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E & M
Lagrangian

We know Maxwell’s equations and the Lorentz force.
Why more theory?

Newton = Lagrangian = Hamiltonian = Quantum
Mechanics

Elegance! — Beauty! — Gauge Fields = Non-Abelian
Gauge Theory = Standard Model

Anyway, let’s look for Lagrangians and actions.



Lagrangian for a Particle PR o
Electricity
and

MOtiOH iS f(t) ACtiOn A — /L(f’ i’; t) dt Magnetism

Hamilton: actual path extremizes the action. Shapiro

Doesn’t look Lorentz invariant, but all observers must
agree (after suitable Lorentz transformation). So A
should be a scalar.

Particle
Lagrangian

Start with a free particle. What could action be?
Can’t depend on &, for translation invariance.

What property of path through space-time can we use?
How about proper length?

A = —ch/dT: —mc/\/d:c“d:cu = —mc/\/UO‘Ua dr

=9
= mc2/mdt.
c
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L(f7 ﬁ? t) = - mc2/7(ﬁ) = _mCZ 1 - 072 Shapiro

Note L is not an invariant, but Ldt and vL are.

Particle
Lagrangian

Canonical Momentum (in 3-D language)

(F) = e

as we previously explored. Euler-Lagrange:

doL oL
dté?ul- 81‘1 -

gives p; = constant, as x; is an ignorable coordinate.
So this is correct for a free particle.



L for particle in a field
What if charge ¢ in an external field?
Can depend on z*, but only through the fields’
dependence on it. Can involve U = dz®/dr, but need it
in combination as a scalar. Could use A® or F*%, but
U UgF o = (), so only possibility linear in fields is

q q_. =z
YLint = _EUaAa7 = Lipg = —q® + EU A,

with usual electrostatic and vector potentials. Note first
term looks like -PE as expected (as L =T — V often).
So the full lagrangian for the particle is

—»2 .
L&, i,t) = —mc*\ 1 — 2 + L. A(@,1) - q®(3, 1),
c c
the canonical momentum becomes
. mi . .
P=0L/di=—— + 1Lz t)=p+ 14
c

_uz ¢
c2

not just the ordinary momentum p = myyu.
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The equations of motion are now Eleztr-lrécity
Magnetism
- _ - = . A 2 alA 8’L¢ Shapiro
dt du; Ox; at ¢ d o v Ta
~—~ ——
P 0A;
v v 0, A,
< at ’ ) In a field
dpi | qO4; q
= T ~ (405 Ai~u;0:A;)

o (dp qdA L

—0 = <dt + 225 4V - i x (VXA>>.

dﬁ — q . —

- _ E 9 B

i qb + c U X

so we see that this Lagrangian gives us the correct
Lorentz force equation.



The Hamiltonian
What is the Hamiltonian? H = P - i — L, but reexpressed
in terms of P rather than 4. As

—

L P . cp
u=p/my(u) = —y/1—-u?/c? = U= ,
m /02 + m2c2

and m~y(u) = /p? + m2c?/c. Then we need to substitute
57— P— qff/c. Thus
pP. (ﬁ—q%f/c)—i—m%Q q(ﬁ—q[f/c) A
my(u)  emy(v)
. N2
(P — qA/c) + m?2c?
mry(u)
= \/(cﬁ — qA)2 + m2ct + ¢®.

H + q®

Note H is the total energy, the kinetic energy p’c + e®, so

this just verifies (p°)? — p? = m2c2.
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Adiabatic Invariance of Flux

This L still doesn’t have dynamical E&M fields - we will
come to that later. First —

Recall from Classical Mechanics: Slowly varying
perturbation on an integrable system with cyclic
action-angle variables: action is adiabatic invariant.
Apply this to motion transverse to uniform static
magnetic field.

Action J = 7{ P, -dr) is an invariant.

Need to use canonical momentum P, = 5+ q/f/c, not just
P =m~yU. So

J:fmm.dﬁjtqj{ﬁ-dﬁ
C

We have circular motion' with ¥, = —&p x 7.

!Note J12.38 says di/dt = ¥ x &p = —&p x ¥, which explains the
unexpected minus sign.
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So the first term in J is

2m
j{m’y@_ Sdr) = — mywga’dd = —2rmywpa®.
0
As mydp = qg/c, this is just —2¢®p/c, where ®p is the
magnetic flux through the orbit.
The second term in J,

C CJs CJs C
[6]

S

2
is an adiabatic invariant, as are Ba® and %. These are

conserved if B varies slowly compared to the gyroradius
of the particle’s motion.
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So pi /B may be constant. Electricity
In a purely magnetic field, speed and v are constant, but Magnetism
the transverse speed v, o v/B, while v = v? + vﬁ is Shapiro
constant.

So if particle drifts into a region of stronger B, v? may
grow to use up all of v?, and v will vanish and reverse.

This is a magnetic mirror. Adiabatic
X . Invariance of
Field lines converge Flux

where field gets strong,

. B
so Lorentz force has /‘%‘M

a component pushing

g
particle back into the \—/

weaker field region.
This is called a magnetic mirror or magnetic bottle. Note

that those particles with negligible v will not get
confined.




treating z* as dynamical AR,

. — . Electricit
The Lagrangian —mc?\/1 — @2 /c? certainly doesn’t look “and
. . . . M ti
like a covariant formulation, and we treated it as a aenetism

functional to determine #(t), which is certainly not a Shapiro
covariant way of saying things. On the other hand

—mey/dxtdx, = —mey/nudrtdr? is a very covariant

way of looking at the action, but what do we vary? All of

mH*? or only the spatial part?

Note that if we think of z#(\) as a parameterized path,

we may write the action Covariant
particle L

TN dn
and think of varying the function z#(\) and look for an
extremum in the usual way. This gives

d v
i T dx)\ =0
d\ dzH dxv ’

T ~gx ~ax
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d)\ 77/141/ dA d)\ Shapiro
Doesn’t determine dm I Though it looks like four

equations, it is really only three, for contracting it with
itself gives

dzt dx¥ 9 dzt dx¥

nMV H H - nllV K K ’ Covariant
particle L

which does nothing to determme but only that
c?=1.

This should not be surprising. The path length doesn’t
depend on how it is parameterized, so any change

2 (X) — zH(o(N)) will not change A, as long as o(\) is
monotone.



Inability to predict the future is a sign of gauge
invariance, though in this case it is not the gauge
invariance we are used to for E&M. Here it is not a

serious problem, because we can choose to use proper
time as our parameter, providing the additional equation

Nuv

o e

o ot
dr

Lo
m

constant.
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d.f Magnetism
Amt—/U“Ad C/dTA dr = — /Ada:“

The last expression is clearly covariant, the penultlmate
one gives the “Lagrangian” for the parameterized path

~ Ox> 0xP q , Ox“
L=- 0B v A — —Aam

TEN TGN TaN T e o

Covariant

particle L

-~

Shapiro

with action ff/d)\.

oL me9a
Pa - T aoze 9 ngc
0%y dzt dav C
v ~ax “dx
0
T 1y
A—T or c
Remember in Euler-Lagrange d/d\ is a stream derivative
SO
d A, = u(‘)Aa.
oxH

dr



The Euler-Lagrange equations are

d
@t =
d dy q%@Aa
dT c Ot Oz
or
mgple=Y (axa 927
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oL q
P, = 7—mUa+*Aaa
863@ c
oA

where we have required our parameter A\ to be ¢ times the
proper time.
Note that the canonical momentum is constrained:

Covariant

article L
(Pa _ QAQ) (PO‘ _ gAa) — m2U U = m2c2. ’
c c

which we found before as P° = H/c.
Minimum substitution principle: To introduce
electromagnetism for a particle, take a free particle and

replace .
Pa — Po = Da qu/C.



Lagrangian for fields Cooae 3010

Electricity
and
Dynamics of fields requires a Lagrangian density, a Magnetism
function of the fields?, say ¢;(&,t). Euler-Lagrange Shapiro

becomes

oL oL
Osm—a~— 7 =0.
What are our fundamental fields? L(¢;, Onud;, x¥) will
give second order differential equations, not Maxwell in
F. But we know F = dA, so second order in A* is what
we want. T
We have already seen particle action requires
—(gq/c)A,dzt for a single charge. That is, each charge g;
at @; contributes to L —¢;®(L;) + L; - /_f(fz)

2Never done dynamics of fields? Need to read up, e.g.
www.physics.rutgers.edu/~shapiro/507/gettext.shtml and look
at chapter 8 (or get book9_2.pdf from the same location).
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Llnt - Z <_q74¢(xl) - 7q74u7« ' A(x“t)) Magn;:ism
1 Shapiro
E / s (~p(e) - L@ - Al
= [ @@,

This will give us the J, on the right hand side of the Euler
equation from varying A*, but we need something to give _
the left hand side of Maxwell’s equation, which should be P
linear in F', so we need a quadratic piece in £, Lorentz
invariant and with a total of two derivatives on A,’s.
Let’s try .
— ny o

L= _WF F. — EJ“A ,
where it is understood that F),, stands for 9,4, — 0, A,
and is not an independent field.



The only contribution to dL/0A,, (taken with 9,4,
fixed) is the —J*/c from the interaction term. We have

78}7“” = 07,00 — 6,00,
5 A,
0x?
SO
oL 1

——=—F
P 04, 4r” P77
ox?
and the full Euler-Lagrange equation is
1 1
—— 0, Ft 4+ —JF =0,
47 c

or 4
o, — T g
&

Thus we have derived Maxwell’s equations (as dF = 0 is

automatic as F := dA).
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