Lecture 20 April 12, 2010

Cherenkov Radiation

First, let’s find the energy loss of a heavy fast charged
particle differently.

Consider a cylinder of radius

b around the track of the pro- T

jectile. What is flux of energy yT S b
out of cylinder? The Poynting [ \ - [ \
vector is the flux of escaping U U X

energy S = cE x E/47T.

We calculated E (0,b,0) earlier, and found E, = 0, so the
outward energy flux Sy = —cFEy Bs/47. Integrating the
energy flux leaving the cylinder gives the rate of energy
loss by the projectile:

OF

5 47T27rb/ dzE1(x,b,0,t)Bs(x,b,0,t).
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Integrating over x is like integrating over ¢, so

OE 0
= (1/) - 4;27713/ dt £1(0,b,0,t)B3(0,b,0, )

= che/ dwB3(w)Eq (w)
0

where the fields are evaluated at (0,b,0). From last time
we have

Br(w) = Z\/?;;" <6(1)) - 52) Ko(Ab).

We also saw the source for A is J_; so it has only an x
component, and

Bs(k,w) = —ikeA; = —ie(w)ka(v/c)®(k,w)
= €(w)(v/c)Ba(k,w),
so using the result for Fy from last time,

Ba(& = (0,b,0),w) = 1/ > Ze)\Kl(/\b)

s
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NOW we haVe Physics 504,
Spring 2010

dE > ectrici
() = bcRe / dw E (w)B3(w) e
dx 0

Magnetism

2 2%e? o - x
— ;?Re dw (iwA*b) K1 (A*b) Ko(A\b)
0

1 2 Energy loss
<e<w> - > |

This result is due to Fermi.

Shapiro

Cherenkov Radiation

We can use the same calculation to find the flux of energy
macroscopically far from the projectile, at a distance a
with Aa > 1. We can use the asymptotic forms

K, (z) = \/7/2z e % of the modified Bessel functions, and

% == 22222{{6 /OO dw iw\a ™ < L 52> e~2Rela
ox T v 0 VI 2a \ e(w)




Cherenkov Radiation hysics 501
Recall Ele(;t;:'(iicity

2 Magnetism
2= % (1 - BPe(w)). -

Shapiro

While e is generally mostly real, it does have a positive
imaginary part. For low veloc-
ity, or for high w where ¢ — Cherenkon

2 . . .. A Radiation
1, A¢ is basically positive and 2. x| A
we are meant to take X\ pos- T =0 . o 4/
itive, except for a small neg- e

Re € >1

ative imaginary part. So the

energy drops exponentially with distance a. But speed up
until ?Re€(w) > 1, then A becomes imaginary in the
lower half plane. \/\*/\ — i, and for [Aa| > 1,

dFE 22e2 1
) = d 1—— ).
<dw> 2 e /ﬁzew ““"( 52e<w>)

Energy not falling off, must be in radiation zone, wave
moving in F x B direction.




The Cherenkov shock wave By edo

We calculated A | 7, so Bl U, in z direction at (0,b,0). Hlesac
So direction of wave L F, or tan0c = —F;/FE,. We found R
Shapiro
B e [ 1 } e~ Ab
1 = 11— R —
c? B2e(w) ] Vb
g‘hgr"egkov
and Fy = Z(z\/XeAb SO By
2T ve(w) V b 0.
Ey
tanfo = ——
anvgc E2
_ vwe(w)
N 2\
= 626(00) - 17
where T used A = —i|A| in the Cherenkov region. Then
1 1 1
cosfo =

V1 + tan2 6¢ B By/e(w) - pn(w)
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We needed elaborate calculation to find intensity, but
every freshman can find 6. Consider wavefront from

successive circles of emitted light, spreading with speed Cherentcov
¢/n = ¢/+/€ in the medium. We see right away that

cos o = c/nv = 1/pn(w).

Note the polarization is 100% polarized, as B is out of the
plane.
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Beam direction changed by scattering off heavy particles Shapiro
(nuclei)
Rutherford scattering, dominated by small angles, so

do 2:7e2\* 1

—_— _— —_— Hard

dQ pv 94 Scattering

with charge of nucleus Ze, p and v of projectile, and 0 its
scattering angle (in the lab).
Limits of applicability at small and large angles.

sin 0 df

94
We calculated charge of nucleus, ignored screening by
electrons in atom — need cutoff for large b.

Small angles — note o = 27

— 00, not right.



Fix for small angles
Phenomenological fix for small angles. Take

dfa_ 2:7¢2\° 1
dQ  \ pv (02 +6%. )2

min

Oinin not really minimum scattering angle — still have
cross section at § = 0. Several choices, all given by total
cross section is roughly wa?, where a is the radius of
electron cloud.

2272 2 sin @
— 9 e df
7 ”( pv ) /0 (6% + 62 )2

min

. 2272\ 2 /OO 0 do
pv o (02402,

min

Q

<2ZZ€2>2/OO du (2;2262)2
= T =
pv o (u+62; ) o) 62
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RMS Scattering Angle Physics 504,

Spring 2010

Large angles are not bigger than w. Also, if projectile S
penetrates nucleus, scattering softens. So set do/d2 =0 Blecnetisn
fOI' 9 > emax. Shapiro

Projectile suffers many small angle scatterings. Mean
change in direction is zero, but average square is

0 — [6%sin0(do/dQ)do  [T02X 630/ (02 + 62, )2 Eiterine

[sin0(do /dQ)do Jomax g ) (92 + 62 . 2
fe%nax duw/(u+ 6% . )

min

o 4 62,

min
In(u+ 62, )[R0 4 02 /(0% 0 + 02 ) — 1]

_ min ‘0 min min

1/92 - 1/(91211&)( +0

min

mln)

~ 292 In Hmax )

min

Hmin



The number of scatterings in traversing a thickness ¢ is
Not, and the mean square of the independent scatterings
is the sum of the individual mean squares, so if © is the
total change in angle (in thickness t),

(©2%) = Not(6?) = 27N <22262>2 In <9ma’<> '

pv min

This fuzziness in the direction of the track will limit the
accuracy with which one can determine the initial

direction of a charged particle emerging from a collision in

a detector, or determine the momentum of a charged
particle from its track bending in a magnetic field.

We will skip the rest of Chapter 13.
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Radiation by Moving Charges

A charge undergoing a specified motion gives EM
radiation. Assuming no incoming field, electromagnetic
fields given by the retarded Green’s function with the
point particle source. Lect. 17

0(zY)
47 R

where R = |Z], and the source of a point particle is

D, (") = 5(z° — R), (1)

Th (@) = ge / dr 54 (z¥ — 1 (7)) UA(7), )

r#(7) is world-line (position of charges particle at its
proper time 1), U¥(7) is its 4-velocity.

Note ©(29)8(z#z,) = ©(2°)5(28 — R?) =

©(2%)6[(z0 — R)(20 + R)] = 5%6(20 — R), so

ZO
D) = A5z, 3
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. . . Physics 504,
The radiation field is thus Spring 2010

Electricity
v 47T 4 7 / / and.
A/'L(ZL' ) = d x Dr(-r — X )J'u(l‘ ) Magnetism
¢ Shapiro

= 2q/d4x’d7'®(x0 —2'06((x — /)26 (a¥ — r¥ (7)) UH(7)
= 2q/d79($0 —r0(m)d((x = r(1))*)U (7). (4)

Use ¢ function to do [ dr, using

) =3 gz =)

Radiation by
Moving
Charges

(where 7; are the set of points for which f(7) vanishes).
Here that means r#(7) lies on the light-cone of x*, and
the © restricts us to the backward light cone. So have
only one point, in the past, when the particle crossed the
light cone.



Plrg

where 7¢ is the point of crossing the light cone.
This is the Liénard-Wiechert potential.
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FHv

To get E and B', or F'*  differentiate:
AP = 2q/d7[(30‘®($0 —r%(7))) 6((z — r(7))*)U*(7)
+0(z° — r2(1)0% ((x — r(7))?)UH(1)|.

In the first term, 9°0(z° — 70(7)) = §36(2° — r9(7)),
contributes only if z# and r#(7) are at the same time, but
the § function requires r#(7) is on the light-cone of z*, so
it is zero unless x* is on the path of the particle, which we
will ignore. What remains contains 0%d(f(z*, 7)), where

F = (= ()
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As the delta function only depends on f, the chain rule
says

ostiatn) = (g50) o

-1
= 2= (L) o
(x—r(r)* d

T e ura
Then, plugging in and integrating by parts,

948 = —Qq/dT@(xo—ro(T))U“(T)(x_r(T))a

(o= (M)
d H W
—8((a = (7))

= 2q/dﬂ9(330 — 7‘0(7'))5(@“ - T”(T))Q)
d (UH(T)(J,‘ — T(T))a>

dr \ (z—r(r)),ur
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. . Physics 504,
We have again ignored the dO/dr term and we have Ea

discarded surface terms. The [drd(z# — r#(T) gives a Hlesac
Us(z? — rP) in the denominator, so Magnetism

Shapiro
o CRN I — (5)

Up(a? — 1P (7))
d [(z—r(n)*UP(r) — (z - 7“(T))ﬂUO‘(T)]
dr Up(xh —ri(T))

70

Radiation by
Moving
Charges

Discussing this expression

The 7 derivative either acts on a U®, giving an
acceleration, or on an r®. The expression in | | is
unsuppressed far from the path, so overall F' could fall
like 1/r, but when the derivative acts on an r®, it either
kills a power in the numerator or adds one in the
denominator, so these terms fall off more rapidly.



Uniformly Moving Charge

Suppose ¥ is constant, so is U<, and the derivative acts on
one z% — r?(7) giving —U?. The terms from
differentiating the numerator cancel, so we get

(z = r(r)*U(7) = (z = r(7))°U*(7)

af _ C2
e Uywr = o)

Take ¢ along x axis, with

r, = vt, and let’s observe from

(0,b,0), so U* = (ye,vv,0,0), Y
r*(r) =U%, z* = (ct,0,b,0).
The particle left the light-
cone at time tg for which
(xH —r#(to))* = 0.

= rt(ty) = (e(t — AR 0 x
to), —vto, b,0), SO |yt ty)~— lt| —~]
At —tg)? — 23 —b? = 0.

to =72 (t — 1262+ 07 /cPH).
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Its Electric Field

The diagram shows where the
particle was at tp, when it exit-
ted our lightcone, and where it
is now at time ¢ (which is < 0).
In F’s denominator,

Ua(z® — r%(t0))
V(A (t — to) + vto) riy) ¥ (1) 0 x
— 02’)/(t _ '772750) [v(t=to)l—v [t —]

= Ay\1262 + 02 /272 = c\/b2 + v2y212,
Let us evaluate the y component of the electric field:

R (e e R
For nonrelativistic speeds, b* + v27%t> — R?, so
By — q% =q (% y as Coulomb told us. But
relativistically, the field is squeezed in the direction of the
motion.
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Power Radiated S

. . . Electricit
We just considered a non-accelerating charge, and we “ana
. M ti
could have found these results by Lorentz transforming aenetism

the Coulomb field of a particle at rest. Siewie
Now consider an accelerating particle and the power it
radiates. The Poynting vector gives the flux

— C = — C =
S=—ExB— —E%.
I A
General power distribution requires evaluating from (5),

but instantaneous power is invariant as energy and time
transform the same way, so let’s calculate it in the

e Power
. Radiated
— (0, 6), adiate

particle’s instantaneous rest frame.
= (ct—R,0), a"—r* = (R, R) = R(1,7), Us(z—7)* = Re.
In calculating E; = Fpy; from (5), the derivative of the
numerator

% [(& = (1)U (7) = (z = r(1)'U*(1)]| = R(=D)~i"0

70



while the derivative of the denominator is R - 7. Thus

E = Y Fyuéi= Ri
i

- fé [mm.é}

= %ﬁx(ﬁxf}).

R(-7) —cR(-%) R

cR c2R2

Then the power per sterradian is

ar QQ N A q2 09 .
aQ 47rc3|n = 47TC3|U|2s1n2(¢),

where 9 is the angle between the acceleration and the
vector n pointing to the observer. The integral gives

2¢*

312
= L.

This is the power radiated in the momentary rest frame.
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Power in any frame B

Electricity

Jackson argues that we can get the relativistic equation be )
noting that the power needs to be an invariant expression Magnetism
built from U® (or p*) and the first derivative dp®/dr. Shapiro

The formula in the rest frame can be expressed as

2 ¢ dp dj 2_q*_dp” dpa in the rest frame
_ = wwr_ 2 1 2 Tla in T ram
3m2c3 dt dt 3m2c3 dr dr ’

but the last expression is invariant. In any other frame, it

p_2 @ |(@\'_ 1L (dEN®
- 3m2c3 | \dr 2\ dr
As E = mc?y, j = meyf3, and d/dr = ~vd/dt, noting from

v2 =1—p% that —27y73dy = —23dp3, so dy = v>(df3, the
term in brackets is

- 2 2 .
m2cty? [(73566 +7B) - (ﬂm)?]

gives

. Power
Radiated
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P = 3%72 [(f’ﬁﬁﬁ +7ﬁ) - (73%)2] and

2 b s = b Shapiro
= 23%72 [’Y%“(ﬂ)z + 294883 B+~2(B)? - 7662/6’2}
2 . :
= 2L (20— 28+ 25) + (7]
because /3 - 6: %dﬁz/dt = %dﬁQ/dt = 3. But
P~ ) = — 5, w0
2 2 .
P=2T00 (237 - 7).
The parentheses may be rewritten
(B2 =8 (2 = 52) = (B2~ (A x B becanse
(Bx B)2=(6)2p —(6- ﬂ) and the last term is — 3232

as explained above. So all in all,

= 20 [ - (3 7).

Power
Radiated
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The rest of section 14.2 is certainly important but
straightforward, so I will not rewrite it. You should
read it.

Power

Radiated
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