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Lecture 16 March 29, 2010

We know Maxwell’s equations and the Lorentz force.
Why more theory?
Newton =⇒ Lagrangian =⇒ Hamiltonian =⇒ Quantum
Mechanics
Elegance! — Beauty! — Gauge Fields =⇒ Non-Abelian
Gauge Theory =⇒ Standard Model

Anyway, let’s look for Lagrangians and actions.
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Lagrangian for a Particle

Motion is ~x(t). Action A =
∫

L(~x, ~̇x, t) dt.

Hamilton: actual path extremizes the action.
Doesn’t look Lorentz invariant, but all observers must
agree (after suitable Lorentz transformation). So A
should be a scalar.

Start with a free particle. What could action be?
Can’t depend on ~x, for translation invariance.
What property of path through space-time can we use?
How about proper length?

A = −mc2

∫
dτ = −mc

∫ √
dxµdxµ = −mc

∫ √
UαUα dτ

= −mc2

∫ √
1− ~u 2

c2
dt.
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So the Lagrangian is

L(~x, ~u, t) = − mc2
/

γ(~u) = −mc2

√
1− ~u 2

c2
.

Note L is not an invariant, but Ldt and γL are.

Canonical Momentum (in 3-D language)(
~P
)

i
=

∂L

∂ui
=

mui√
1− ~u 2

c2

= (~p )i,

as we previously explored. Euler-Lagrange:

d

dt

∂L

∂ui
− ∂L

∂xi
= 0,

gives pi = constant, as xi is an ignorable coordinate.
So this is correct for a free particle.
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L for particle in a field
What if charge q in an external field?
Can depend on xµ, but only through the fields’
dependence on it. Can involve Uα = dxα/dτ , but need it
in combination as a scalar. Could use Aα or Fαβ , but
UαUβFαβ ≡ 0, so only possibility linear in fields is

γLint = −q

c
UαAα, =⇒ Lint = −qΦ +

q

c
~u · ~A,

with usual electrostatic and vector potentials. Note first
term looks like -PE as expected (as L = T − V often).
So the full lagrangian for the particle is

L(~x, ~u, t) = −mc2

√
1− ~u 2

c2
+

q

c
~u · ~A(~x, t)− qΦ(~x, t),

the canonical momentum becomes

~P = ∂L/∂~u =
m~u√
1− ~u 2

c2

+
q

c
~A(~x, t) = ~p +

q

c
~A,

not just the ordinary momentum ~p = mγ~u.
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The equations of motion are now

d

dt

∂L

∂ui︸︷︷︸
Pi

− ∂L

∂xi
=

dpi

dt
+

q

c

d

dt
~Ai︸ ︷︷ ︸(

∂Ai

∂t
+ uj∂jAi

)−q

c
uj∂iAj + q∂iΦ

=
dpi

dt
+

q

c

∂ ~Ai

∂t
+ q∂iΦ +

q

c
(uj∂jAi−uj∂iAj)

= 0 =

(
d~p

dt
+

q

c

d ~A

dt
+ q~∇Φ− q

c
~u×

(
~∇× ~A

))
i

d~p

dt
= q ~E +

q

c
~u× ~B

so we see that this Lagrangian gives us the correct
Lorentz force equation.
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The Hamiltonian
What is the Hamiltonian? H = ~P · ~u− L, but reexpressed
in terms of ~P rather than ~u. As

~u = ~p/mγ(u) =
~p

m

√
1− u2/c2 =⇒ ~u =

c~p√
p2 + m2c2

,

and mγ(u) =
√

p2 + m2c2/c. Then we need to substitute

~p → ~P − q ~A/c. Thus

H =
~P ·
(

~P − q ~A/c
)

+ m2c2

mγ(u)
−

q
(

~P − q ~A/c
)
· ~A

cmγ(u)
+ qΦ

=

(
~P − q ~A/c

)2
+ m2c2

mγ(u)
+ qΦ

=
√

(c ~P − q ~A)2 + m2c4 + qΦ.

Note H is the total energy, the kinetic energy p0c + eΦ, so
this just verifies (p0)2 − ~p 2 = m2c2.



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

E & M
Lagrangian

Particle
Lagrangian

In a �eld

Adiabatic
Invariance of
Flux

Covariant
particle L

Lagrangian
for fields

Adiabatic Invariance of Flux
This L still doesn’t have dynamical E&M fields - we will
come to that later. First —

Recall from Classical Mechanics: Slowly varying
perturbation on an integrable system with cyclic
action-angle variables: action is adiabatic invariant.
Apply this to motion transverse to uniform static
magnetic field.

Action J =
∮

~P⊥ · d~r⊥ is an invariant.

Need to use canonical momentum ~P⊥ = ~p + q ~A/c, not just
~p = mγ~v. So

J =
∮

mγ~v⊥ · d~r⊥ +
q

c

∮
~A · d~r.

We have circular motion1 with ~v⊥ = −~ωB × ~r.
1Note J12.38 says d~v/dt = ~v × ~ωB = −~ωB × ~v, which explains the

unexpected minus sign.
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So the first term in J is∮
mγ~v⊥ · d~r⊥ = −

∫ 2π

0
mγωBa2dθ = −2πmγωBa2.

As mγ~ωB = q ~B/c, this is just −2qΦB/c, where ΦB is the
magnetic flux through the orbit.
The second term in J ,

q

c

∮
~A · d~r =

q

c

∫
S

~∇× ~A =
q

c

∫
S

~n · ~B =
q

c
ΦB,

so

−J = qΦB/c =
q

c
Bπa2 = π

c

q

p2
⊥
B

is an adiabatic invariant, as are Ba2 and p2
⊥
B . These are

conserved if ~B varies slowly compared to the gyroradius
of the particle’s motion.
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So p2
⊥/B may be constant.

In a purely magnetic field, speed and γ are constant, but
the transverse speed v⊥ ∝

√
B, while v2 = v2

⊥ + v2
‖ is

constant.

So if particle drifts into a region of stronger B, v2
⊥ may

grow to use up all of v2, and v‖ will vanish and reverse.
This is a magnetic mirror.

Field lines converge
where field gets strong,
so Lorentz force has
a component pushing
particle back into the
weaker field region.

B

v

F

This is called a magnetic mirror or magnetic bottle. Note
that those particles with negligible v⊥ will not get
confined.

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

E & M
Lagrangian

Particle
Lagrangian

In a �eld

Adiabatic
Invariance of
Flux

Covariant
particle L

Lagrangian
for fields

treating xµ as dynamical
The Lagrangian −mc2

√
1− ~u 2/c2 certainly doesn’t look

like a covariant formulation, and we treated it as a
functional to determine ~x(t), which is certainly not a
covariant way of saying things. On the other hand
−mc

√
dxµdxµ = −mc

√
ηµνdxµdxν is a very covariant

way of looking at the action, but what do we vary? All of
mµ? or only the spatial part?
Note that if we think of xµ(λ) as a parameterized path,
we may write the action

A = −mc

∫ √
ηµν

dxµ

dλ

dxν

dλ
dλ,

and think of varying the function xµ(λ) and look for an
extremum in the usual way. This gives

d

dλ


 ηµν

dxν

dλ√
ηµν

dxµ

dλ
dxν

dλ


 = 0,
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or
dxµ

dλ
= Cµ

√
ηµν

dxµ

dλ

dxν

dλ
.

Doesn’t determine dxµ

dλ ! Though it looks like four
equations, it is really only three, for contracting it with
itself gives

ηµν
dxµ

dλ

dxν

dλ
= C2ηµν

dxµ

dλ

dxν

dλ
,

which does nothing to determine dxν

dλ but only that
C2 = 1.
This should not be surprising. The path length doesn’t
depend on how it is parameterized, so any change
xµ(λ)→ xµ(σ(λ)) will not change A, as long as σ(λ) is
monotone.
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Inability to predict the future is a sign of gauge
invariance, though in this case it is not the gauge
invariance we are used to for E&M. Here it is not a
serious problem, because we can choose to use proper
time as our parameter, providing the additional equation

ηµν
dxµ

dτ

dxν

dτ
= c2,=⇒ dxµ

dτ
=

1
m

pµ = constant.
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Action for particles in fields

Aint =
−q

c

∫
UµAµ dτ =

−q

c

∫
dxµ

dτ
Aµ dτ =

−q

c

∫
Aτdxµ ?

The last expression is clearly covariant, the penultimate
one gives the “Lagrangian” for the parameterized path

L̃ = −mc

√
ηαβ

∂xα

∂λ

∂xβ

∂λ
− q

c
Aα

∂xα

∂λ

with action
∫

L̃dλ.

Pα = − ∂L̃

∂ ∂xα

∂λ

=
mc∂xα

∂λ√
ηµν

dxµ

dλ
dxν

dλ

+
q

c
Aα

−→
λ→τ

m
∂xα

∂τ
+

q

c
Aα,

Remember in Euler-Lagrange d/dλ is a stream derivative,
so

d

dτ
Aα = Uµ ∂Aα

∂xµ
.
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The Euler-Lagrange equations are

d

dτ
Pα = − ∂L̃

∂xα

m
d

dτ
Uα +

q

c

∂xµ

∂τ

∂Aα

∂xµ
= +

q

c

∂Aβ

∂xα

∂xβ

∂τ
,

or

m
d

dτ
Uα =

q

c
Uβ

(
∂Aβ

∂xα
− ∂Aα

∂xβ

)
=

q

c
FαβUβ .
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Canonical Momentum

Canonical Momentum

Pα = − ∂L̃

∂ ∂xα

∂λ

= mUα +
q

c
Aα,

where we have required our parameter λ to be c times the
proper time.
Note that the canonical momentum is constrained:(

Pα − q

c
Aα

)(
Pα − q

c
Aα
)

= m2UαUα = m2c2.

which we found before as P 0 = H/c.
Minimum substitution principle: To introduce
electromagnetism for a particle, take a free particle and
replace

~pα → ~Pα := ~pα − q ~A/c.
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Lagrangian for fields

Dynamics of fields requires a Lagrangian density, a
function of the fields2, say φi(~x, t). Euler-Lagrange
becomes

∂µ
∂L

∂(∂φi/∂xµ)
− ∂L

∂φi
= 0.

What are our fundamental fields? L(φi, ∂muφi, x
ν) will

give second order differential equations, not Maxwell in
F . But we know F = dA, so second order in Aµ is what
we want.
We have already seen particle action requires
−(q/c)Aµdxµ for a single charge. That is, each charge qi

at ~xi contributes to L −qiΦ(~xi) + qi

c ~ui · ~A(~xi).

2Never done dynamics of fields? Need to read up, e.g.
www.physics.rutgers.edu/∼shapiro/507/gettext.shtml and look
at chapter 8 (or get book9 2.pdf from the same location).
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For many charges,

Lint =
∑

i

(
−qiΦ(~xi)− 1

c
qi~ui · ~A(~xi, t)

)

→
∫

d3x

(
−ρ(~x)Φ(~x)− 1

c
~J(~x) · ~A(~x)

)
= −1

c

∫
d3xAα(~x)Jα(~x).

This will give us the Jµ on the right hand side of the Euler
equation from varying Aµ, but we need something to give
the left hand side of Maxwell’s equation, which should be
linear in F , so we need a quadratic piece in L, Lorentz
invariant and with a total of two derivatives on Aµ’s.
Let’s try

L = − 1
16π

FµνFµν − 1
c
JµAµ,

where it is understood that Fµν stands for ∂µAν − ∂νAµ

and is not an independent field.
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The only contribution to ∂L/∂Aµ, (taken with ∂νAµ

fixed) is the −Jµ/c from the interaction term. We have

∂Fµν

∂

(
∂Aρ

∂xσ

) = δσ
µδρ

ν − δσ
ν δρ

µ,

so
∂L

∂

(
∂Aρ

∂xσ

) = − 1
4π

Fρσ,

and the full Euler-Lagrange equation is

− 1
4π

∂σF σµ +
1
c
Jµ = 0,

or
∂σF σµ =

4π

c
Jµ.

Thus we have derived Maxwell’s equations (as dF = 0 is
automatic as F := dA).


