and j. Without
any coupling to spatial things (such as (~ri − ~rj) · (~Sj − ~Si),
spins are in separate space, not necessarily 3D.
Invariant under rotations by an orthogonal matrix R,
~Sj → R~Sj , each term ~Si · ~Sj in the Hamiltonian in
unchanged.

This holds also in the continuum limit, with ~S(~x) a field
taking independent (though not uncorrelated) values at
each spatial point.
Here the nearest-neighbor coupling becomes∑

µα ∂µSα∂
µSα. That keeps our internal space and real

space uncoupled.
If the internal space is R3, then we might also have
(~∇ · ~S)2 terms, and then space and spin would be coupled
with an ~L · ~S term.
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Global internal symmetries

If there is no coupling of the spins with space, the
symmetry under rotation in spin space is called an
internal symmetry.

Isotopic spin. Ψ :=
(
ψp
ψn

)
. Strong interactions are

invariant under SU(2) transformations

Ψ(xµ)→ ei~ω·
~IΨ(xµ),(

~I
)
i

are pauli spin matrices σi acting on the doublet Ψ.

The isospin rotation has to be the same at all points in
spacetime for this to be a symmetry. Thus it is a global
symmetry.
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Quantum mechanics of a charged
particle

In Quantum Mechanics, ~p→ −i~~∇ and E → i~∂/∂t.
Then a free nonrelativistic particle with E = ~p 2/2m is
described by a wave function

i~
∂ψ

∂t
= − ~2

2m
∇2ψ

which is Schrödinger’s equation for a free particle.

Notice ψ must be complex.
If ψ(xµ) is a solution, so is eiλψ(xµ), as long as λ is a
constant. Global symmetry under phase change.

Ms. Noether tells us: ∃ conserved current. For our
non-relativistic particle: ~J = ρ~v → −i~qψ∗~∇ψ.
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Conserved current

More generally, the phase induces ∆φ = iλφ, the current

Jµ = − ∂L
∂∂µφ

∆φ

is just like the kinetic energy part of the lagrangian
density with one derivative left out.

For example, the Dirac Lagrangian L = i~ψ̄γµ∂µψ −mψ̄ψ
gives a conserved current Jµ = ψ̄γµψ,
while for the Klein-Gordon lagrangian for a charged scalar
field, L = ~2(∂µφ)(∂µφ∗)−m2φ∗φ gives
Jµ = i~

2m (φ∗∂µφ− φ∂µφ∗).

This conserved current is a consequence of the global
symmetry.
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Minimal Substitution
If the particle is charged and in the presence of an
external field Aµ(xν), this interaction can be incorporated
by “minimal substitution” into the free particle
lagrangian, which is to say that ~p→ ~p− q ~A/c,
E → E − qΦ, so for a non-relativistic particle

i~
∂ψ

∂t
=
(
qΦ− ~2

2m

(
~∇+ iq ~A/~c

)2
)
ψ.

qΦ is the potential energy. Might recognize the ~A term
from Schnetzer’s derivation of Hamiltonian.
Important point: Not invariant under Aµ → Aµ − ∂µΛ.
Only effect is on derivative — adds a piece iq∂µΛ/c to
each derivative operator, or ∂µ → e−iqΛ/c∂µe

iqΛ/c.
So if ψ satisfies the equation in the original gauge,
ψ′ = e−iqΛ/cψ saitisfies the equation in the transformed
gauge. So we have a symmetry under a more involved
gauge transformation.
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Gauge invariance with matter

Conclusion:

Aµ → Aµ + ∂µΛ

(Φ→ Φ− 1
c

∂Λ
∂t
, ~A→ ~A+ ~∇Λ)

ψ → e−iqΛ/cψ

is an invariance of the theory, and is the correct form of a
gauge transformation.

Here we have the required local phase change, or rotation,
as a result of demanding gauge invariance, but we now
ask the reverse — can we turn a global symmetry of the
matter fields into a local symmetry by having gauge fields
with a gauge invariance.
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Non-Abelian Symmetry

Let us develop the idea of a locally invariant gauge theory
more formally, starting with matter fields with a
symmetry group.

Let the matter fields be a set of N real fields φi(xµ) with
an internal symmetry group G which acts with
representation M , that is, G ∈ G acts on the φ fields by

G : φi(x) 7→ φ′i(x) =
∑
j

Mij(G)φj(x). (1)

To be a symmetry the Lagrangian must be invariant. The
usual field theory kinetic term is 1

2

∑
µ,i (∂µφi) (∂µφi),

invariant if M is a constant orthogonal matrix∑
kMkiMkj = δij . Any potential term of the forms

V (
∑

i φ
2
i ) is also invariant. Individual components of φ

have no intrinsic meaning, as M mixes them up.
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V might not be invariant under all of O(N) but only
under a subgroup. Example: SU(3) of color acts on
triplet of complex quark fields, 6 real components, kinetic
energy is invariant under O(6)∼SU(4), but full lagrangian
is invariant only under an SU(3) subgroup.

So we have a symmetry group G which has generators Lb
which form a basis of the “Lie algebra” G.
There are as many independent Lb’s as the dimension of
the group or algebra. For example, 3 for rotations in 3D
or SU(2), 8 for SU(3), N(N − 1)/2 for SO(N), rotations in
N dimensions.
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Discretization
On our lattice, the degrees of freedom φi(x) are replaced
by φi(~n) for ~n ∈ Z4 with xµ = anµ. The mass term

−m
2

2

∫
d4x

∑
i

φ2
i (x)→ −m

2a4

2

∑
~n∈Z4

∑
i

φ2
i (~n).

Similarly for any other potential (single site) term.

Kinetic energy: replace derivative by finite difference.
The simplest substitution is to replace

∂µφi(x)→ 1
a

(
φi(~n+ ~∆µ)− φi(~n)

)
,

where ~∆µ is 1 in the µ direction and 0 in the others. Note
the best xν = anν + 1

2aδ
ν
µ, the center of the link between

the two sites. (∆φ)2 gives mass-like terms and
nearest-neighbor terms

∑
i φi(~n+ ~∆µ)φi(~n). Each is

invariant under rotations if the same rotation is used at
all sites, so we have a global symmetry.
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In a relativistic field theory, all information is local. Why
should symmetry at one site know about a distant one?
Could we have a local symmetry?

Mass terms and potential terms, which depend only on a
single site, are okay because they don’t know the
difference between local and global.
But the nearest neighbor term∑

i

φi(~n+ ~∆µ)φi(~n)

→Mik(G(~n+ ~∆µ))Mij(G(~n)) φk(~n+ ~∆µ)φj(~n)

=
(
M−1(G(~n+ ~∆µ))M(G(~n))

)
kj
φk(~n+ ~∆µ)φj(~n)

is not invariant because

M−1(G(~n+ ~∆µ))M(G(~n)) 6= 1

if the G’s (and hence the M ’s) vary from point to point.
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Parallel Transport

The problem, of course, is that we need a measure of how
much φ changes from point to point which does not
depend on the arbitrary basis vectors used at each point
to describe φ in terms of components. We need a method
of looking at φ(~x) as if it were at ~x ′, so we can subtract it
from φ(~x ′) to find the change. That is, we need a
definition of parallel transport — moving the object (say
a vector) φ from one point to another without rotating or
otherwise distorting it.

We considered this problem in Lecture 4 when we
considered the gradient operator on vectors in curvilinear
coordinates. Let’s recall what we did then.
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Rule for parallel transport
As an example, it might help to think of an ordinary
vector in the plane, expressed in polar coordinates.
Consider the unit basis vectors ~er and ~eθ at the point P .

If we transport ~er to the point P ′

while keeping it parallel to what it
was, we arrive at the vector labelled
Ger, which is not the same as the
unit radial vector e′r at the point
P ′.

Note that if we have a vector
~V ′ = V ′r~e

′
r + V ′θ~e

′
θ at P ′ which

is unchanged (parallel transported)
from the vector ~V = Vr~er +Vθ~eθ at
P , we do not have V ′r = Vr.

e
eθ

re’

rP

P’
G e

G

r

Here we had an a priori rule for parallel transport. But if
we allow gauge invariance, the rule becomes a dynamical
variable, a new degree of freedom.
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For each pair of nearest neighbors, that is, for each link,
we need a group element which specifies how to
parallel-transport the basis vectors.
Thus we have a lot of new degrees of freedom, but we do
have a local symmetry.

This gives us a gauge field theory.

The matter fields in a gauge theory transform according
to some representation of the group, but the gauge fields,
which define the parallel transport, take values in the
group itself, or in the Lie algebra formed from the
generators of the group.

So for example, for colored quarks, the quarks transform
as a three-complex-dimension representation of the SU(3)
group, but there are 8 gluons, because there are 8
generators of SU(3).
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Covariant Derivative
We have seen that each link will have a group element G
which defines parallel transport, so that transporting
φi(~n) to the neighboring site ~n+ ~∆µ gives∑

jMij(G)φj(~n), and so the change in φ which might
enter our lagrangian is

∆φi = φi(~n+ ~∆µ)−
∑
j

Mij(G)φj(~n).

In the continuum limit the fields change little from one
site to the next, so

φi(~n+ ~∆µ) ≈ φi(~n) + a∂µφi.

and parallel transport should not require more than a
small rotations, proportional to the lattice spacing, so we
can write1

G = eiagA, M(G) = M(eiagA) ≈ 1 + iagM(A).
1The scale of generators A is somewhat arbitrary — we include a

factor of g, which will be called the fundamental charge, here, but
some people do not.
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Here the generator A ∈ G , the Lie algebra generating G.
So to o(a1),

∆φi = a

∂µφi − ig∑
j

Mij(A)φj

 .

In the continuum limit we define 1/a times this to be the
covariant derivative.

We need a covariant derivative for each link, of which
there are four emerging from each site. So we have a
4-vector of Lie-algebra valued fields Aµ, which have
Lie-algebra components multiplying the basis generators
Lb, so Aµ(xν) =

∑
bA

(b)
µ (xν)Lb. Then the covariant

derivative, acting on the matter field, is

(Dµφ)j = ∂µφj − ig
∑
kb

A(b)
µ Mjk(Lb)φk

Dµφ = ∂µφ− igA(b)
µ M(Lb)φ.
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Gauge Transformations
On the lattice the terms we were just discussing are

φ(~n+ ~∆µ) ·M(GL) · φ(~n),

where GL is the group transformation associated with the
link (~n, ~n+ ~∆µ) that implements a parallel transport.
What happens to GL under local group transformations?

Think of gauge transformations passively — that is, φ(~n)
doesn’t change but its description in terms of components
φi(~n) does. Parallel transport across a link doesn’t change
either, but its group element does.
If GL transports φp to φq at site q with M(GL) · φ(xp) in
our original set of basis vectors, and we do a gauge
transformation φp → φ′p = M(Gp) · φp,
φq → φ′q = M(Gq) · φq, the parallel transport in the new
basis is

φ′q = M(Gq) ·M(GL) ·M(Gp)−1 · φp = M(GqGLG−1
p ) · φp,

so the gauge field which does parallel transport p→ q is
GqGLG

−1
p .
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Non-Abelian Gauge transform
Now our gauge transform acts on both matter fields and
gauge fields:

Λ :


φ(xp)→M(Gp) · φ(xp)
φ(xq)→M(Gq) · φ(xq)

GL → GqGLG
−1
p

This gauge transformation is a local symmetry of the
gauge field theory. Let’s verify that this is an invariance
of the nearest neighbor term:

φ(xq) ·M(GL) · φ(xp)
= φi(xq)Mij(GL)φj(xp)
→Mik(Gq)φk(xq)Mij(GqGLG−1

p )Mj`(Gp)φ`(xp)

= φk(xq)M−1
ki (Gq)Mij(GqGLG−1

p )Mj`(Gp)φ`(xp)
= φk(xq)Mk`(GL)φ`(xp) = φ(xq) ·M(GL) · φ(xp),

where we have used the orthogonality of M(Gq) and the
fact that the M ’s are a representation, and therefore
M−1
ki (Gq)Mij(GqGLG−1

p )Mj`(Gp) = Mk`(GL).
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In the Continuum

In the continuum limit, GL = eiagAL ,
M(GL) = M(eiagAL) ≈ 1 + iagM(AL). The gauge
transform group element Λ is not necessarily a small
change, but we can still write it as the exponential of a
generator, Λ(xµ) = eiλ(xµ) with λ(xµ) a Lie algebra
element, λ(xµ) =

∑
b λ

(b)(xµ)Lb. We may assume that
λ(b), though not small, changes slowly (o(a)) across a link.
So if the gauge transformation takes φ(x)→ φ′(x) and
A

(b)
µ (x)→ A

′ (b)
µ (x), we have

φ′(x) = ei
P
b λ

(b)(x)M(Lb)φ(x),

eiagA
′ (b)
µ (x) = eiλ(x+ 1

2
a∆µ) eiagA

(b)
µ (x)Lb e−iλ(x− 1

2
a∆µ).

We placed xµ in the middle of a link.
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To first order in a
In expanding in powers of a, we need care that λ(x),
∂µλ(x), and Aµ do not commute, so we expand Λ rather
than λ,

eiagAµ → 1 + iagAµ,

eiλ(x± 1
2
a∆µ) → eiλ(x) ± 1

2
a∂µ

[
eiλ(x)

]
,

and plugging these in, we get

1+iagA′µ =
(
eiλ+

1
2
a∂µe

iλ

)
(1+iagAµ)

(
e−iλ−1

2
a∂µe

−iλ
)

= 1 + iageiλAµe−iλ

+
1
2
a
(
∂µe

iλ
)
e−iλ − 1

2
aeiλ

(
∂µe
−iλ
)

Note from ∂µ
(
eiλe−iλ

)
= 0 that the third and fourth

terms are equal, so we can drop the third and double the
fourth.
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Gauge transform of Gauge Field
This gives

A′µ = eiλAµe−iλ +
i

g
eiλ∂µe

−iλ

= eiλ
(
Aµ +

i

g
∂µ

)
e−iλ

Electromagnetism?

Gauge transformations for charged wavefunctions were
just phase shifts, rotations in two dimensions. There is
only one generator L1 with G = eiλL1 , so everything
commutes. The gauge transformation takes

φ→ φ′ =
(

Re Φ′

Im Φ′

)
=
(

cosλ − sinλ
sinλ cosλ

)(
Re Φ
Im Φ

)
or Φ′ = eiλΦ, and

A′µ = eiλ
(
Aµ +

i

g
∂µ

)
e−iλ = Aµ + g−1∂µλ.
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Gauge transform in E&M

So for electromagnetism,

Φ′ = eiλΦ
A′µ = Aµ + g−1∂µλ.

is what we are used to. But this simplicity only holds for
an Abelian group, where all generators commute.

More generally, we need

φ′(xν) = eiM(λ(xν)) φ(xν)

A′µ(xν) = eiλ(xν)Aµ(xν)e−iλ(xν) +
i

g
eiλ(xν)∂µe

−iλ(xν)
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Pure Gauge Terms in L
We have learned how to formulate the interaction of
matter fields with the gauge fields, both on the lattice
and in the continuum. But what about the pure gauge
field part of L?

Can’t depend on just one link a
and be gauge invariant, because
choosing a gauge transform G1 =
Ga makes G′a = 1I, nothing to de-
pend on.

a1 2

2a G  G  Ga 1
−1

G

Simplest way to get rid of the
gauge dependance of
Ga = eiagAx(xa) on G2 = eiλ(x2) is
to premultiply it by Gb,

GbGa → G3GbG
−1
2 G2GaG

−1
1

= G3GbGaG
−1
1 .

1 2

3

a

b

a
G  G  G  G  G  G

b 3 b a

−1

1

Independent of G2, but ...
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There is still a gauge dependence on the endpoints of the
path, however, so the best thing to do is close the path.
To do so, we are traversing some links backwards from
the way they were defined, but from that definition in
terms of parallel transport it is
clear that the group element as-
sociated with taking a link back-
wards is the inverse of the ele-
ment taken going forwards. So

1 2

34 4 3

21a

b

c

d

a

b

c’

d’

the group element associated with the closed path on the
right (which is called a plaquette) is GP = G−1

d G−1
c GbGa,

which transforms under gauge transformations as

GP → G′P =
(
G4GdG

−1
1

)−1 (
G3GcG

−1
4

)−1(
G3GbG

−1
2

) (
G2GaG

−1
1

)
= G1G

−1
d G−1

4 G4G
−1
c G−1

3 G3GbG
−1
2 G2GaG

−1
1

= G1G
−1
d G−1

c GbGaG
−1
1

= G1GPG
−1
1 .

So the plaquette group element is not invariant.
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Invariant function on placquette

GP → G1GpG
−1
1 is not invariant, but is simpler. In the

continuum limit each GL is small transformation, and Gc
differs from Ga proportional to the lattice spacing, so GP
close to the identity, GP − 1I ≈ a generator in the Lie
algebra. The Killing form acting on that generator will
provide us with an invariant. Let us define

Fµν = −ia−2g−1(GP − 1) to be the
field-strength tensor, where µ and ν
are the directions of links a and b re-
spectively. Let us take x in the cen-
ter of the placquette.

a 21

c

d

4 3

b

µ

νx
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Expanding each link to order O(a2)

Ga ≈ 1+iagAµ(x−1

2
a∆ν)−1

2
a2g2A2

µ(x−1

2
a∆ν)

≈ 1+iagAµ(x)−1

2
ia2g∂νAµ(x)−1

2
a2g2A2

µ(x) a 21

c

d

4 3

b

µ

νx

G−1
c ≈ 1−iagAµ(x+

1

2
a∆ν)−1

2
a2g2A2

µ(x+
1

2
a∆ν)

≈ 1−iagAµ(x)−1

2
ia2g∂νAµ(x)−1

2
a2g2A2

µ(x),

so, to order a2,

GP =

„
1− iagAν(x) +

1

2
ia2g∂µAν(x)− 1

2
a2g2A2

ν(x)

«
„

1− iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x)

«
„

1 + iagAν(x) +
1

2
ia2g∂µAν(x)− 1

2
a2g2A2

ν(x)

«
„

1 + iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x)

«
= 1 + a2g {g [Aµ(x),Aν(x)] + i∂µAν(x)− i∂νAµ(x)}
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Evaluation of Fµν
Thus

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x),Aν(x)] .

Note that Fµν is

I a Lie-algebra valued field, Fµν(x) =
∑

b F
(b)
µν (x)Lb.

I An antisymmetric tensor, Fµν(x) = −Fνµ(x).
I Because the Lie algebra is defined in terms of the

structure constants, c d
ab by

[La, Lb] = ic d
ab Ld,

the field-strength tensor may also be written

F (d)
µν = ∂µA

(d)
ν − ∂νA(d)

µ + gc d
ab A

(a)
µ A(b)

ν .
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Before we turn to the Lagrangian, let me point out a
crucial relationship between the covariant derivatives and
the field-strength. If we take the commutator of covariant
derivatives

Dµ = ∂µ − igA(b)
µ Lb

at the same point but in different directions,

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν ]
= −ig∂µAν − g2AµAν − (µ↔ ν)
= −g2 [Aµ,Aν ]− ig∂µAν + ig∂νAµ
= −igFµν .

Notice that although the covariant derivative is in part a
differential operator, the commutator has neither first or
second derivatives left over to act on whatever appears to
the right. It does need to be interpreted, however, as
specifying a representation matrix that will act on
whatever is to the right.
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The Lagrangian Density for F

We have seen that the field strength Fµν is an element of
the Lie algebra which transforms by conjugation,
Fµν → GFµνG−1 under gauge transformation G at one
vertex.

For the Lagrangian we need an invariant quadratic
function on the algebra — fortunately that is just the
Killing form, β(La, Lb) = 2δab if we have normalized our
generators La in the usual way. This is familiar in the
form “ L2 is invariant” for the rotations. Thus we may
take

L = −1
4

∑
b

F (b)
µν F

(b)µν

to be the pure gauge term. Obviously that agrees with
our E&M lagrangian, where there is only one term in the
sum over b.
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Theory of Almost Everything

All together, if we have a non-Abelian gauge (Yang-Mills)
field interacting with Dirac particles that transform under
a representation tb (that is, tb = D(Lb) in the
representation for the fermions), together with some
scalar particles φ transforming under a possibly different
representation t̄, the langrangian density is

L = −1
4
F (b)
µν F

(b)µν + iψ̄γµ
(
∂µ − igA(b)

µ tb
)
ψ

+
1
2

[(
∂µ − igA(b)

µ t̄b
)
φ
]T [(

∂µ − igA(b)µt̄b
)
φ
]
.

Now you know everything about the non-Abelian theories
that run the universe (except for gravity).
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