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Lecture 20 April 12, 2010

Cherenkov Radiation

First, let’s find the energy loss of a heavy fast charged
particle differently.
Consider a cylinder of radius
b around the track of the pro-
jectile. What is flux of energy
out of cylinder? The Poynting
vector is the flux of escaping
energy ~S = c ~E × ~B/4π.

x

y S
b

We calculated ~E(0, b, 0) earlier, and found Ez = 0, so the
outward energy flux S2 = −cE1B3/4π. Integrating the
energy flux leaving the cylinder gives the rate of energy
loss by the projectile:

∂E

∂t
=

c

4π
2πb

∫ ∞
−∞

dxE1(x, b, 0, t)B3(x, b, 0, t).
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Integrating over x is like integrating over t, so
∂E

∂x
= (1/v)

∂E

∂t
=

c

4π
2πb

∫ ∞
−∞

dtE1(0, b, 0, t)B3(0, b, 0, t)

= cbRe
∫ ∞

0
dωB∗3(ω)E1(ω)

where the fields are evaluated at (0, b, 0). From last time
we have

E1(ω) = −i
√

2
π

zeω

v2

(
1

ε(ω)
− β2

)
K0(λb).

We also saw the source for ~A is ~J , so it has only an x
component, and

B3(~k, ω) = −ik2A1 = −iε(ω)k2(v/c)Φ(~k, ω)
= ε(ω)(v/c)E2(~k, ω),

so using the result for E2 from last time,

B3(~x = (0, b, 0), ω) =

√
2
π

zeλ

c
K1(λb).
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Now we have(
dE

dx

)
= bcRe

∫ ∞
0

dω E1(ω)B∗3(ω)

=
2
π

z2e2

v2
Re
∫ ∞

0
dω (iωλ∗b)K1(λ∗b)K0(λb)(

1
ε(ω)

− β2

)
.

This result is due to Fermi.

Cherenkov Radiation

We can use the same calculation to find the flux of energy
macroscopically far from the projectile, at a distance a
with λa� 1. We can use the asymptotic forms
Kν(z) =

√
π/2z e−z of the modified Bessel functions, and

∂E

∂x
==

2
π

z2e2

v2
Re
∫ ∞

0
dω

iωλ∗a√
λλ∗

π

2a

(
1

ε(ω)
− β2

)
e−2Reλa.
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Cherenkov Radiation
Recall

λ2 =
ω2

v2

(
1− β2ε(ω)

)
.

While ε is generally mostly real, it does have a positive
imaginary part. For low veloc-
ity, or for high ω where ε →
1, λ2 is basically positive and
we are meant to take λ pos-
itive, except for a small neg-
ative imaginary part. So the

λ
λ

Re ε

v c

>1

2

0
0

energy drops exponentially with distance a. But speed up
until β2Re ε(ω) > 1, then λ becomes imaginary in the
lower half plane.

√
λ∗/λ→ i, and for |λa| � 1,(

dE

dx

)
=
z2e2

c2
Re
∫
β2ε(ω)>1

dω ω

(
1− 1

β2ε(ω)

)
.

Energy not falling off, must be in radiation zone, wave
moving in ~E × ~B direction.
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The Cherenkov shock wave
We calculated ~A ‖ ~v, so ~B ⊥ ~v, in z direction at (0, b, 0).
So direction of wave ⊥ ~E, or tan θC = −E1/E2. We found

E1 = i
zeω

c2

[
1− 1

β2ε(ω)

]
e−λb√
λb

and E2 =
ze

vε(ω)

√
λ

b
e−λb so

tan θC = −E1

E2

= −ivωε(ω)
c2λ

[
1− 1

β2ε(ω)

]
=

√
β2ε(ω)− 1,

θ
C

cos     = 
ct/n

vt
=

1

βn

c
t/
n

θ

vt

C

where I used λ = −i|λ| in the Cherenkov region. Then

cos θC =
1√

1 + tan2 θC
=

1
β
√
ε(ω)

=
1

βn(ω)
.
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We needed elaborate calculation to find intensity, but
every freshman can find θC . Consider wavefront from
successive circles of emitted light, spreading with speed
c/n = c/

√
ε in the medium. We see right away that

cos θC = c/nv = 1/βn(ω).

Note the polarization is 100% polarized, as ~B is out of the
plane.
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Hard Scattering

Energy loss from scattering of electrons
Beam direction changed by scattering off heavy particles
(nuclei)
Rutherford scattering, dominated by small angles, so

dσ

dΩ
≈
(

2zZe2

pv

)2 1
θ4

with charge of nucleus Ze, p and v of projectile, and θ its
scattering angle (in the lab).
Limits of applicability at small and large angles.

Small angles — note σ = 2π
∫

0

sin θ dθ
θ4

→∞, not right.

We calculated charge of nucleus, ignored screening by
electrons in atom — need cutoff for large b.
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Fix for small angles
Phenomenological fix for small angles. Take

dσ

dΩ
=
(

2zZe2

pv

)2 1
(θ2 + θ2

min)2
.

θmin not really minimum scattering angle — still have
cross section at θ = 0. Several choices, all given by total
cross section is roughly πa2, where a is the radius of
electron cloud.

σ = 2π
(

2zZe2

pv

)2 ∫ π

0

sin θ
(θ2 + θ2

min)2
dθ

≈ 2π
(

2zZe2

pv

)2 ∫ ∞
0

θ dθ

(θ2 + θ2
min)2

= π

(
2zZe2

pv

)2∫ ∞
0

du

(u+ θ2
min)2

=
(

2zZe2

pv

)2
π

θ2
min

.
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RMS Scattering Angle
Large angles are not bigger than π. Also, if projectile
penetrates nucleus, scattering softens. So set dσ/dΩ = 0
for θ > θmax.

Projectile suffers many small angle scatterings. Mean
change in direction is zero, but average square is

〈θ2〉 =
∫
θ2 sin θ(dσ/dΩ) dθ∫

sin θ(dσ/dΩ)dθ
≈
∫ θmax
0 θ3dθ/(θ2 + θ2

min)2∫ θmax
0 θdθ/(θ2 + θ2

min)2

=

∫ θ2max
0 duu/(u+ θ2

min)2∫ θ2max
0 du/(u+ θ2

min)2

=
ln(u+ θ2

min)
∣∣θ2max
0

+ θ2
min/(θ

2
max + θ2

min)− 1]

1/θ2
min − 1/(θ2max + θ2

min)

≈ 2θ2
min ln

θmax
θmin

.
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The number of scatterings in traversing a thickness t is
Nσt, and the mean square of the independent scatterings
is the sum of the individual mean squares, so if Θ is the
total change in angle (in thickness t),

〈Θ2〉 = Nσt〈θ2〉 = 2πN
(

2zZe2

pv

)2

ln
(
θmax
θmin

)
t.

This fuzziness in the direction of the track will limit the
accuracy with which one can determine the initial
direction of a charged particle emerging from a collision in
a detector, or determine the momentum of a charged
particle from its track bending in a magnetic field.

We will skip the rest of Chapter 13.
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Radiation by Moving Charges
A charge undergoing a specified motion gives EM
radiation. Assuming no incoming field, electromagnetic
fields given by the retarded Green’s function with the
point particle source. Lect. 17

Dr(zµ) =
Θ(z0)
4πR

δ(z0 −R), (1)

where R = |~z|, and the source of a point particle is

Jµ(xν) = qc

∫
dτ δ4(xν − rν(τ))Uµ(τ), (2)

rµ(τ) is world-line (position of charges particle at its
proper time τ), Uµ(τ) is its 4-velocity.
Note Θ(z0)δ(zµzµ) = Θ(z0)δ(z2

0 −R2) =
Θ(z0)δ[(z0 −R)(z0 +R)] = 1

2Rδ(z0 −R), so

Dr(zµ) =
Θ(z0)

2π
δ(zµzµ), (3)
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The radiation field is thus

Aµ(xν) =
4π
c

∫
d4x′Dr(x− x′)Jµ(x′)

= 2q
∫
d4x′dτΘ(x0 − x′ 0)δ((x− x′)2)δ4(xν − rν(τ))Uµ(τ)

= 2q
∫
dτΘ(x0 − r0(τ))δ((x− r(τ))2)Uµ(τ). (4)

Use δ function to do
∫
dτ , using

δ(f(τ)) =
∑
τj

1
|df/dτ |τj

δ(τ − τj),

(where τj are the set of points for which f(τ) vanishes).
Here that means rµ(τ) lies on the light-cone of xµ, and
the Θ restricts us to the backward light cone. So have
only one point, in the past, when the particle crossed the
light cone.
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As d(x− r(τ))2/dτ = −2(xρ − rρ(τ))Uρ(τ), we find

Aµ(xν) = q
Uµ(τ)

(xρ − rρ(τ))Uρ

∣∣∣∣
τ0

,

where τ0 is the point of crossing the light cone.
This is the Liénard-Wiechert potential.
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F µν

To get ~E and ~B, or Fµν , differentiate:

∂αAβ = 2q
∫
dτ

[(
∂αΘ(x0 − r0(τ))

)
δ((x− r(τ))2)Uµ(τ)

+Θ(x0 − r0(τ))∂αδ((x− r(τ))2)Uµ(τ)
]
.

In the first term, ∂αΘ(x0 − r0(τ)) = δα0 δ(x
0 − r0(τ)),

contributes only if xµ and rµ(τ) are at the same time, but
the δ function requires rµ(τ) is on the light-cone of xµ, so
it is zero unless xµ is on the path of the particle, which we
will ignore. What remains contains ∂αδ(f(xµ, τ)), where
f = (xµ − rµ(τ))2.
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As the delta function only depends on f , the chain rule
says

∂αδ(f(xµ, τ)) =
(
d

df
δ(f)

)
∂αf

= 2(xα − rα(τ))
(
df

dτ

)−1 d

dτ
δ(f)

= − (x− r(τ))α

(x− r(τ))ρUρ
d

dτ
δ(f).

Then, plugging in and integrating by parts,

∂αAβ = −2q
∫
dτΘ(x0 − r0(τ))Uµ(τ)

(x− r(τ))α

(x− r(τ))ρuρ

d

dτ
δ((xµ − rµ(τ))2)

= 2q
∫
dτθ(x0 − r0(τ))δ((xµ − rµ(τ))2)

d

dτ

(
uµ(τ)(x− r(τ))α

(x− r(τ))ρuρ

)
,
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We have again ignored the dΘ/dτ term and we have
discarded surface terms. The

∫
dτδ(xµ − rµ(τ) gives a

Uβ(xβ − rβ) in the denominator, so

Fαβ =
q

Uρ(xρ − rρ(τ))
(5)

d

dτ

[
(x− r(τ))αUβ(τ)− (x− r(τ))βUα(τ)

Uµ(xµ − rµ(τ))

]∣∣∣∣
τ0

.

Discussing this expression

The τ derivative either acts on a Uα, giving an
acceleration, or on an rα. The expression in [ ] is
unsuppressed far from the path, so overall F could fall
like 1/r, but when the derivative acts on an rα, it either
kills a power in the numerator or adds one in the
denominator, so these terms fall off more rapidly.
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Uniformly Moving Charge
Suppose ~v is constant, so is Uα, and the derivative acts on
one xσ − rσ(τ) giving −Uσ. The terms from
differentiating the numerator cancel, so we get

Fαβ = qc2
(x− r(τ))αUβ(τ)− (x− r(τ))βUα(τ)

(Uρ(xρ − rρ(τ)))3
.

Take ~v along x axis, with
rx = vt, and let’s observe from
(0, b, 0), so Uα = (γc, γv, 0, 0),
rα(τ) = Uατ , xµ = (ct, 0, b, 0).
The particle left the light-
cone at time t0 for which
(xµ − rµ(t0))2 = 0.
xµ − rµ(t0) = (c(t −
t0),−vt0, b, 0), so
c2(t− t0)2 − v2t20 − b2 = 0.
t0 = γ2(t−

√
t2β2 + b2/c2γ2).

R

r(t)r(t  )

θ

0
0

b

v

n

v(t )t
0

v  t

x

y
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Its Electric Field
The diagram shows where the
particle was at t0, when it exit-
ted our lightcone, and where it
is now at time t (which is < 0).
In F ’s denominator,

Uα(xα − rα(t0))
= γ(c2(t− t0) + v2t0)
= c2γ(t− γ−2t0)

= c2γ
√
t2β2 + b2/c2γ2 = c

√
b2 + v2γ2t2.

R

r(t)r(t  )

θ

0
0

b

v

n

v(t )t
0

v  t

x

y

Let us evaluate the y component of the electric field:

E2 = F02 = qc2
(x− r)2U0

(Uα(x− r)α)3
=

qbγ

(b2 + v2γ2t2)3/2
.

For nonrelativistic speeds, b2 + v2γ2t2 → R2, so
E2 → q b

R3 = q
(

~x−~r
|~x−~r|3

∣∣∣
y

as Coulomb told us. But

relativistically, the field is squeezed in the direction of the
motion.
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Power Radiated
We just considered a non-accelerating charge, and we
could have found these results by Lorentz transforming
the Coulomb field of a particle at rest.
Now consider an accelerating particle and the power it
radiates. The Poynting vector gives the flux

~S =
c

4π
~E × ~B → c

4π
~E 2n̂.

General power distribution requires evaluating from (5),
but instantaneous power is invariant as energy and time
transform the same way, so let’s calculate it in the

particle’s instantaneous rest frame.
dUα

dτ
= (0, ~̇v),

rµ = (ct−R,~0), xµ−rµ = (R, ~R) = R(1, n̂), Uα(x−r)α = Rc.

In calculating Ei = F0i from (5), the derivative of the
numerator
d

dτ

[
(x− r(τ))0U i(τ)− (x− r(τ))iU0(τ)

]∣∣∣∣
τ0

= R (−~̇v)−~r·0
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while the derivative of the denominator is ~R · ~̇v. Thus

~E =
∑
i

F0iêi =
q

Rc

[
R(−~̇v)
cR

− −c
~R (−~̇v) · ~R
c2R2

]
= − q

c2R

[
~̇v+ n̂ n̂ · ~̇v

]
=

q

c2R
n̂× (n̂× ~̇v).

Then the power per sterradian is

dP

dΩ
=

q2

4πc3
|n̂× ~̇v|2 =

q2

4πc3
|~̇v |2 sin2(ψ),

where ψ is the angle between the acceleration and the
vector n̂ pointing to the observer. The integral gives

P =
2q2

3c3
|~̇v |2.

This is the power radiated in the momentary rest frame.
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Power in any frame
Jackson argues that we can get the relativistic equation be
noting that the power needs to be an invariant expression
built from Uα (or pα) and the first derivative dpα/dτ .
The formula in the rest frame can be expressed as

P =
2
3

q2

m2c3
d~p

dt
·d~p
dt

= −2
3

q2

m2c3
dpα

dτ

dpα
dτ

in the rest frame,

but the last expression is invariant. In any other frame, it
gives

P =
2
3

q2

m2c3

[(
d~p

dτ

)2

− 1
c2

(
dE

dτ

)2
]
.

As E = mc2γ, ~p = mcγ~β, and d/dτ = γd/dt, noting from
γ−2 = 1− β2 that −2γ−3dγ = −2βdβ, so dγ = γ3βdβ, the
term in brackets is

m2c2γ2

[(
γ3ββ̇~β + γ ~̇β

)2

− (γ3ββ̇)2
]

,



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Cherenkov
Radiation

Energy loss

Cherenkov
Radiation

Hard
Scattering

Radiation by
Moving
Charges

Power
Radiated

Then

P =
2q2

3c
γ2

[(
γ3ββ̇~β + γ ~̇β

)2

− (γ3ββ̇)2
]

=
2q2

3c
γ2
[
γ6β4(β̇)2 + 2γ4ββ̇~β · ~̇β+ γ2(~̇β)2 − γ6β2β̇2

]
=

2q2

3c

[
γ6β̇2

(
γ2β4 − γ2β2 + 2β2)

)
+ γ4(~̇β)2

]
because ~β · ~̇β= 1

2d
~β 2/dt = 1

2dβ
2/dt = ββ̇. But

γ2(β4 − β2) = −β2, so

P =
2
3
q2

c
γ6
(
γ−2(~̇β)2 − β2β̇2

)
.

The parentheses may be rewritten
(~̇β)2 − β2

(
(~̇β)2 − β̇2

)
= (~̇β)2 − (~β × ~̇β)2 because

(~β × ~̇β)2 = (~β)2(~̇β)− (~β · ~̇β)2 and the last term is −β2β̇2

as explained above. So all in all,

P =
2
3
q2

c
γ6
[
(~̇β)2 − (~β × ~̇β)2

]
.
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A reading assignment

The rest of section 14.2 is certainly important but
straightforward, so I will not rewrite it. You should
read it.
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