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Charges in motion produce fields.

Fields affect the motion of charges. Shapiro
Often we think of one causing the other.

o . . . . Radiative
But of course this is mutual interaction, complicated. Reaction

Why can we so often ignore the back reaction? Consider
non-relativistic particle radiating, P = 2e2a?/3¢3. Over
time interval T, if @ roughly constant, Av =~ aT', typical

energy ~ %va ~ ma?T?, so radiated energy small if

2e%aT 22 2¢?
< T =T > =
3c3 ma 4 3mc3
o2
(63 in SI units) .
TeEYMC
2¢2

Usually true! For electron, 7 = =6.26 x 107 g,
3mecd

ct = 1.88 femtometers.



Another example: For particle in circular motion,

2e? 49 27 9 9
Erqq ~ —z3w'r® x —  compared to  Eo ~ mwr®,
c w

so the radiated power has only an adiabatic effect
provided wr < 1.

But over time, adiabatic effects are significant. Let Fext
be the force ignoring radiative reaction, so without
radiation m© = Fext, but power is lost at

P(t) = 2¢2(0)? /3¢, exerting a damping force ﬁrad which
does negative work on it:

to to . 262 to . .
—/ P)dt — / Fradﬁ(t)dt:—3/ b0 dt
t t 3c t1

1 1
2¢2 » 2 t2
— i vdt — i T
3¢ [y, 3c3 "

t1
Excuses for dropping endpoint term: quasi-periodic
motion, or pick times for which ¥ - ¥ = 0, or bounded
motion over a long time.
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Abraham-Lorentz Equation s B
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262 ?} = mT.?'] Shapiro

rad:@

This gives the Abraham-Lorentz equation of motion,
involving ¥, that is, third time derivatives of position, or
jerk. This violates usual mechanics rules, for good reason.
Particles can take off z(t) = zge!/™ without any external
forces! But as perturbations on reasonable motion, this is
useful.

To allow for the damping but not positive feedback, take

q 2¢? d
vad = 3—;£Fext/m = TdFext/dt, and evaluate the

stream derivative for Feoyt:

- OF, I .
mv = Foxt + 7 [ GetXt + (v . V) Fext(zr,t)} . (1)



Example: charge bound by spherical EEyeieiod
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Consider charge with potential energy U(r). In absence Shan
apiro
would have conserved energy E and a conserved angular
- - r
momentum L, a force Foyt = — and an acceleration
ror
1 7dU
¥ = —————. The particle loses energy at a rate P(t), so
mr dr

dE _ 26 np 20 (dUN'_ 7 (dUN’
dt ~ 3c3 T 3m2e3 \ dr  m \dr /)

The rate of change of the angular momentum is
L - 7 d - [(Fd
= Txml =7 x [—TU —7(F V) <TU>] .

The first term contains # x 7 and vanishes. So does the
term where the gradient acts on dU/dr, as that also
contains 7 X .
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v-Veé, =0/r — (7 9)/r*, R
we have Shapiro
dL . v _r-v\ dU —7 -1dU
=TT X | =T —_— = —L——.
dt T T dr m rdr

As we expect that the damping terms have a small effect
over one almost-closed orbit, we can consider the averages
over an orbit,

() - {(®)) e



In one orbit the damping can be ignored, we can calculate

2
1 -
@ and Ldu from F and L ignoring
dr rdr

damping, and treat (2) as ordinary differential equations.
An electron in the lowest Bohr orbit of hydrogen would
spiral into the nucleus after a time

3
Qg

t = —~—= = 15 picoseconds!
9¢372 P

Of course quantum mechanics forbids transitions to
nonexistent or occupied energy levels, but this treatment
does give good results for £ — ¢ — 1 transition rates,
according to Bohr’s correspondence principle. (This is a
homework I might have assigned you, but you are lazy

©).
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Line Width S

. . . . Electricit
Consider instead a 1-D harmonic oscillator, k = mw, “and
. M ti
Fext = —mwdz. Assuming woT < 1, we can use enenEE
ext 0 0 )

Shapiro

: OF, -
mv = Foxt+7 [ (;:{t + (17- V) Fext (Z, t)} = —mwi (z+7v)

or Line Width

mi + mwiTd + mwjz = 0,

a simple ODE with solutions z(t) = zge~* with

2 2 2 _
o — Twja +wjy = 0, or

1 1
o= §Tw(2) + iwpy/1 — (Twp/2)? = 5“"8 +i(wo — T°wg/8).

The real part of this is the decay constant I'/2, while the
imaginary part is the angular frequency, slightly shifted
by the damping,

w=wy + Aw, with Aw = —7%w3 /8.



Thus if the oscillator is set going at time zero, it will emit
radiation proportional to (i(t))?, which will not have a
pure frequency, but rather the distribution of frequencies Mapstiom
of the amplitude of emitted radiation is
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a—iw’

oo .
E(w) x / e~ eldt =
0

whose absolute square give the power spectrum Line Width

dl(w) A 1
do T (T/2)2 4 (w—wo — Aw)?’
which is called the “resonant line shape” or Lorentzian.
The total energy radiated is

o0 1
Iy = A d
’ /0 /27 + (0 - wo — Aw)?
24w 1 (2(wo + Aw) 2rA
= r[2+tan (r T

where the last expression assumed I' < wg as woT < 1.
This determines A = IyI' /27, so the power spectrum is
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dw P21 (T/2)2 + (w — wp — Aw)2’ Shapiro

In terms of wavelengths, the classical line width is

Line Width

AN =T|d)\/dw| = 2rcT Jwd = 2mer = 1.18 x 107 m.

Quantum mechanically there are oscillator strength
factors, but the order of magnitude is correct, so

I'/wy ~ 1078 for optical transitions in atoms, justifying
our assumption that wor < 1.

Jackson points out that the level shift, classically
proportional to wg’TQ, has a coeflicient which is not correct
quantum mechanically.



Scattering by an Oscillator
A charged oscillator radiates away its energy. It also
scatters light. Assume the electron is bound by a
spherically symmetric spring with spring constant mwg.
An incoming electric field exerts the force

—

Foxt = —mw%f + e€ByethTiwt,

From (1) we have
mv = —mwii + e€Byet Tt
—Tmwi i — iw (7’ —U- k) e€Fge kTt

Drop terms proportional to ¥Ey (we didn’t consider the
magnetic field either) so we have

5 5 L ebo_ . ik-Z—i

T+, 0 4wt = — &1 — iwr)er Tt

m

where T' should be Tw?, but we will throw in an additional
unspecified damping I"” due to unspecified “other
dissipative processes”.
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So Ty = Tw? + I'". Here we are looking for a steady state
solution to this inhomogeneous linear equation, rather
than the decay of the homogeneous one, and it is

() = eEy z (1 — iwT)e !

m Wi —w?—iwly

Larmor tells us the power into d2 with polarization €’ is

dP 1 e2

. N o =0\ |2 e? VI

a0~ 24r3 | (nx(nxaz))‘ T x‘
2 [eBo\?| (1—iwr)w? 2 o2
- 87Tc3<m> wi — w? —iwly -

Dividing by the incoming flux density cEZ/8m, we get the
cross section

do et 1+ w?r?)w? @ 3‘2
— = e -e”.
dQ  m?ct (W — w?)? 4+ w?l?

We can drop the w?7? compared to 1.
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To calculate the total cross section, as for the Thomson

9 Physics 504,
cross section, we have [€’ - €] — 87/3, so
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oT = — . .
3 m204 (wg _ w2)2 + CUQP% Shapiro

Writing this in terms of the radiation damping width
I = wiT = 2e%w? /3mc? and the resonant wavelength
A = 2me/wy,

Scattering by
an Oscillator
3 9 wil? /Wl
o = — .
2" (Wi —w?)? + W2T?

At low frequencies we have w* behavior, as predicted by
Rayleigh’s law, and at high frequencies

2
2 .
or — 6m(cT)? = 8 (€5 the Thomson cross section.
3 me )

This makes sense, in that if the incoming frequency is
much higher than the resonant frequency, the electron
doesn’t realize it is not free. The strong peak at the
resonant frequency w = wy is called resonance
fluorescence.
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