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We found that the power radiated by a relativistic Ele'::(ijc_ny
particle is given by Liénard, Magnetism
Shapiro
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This is an issue for high-energy accelerators. There are
two main types, linear and circular.
In a linear accelerator the direction of 3 is constant so
|| B and
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So the power radiated is independent of the energy and
depends only on the rate of energy change.
Circular Acclerators Py
In a synchrotron, particles are in circular orbit with the e

Magnetism

energy changing slowly but the direction of the

momentum changing rapidly, B =dxfF LA so Shapiro
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where p is the orbit radius and we used ¢ = wp.
The energy loss per revolution 0 E is the integral of this
over an orbit, 0t = 27 /w = 2mp/cf3, or
dm 5 . 1
SF = 2T 23344 L
34 B e 2
where the expression in braces is given rather than a
simple 1/p in case you design your accelerator to have
magnets not_completely covering the circumference!.
!See footnote lecture 15 p. 2, slide 4.

Angular Distribution Physics 5od.
We derived he complete expression for F*? in covariant Blectrivity
form Magnetism

Shapiro
R — )

Uy(zP —rP(T))
d [(z—r(r)*UP(r) - (x - 7"(T))ﬁU"(T)}
dr Up(at —ri(1))

70

but it is often useful to have the expression more
explicitly and in three dimensional language. Using R as
the 3-vector from r%(7y) to x®, with magnitude R and
direction 71, we have R := 2® — r®(79) = (R, Rn),

=
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where we used 4 = v333, and we understand that 3, 3
and «y are to be evaluated at the retarded time 7p.
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The ratio of power lost to power input, dF/dt
P 22 1dE 2 r. dE
= —_ — = —_—
dE/dt — 3m2c3vdx  3mc?dx’
where 7. = €2/mc? is the lass al rad us o he ele ron,
2.82 fm. As we are unlikely to increase the energy of an
electron by its rest energy in a distance of its tiny
classical radius, energy loss in a linac is negligible.
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For ultrarelativistic particles, 3 — 1, Shapiro
0F « E*/p,
with the proportionality constant 8.85 x 10~°m/GeV* for
electrons and 7.80 x 1071¥m/GeV* for protons.
For Lep, an electron beam of roughly 80 GeV and a
radius of about 4 km, the electrons lose nearly a GeV per
turn! This is why the ring is as big as it is.
For the LHC, which will have 7 TeV protons at the same
radius, I get a loss of only 4 KeV per turn, so energy loss
is not the crucial issue for proton synchrotrons, but
bending radius is.
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Uy(zP — rP(19)) = Rye(1 — - 3), but Ma::iism
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For the electric field, E = F°¢; we have Magnetism
Shapiro
~ q
E =

R33A3(1—1 - [}‘)3
[(RﬁW4CﬂB ~ R(ev2f + cv“ﬁﬁﬁ)) “Rey(1 =i+ )

—(yeRii — Rycp3)
(702 +R {07465 — - ECWZ —n- 5074/35})]

Some algebra spelled out in the lecture notes gives

o I R G )
1-4 ’

E= N _
R B Re (1= a )
Power Flux physics 504,
Electricity
and
Thus we can derive the expression for the power radiated Magnetism
towards the observer, the flux being given by the Shapiro
Poynting vector
= cC
heS=-—F%
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At large distances this is
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For ultrarelativistic § & 1 particle, near forward direction,
. _\ —6
n - =~ 1 flux received o (1771-5)

N =5

But the power radiated is only oc (1 — - ﬂ)

Why?
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The energy per unit area we receive is Magnetism
d R( /) Shapiro
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So the expression which determines the energy
distribution is

i (o [6-7) )
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so B = x E. as it should be for a radiation-zone field.
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The power/unit area 7 - S ‘ received during [t,t + At] is
determined by retarded times [t t. + At.] corresponding
to emission 7y’s. Light received at t + At had to travel a
distance 7 - UAt, less than the light received at ¢, so
At = (1 —n-p)At..
Total energy emitted = total energy received, so
power emitted is (1 — 7 - 3) times the power received.
Natural to express things in terms of the emission time,
te, with t = t. + R(t.)/c
Linear acceleration Sping 2016
Let us consider two important special cases. The first has Ele?:éc"ty
the acceleration in the same direction as the motion, Magnetism
Shapiro

B || 3. Then the numerator is (7 x (A x §)2 = sin? 092 /c2,
and

ar q*0? sin% 0

dA ~ 4mc3R? (1 — Beosh)s’
For /3 close to 1 this is very strongly peeked in the
forward direction. The maximum intensity is when

d [ 1-2? . X 56(1 — 2?)
dx ((1 - ﬁI)E)) z=cos 6 o (1 - ﬁI)S - (1 - ﬁz)ﬁ
v V1+156% -1

r = cosOmax =
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With B=+/1-72—=1-1/(29%), 2 —1— 8% and
Y
Hmax — 1/2’7.



For such small angles, with # << 1 but without taking v6
small, the intensity is

dP _ 8¢** (v9)*
dA ~ w2 (1+~202)5

As an example, consider the linear accelerator at SLAC,
which accelerates electrons to 50 GeV over a distance of 3
km. At the end, v = 50GeV/0.511MeV ~ 10°, and, as
the travel has been vitually at the speed of light,

At = 107" s. Assuming the energy gain per meter is

d .
constant, mech—;y =m.c?y?B8 = mec2'yf/At, so the final

value of 3 is 1/’yj%At =107%/s. The angle of maximum
intensity is @max = 1/200,000 rad = 4.1 seconds of arc,
and the power per sterradian from this single electron at
that angle is

911 o2 '12
55—‘; B8 16 %102 W,
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just from one electron. Why so much?

Circular Accelerators
Another important special case is a circular storage ring,
where the acceleration is perpendicular to the velocity.

Taking 3 in the z direction and B in the x, and using the
usual spherical angles for 7w = (sin 6 cos ¢, sin 0 sin ¢, cos 6),
we may evaluate the numerator of (?7) as

(7 (- B) x 81) = (- B~ B) - - (- )P
= (0 )%~ B — 21 - Beost)(a— B) - B(a- B)
+(1 7[30050)2(3)2
= (7~ B)2(1—28cosf + 52— 2(1 — Beosh))
+(1— Beos)2(B)*
= [(sinfcos p)*(—y72) + (1 — Beos)? (5)2
apr i (v)? B sin? 0 cos? ¢
dQ ~ 4me3 (1 — Beosh)? (1 —Bcosh)?]”
Again this is strongly peaked in the forward direction.

SO

In particular, at the LHC, with 7 TeV protons travelling
at roughly ¢ around a 4.3 km radius circle have
B=wxpB=11x 101/ s, 10° times bigger than the
electrons at SLAC, even though their « is a factor of 13
smaller than the « of the electrons.

Note that for a given size ring, with ultrarelativistic
particles travelling at essentially ¢, the angular velocity
and therefore ¥ is fixed, so the power radiated is
proportional to v* or, for a fixed kind of particle, to E*.
This becomes a serious problem at large energies,
especially for electrons (as the power radiated is
independent of mass for fixed 7).
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Total Linac Power

Note this is not the power, it is the power/sterradian.
The total power is
dP  16¢%0? 0)?
27TR2/9(1(-)—: 7L 78/9(19 (6)
0 C Jo
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If we take § << 1, but keeping 6 to all orders, so
1— Bcosf ~ (14 7%0%)/272, we have
dP _2¢* A5(%)? 47262 cos® ¢
Q" 73 (144262)3 (1 +~20)2
The total power radiated in all directions is, from Liénard,
26 -5 4
= 5?3(“) 7
as (B)2 = (0 x B)? = (B)2(1 - 52) = v2(B)
But do not be mislead into thinking this is weaker than in
the case with /3 I 3, where we had ~0 instead of 7%,

because it is very hard to accelerate in the direction of f.
A 4-force F in the direction of 3 produces

d : : : . F
SomeBy =F =mcB(y+ 329%) = mepy* = = ——,
T mey

while a force in the transverse direction has mc'yﬁ. =F, or

B = F/mey. So the ()2 is likely to be v* bigger in the
transverse case.

Frequency of radiation

Consider a particle in ultrarelativistic circular motion,
with radius p. As its radiation is essentially confined to a
direction 06 = 1/7, the arc of the circle during which it
irradiates a given distant observer is of length d = p/~,
which it does in a time 6t = p/yv. This pulse of light has
its leading edge travelling towards the observer a distance
D = cp/~v during this time, while the trailing edge of the
pulse is emitted at d, so the pulse has a length
D—d=(p/7)(3~' —1) ~ p/27>. Thus the duration of
the received pulse is p/2cy® which means it contains
frequencies up to we ~ (¢/p)y®. Thus synchrotrons are a
good source of X-rays.
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