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Charges in motion produce fields.
Fields affect the motion of charges.
Often we think of one causing the other.
But of course this is mutual interaction, complicated.

Why can we so often ignore the back reaction? Consider
non-relativistic particle radiating, P = 2e2a2/3c3. Over
time interval T , if ~a roughly constant, ∆v ≈ aT , typical
energy ∼ 1

2mv
2 ∼ ma2T 2, so radiated energy small if

2e2a2T

3c3
� ma2T 2 =⇒ T � τ :=

2e2

3mc3(
e2

6πε0mc3
in SI units

)
.

Usually true! For electron, τ =
2e2

3mec3
= 6.26× 10−24 s,

cτ = 1.88 femtometers.
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Another example: For particle in circular motion,

Erad ∼
2e2

c3
ω4r2 × 2π

ω
compared to E0 ∼ mω2r2,

so the radiated power has only an adiabatic effect
provided ωτ � 1.

But over time, adiabatic effects are significant. Let ~Fext
be the force ignoring radiative reaction, so without
radiation m~̇v = ~Fext, but power is lost at
P (t) = 2e2(~̇v)2/3c3, exerting a damping force ~Frad which
does negative work on it:

−
∫ t2

t1

P (t) dt =
∫ t2

t1

~Frad~v(t) dt = −2e2

3c3

∫ t2

t1

~̇v · ~̇v dt

=
2e2

3c3

∫ t2

t1

~̈v · ~v dt− 2e2

3c3
~̇v · ~v

∣∣∣∣t2
t1

.

Excuses for dropping endpoint term: quasi-periodic
motion, or pick times for which ~̇v · ~v = 0, or bounded
motion over a long time.
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Abraham-Lorentz Equation
Then we have

~Frad =
2e2

3c3
~̈v = mτ~̈v.

This gives the Abraham-Lorentz equation of motion,
involving v̈, that is, third time derivatives of position, or
jerk. This violates usual mechanics rules, for good reason.
Particles can take off x(t) = x0e

t/τ without any external
forces! But as perturbations on reasonable motion, this is
useful.

To allow for the damping but not positive feedback, take

~Frad =
2e2

3c3
d

dt
Fext/m = τdFext/dt, and evaluate the

stream derivative for Fext:

m~̇v = Fext + τ

[
∂Fext
∂t

+
(
~v · ~∇

)
Fext(~x, t)

]
. (1)
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Example: charge bound by spherical
potential
Consider charge with potential energy U(r). In absence
would have conserved energy E and a conserved angular

momentum ~L, a force ~Fext = −dU
dr

~r

r
and an acceleration

~̇v = − 1
m

~r

r

dU

dr
. The particle loses energy at a rate P (t), so

dE

dt
= −2e2

3c3
(~̇v)2 = − 2e2

3m2c3

(
dU

dr

)2

= − τ
m

(
dU

dr

)2

.

The rate of change of the angular momentum is

d~L

dt
= ~r ×m~̇v = ~r ×

[
−~r
r

dU

dr
− τ(~v · ~∇)

(
~r

r

dU

dr

)]
.

The first term contains ~r × ~r and vanishes. So does the
term where the gradient acts on dU/dr, as that also
contains ~r × ~r.
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Using
~v · ~∇êr = ~v/r − ~r(~r · ~v)/r2,

we have

d~L

dt
= −τ~r ×

(
~v

r
− ~r ~r · ~v

r2

)
dU

dr
=
−τ
m
~L

1
r

dU

dr
.

As we expect that the damping terms have a small effect
over one almost-closed orbit, we can consider the averages
over an orbit,〈

dE

dt

〉
= − τ

m

〈(
dU

dr

)2
〉
, (2)〈

d~L

dt

〉
= − τ

m
~L

〈
1
r

dU

dr

〉
.
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In one orbit the damping can be ignored, we can calculate〈(
dU

dr

)2
〉

and
〈

1
r

dU

dr

〉
from E and ~L ignoring

damping, and treat (2) as ordinary differential equations.
An electron in the lowest Bohr orbit of hydrogen would
spiral into the nucleus after a time

t =
a3

0

9c3τ2
= 15 picoseconds!

Of course quantum mechanics forbids transitions to
nonexistent or occupied energy levels, but this treatment
does give good results for `→ `− 1 transition rates,
according to Bohr’s correspondence principle. (This is a
homework I might have assigned you, but you are lazy

).
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Line Width
Consider instead a 1-D harmonic oscillator, k = mω2

0,
Fext = −mω2

0x. Assuming ω0τ � 1, we can use

m~̇v = Fext+τ
[
∂Fext
∂t

+
(
~v · ~∇

)
Fext(~x, t)

]
= −mω2

0(x+τv)

or
mẍ+mω2

0τ ẋ+mω2
0x = 0,

a simple ODE with solutions x(t) = x0e
−αt with

α2 − τω2
0α+ ω2

0 = 0, or

α =
1
2
τω2

0 ± iω0

√
1− (τω0/2)2 ≈ 1

2
τω2

0 ± i(ω0 − τ2ω3
0/8).

The real part of this is the decay constant Γ/2, while the
imaginary part is the angular frequency, slightly shifted
by the damping,

ω = ω0 + ∆ω, with ∆ω = −τ2ω3
0/8.
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Thus if the oscillator is set going at time zero, it will emit
radiation proportional to (ẍ(t))2, which will not have a
pure frequency, but rather the distribution of frequencies
of the amplitude of emitted radiation is

E(ω) ∝
∫ ∞

0
e−αteiωtdt =

1
α− iω

,

whose absolute square give the power spectrum

dI(ω)
dω

= A
1

(Γ/2)2 + (ω − ω0 −∆ω)2
,

which is called the “resonant line shape” or Lorentzian.
The total energy radiated is

I0 = A

∫ ∞
0

dω
1

(Γ/2)2 + (ω − ω0 −∆ω)2

=
2A
Γ

[
π

2
+ tan−1

(
2(ω0 + ∆ω)

Γ

)]
→ 2πA

Γ

where the last expression assumed Γ� ω0 as ω0τ � 1.
This determines A = I0Γ/2π, so the power spectrum is
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dI(ω)
dω

= I0
Γ
2π

1
(Γ/2)2 + (ω − ω0 −∆ω)2

.

In terms of wavelengths, the classical line width is

∆λ = Γ|dλ/dω| = 2πcΓ/ω2
0 = 2πcτ = 1.18× 10−14 m.

Quantum mechanically there are oscillator strength
factors, but the order of magnitude is correct, so
Γ/ω0 ∼ 10−8 for optical transitions in atoms, justifying
our assumption that ω0τ � 1.

Jackson points out that the level shift, classically
proportional to ω3

0τ
2, has a coefficient which is not correct

quantum mechanically.
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Scattering by an Oscillator
A charged oscillator radiates away its energy. It also
scatters light. Assume the electron is bound by a
spherically symmetric spring with spring constant mω2

0.
An incoming electric field exerts the force

~Fext = −mω2
0~x+ e~εE0e

i~k·~x−iωt.

From (1) we have

m~̇v = −mω2
0~x+ e~εE0e

i~k·~x−iωt

−τmω2
0~̇x − iω

(
τ − ~v · ~k

)
e~εE0e

i~k·~x−iωt.

Drop terms proportional to ~vE0 (we didn’t consider the
magnetic field either) so we have

~̈x+ Γt~̇x + ω2
0~x =

eE0

m
~ε(1− iωτ)ei~k·~x−iωt.

where Γ should be τω2
0, but we will throw in an additional

unspecified damping Γ′ due to unspecified “other
dissipative processes”.
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So Γt = τω2
0 + Γ′. Here we are looking for a steady state

solution to this inhomogeneous linear equation, rather
than the decay of the homogeneous one, and it is

~x(t) =
eE0

m
~ε

(1− iωτ)e−iωt

ω2
0 − ω2 − iωΓt

.

Larmor tells us the power into dΩ with polarization ~ε ′ is

dP

dΩ
=

1
2
e2

4πc3

∣∣∣~ε ′ · (n̂× (n̂× ~̈x)
)∣∣∣2 =

e2

8πc3

∣∣∣~ε ′ · ~̈x∣∣∣2
=

e2

8πc3

(
eE0

m

)2 ∣∣∣∣ (1− iωτ)ω2

ω2
0 − ω2 − iωΓt

∣∣∣∣2 ∣∣~ε ′ · ~ε∣∣2 .
Dividing by the incoming flux density cE2

0/8π, we get the
cross section

dσ

dΩ
=

e4

m2c4
(1 + ω2τ2)ω4

(ω2
0 − ω2)2 + ω2Γ2

t

∣∣~ε ′ · ~ε∣∣2 .
We can drop the ω2τ2 compared to 1.
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To calculate the total cross section, as for the Thomson
cross section, we have |~ε ′ · ~ε|2 → 8π/3, so

σT =
8π
3

e4

m2c4
ω4

(ω2
0 − ω2)2 + ω2Γ2

t

.

Writing this in terms of the radiation damping width
Γ = ω2

0τ = 2e2ω2
0/3mc

3 and the resonant wavelength
λ := 2πc/ω0,

σT =
3

2π
λ2 ω4Γ2/ω2

0

(ω2
0 − ω2)2 + ω2Γ2

t

.

At low frequencies we have ω4 behavior, as predicted by
Rayleigh’s law, and at high frequencies

σT → 6π(cτ)2 = 8π
3

(
e2

mc2

)2
, the Thomson cross section.

This makes sense, in that if the incoming frequency is
much higher than the resonant frequency, the electron
doesn’t realize it is not free. The strong peak at the
resonant frequency ω = ω0 is called resonance
fluorescence.
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