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Lecture 15 March 25, 2010

We start Chapter 12, relativistic dynamics of charged
particles in interaction with electromagnetic fields.
But we will do sections 2-4 first, then return to section 1.

In general,
a) electromagnetic fields exert forces on charged particles
which alter their motion.
b) the motion of charged particles generates (or alters)
electromagnetic fields.
Depending on the situation, one or the other of these may
be dominant and we can ignore the other.

For now, we ignore (b), in which case we call ~E and ~B
external fields.
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Motion in External Fields

Many applications can ignore the effect of the charged
particles on the fields. These applications include

I bending beams for circular accelerators (nuclear and
particle physics)

I plasmas in deep space
I fusion energy devices
I velocity and momentum separators for beams of

particles
I the Van Allen belts (auroras)

Begin with
dpα

dτ
= (q/c)FαβUβ , or, in non-relativistic

language,

d~p

dt
= q

(
~E +

1
c
~v × ~B

)
,

dE

dt
= q~v · ~E.

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Motion in
External
Fields

Motion in
external fields

Uniform B, no
E

Uniform E and
B

Gradually
varying �elds

Slowly
bending B

Constant Uniform ~B, ~E = 0

~B doesn’t change energy, so |~v| and γ are constant,

d~v

dt
=

1
γm

d~p

dt
=

q

γmc
~v × ~B = ~v × ~ωB,

where ~ωB =
q

γmc
~B =

qc ~B

Energy
. So component of ~v ‖ ~B is

constant, the other two rotate counterclockwise around ~B
(for q > 0).
Position along ~B grows linearly in time, transverse
components of ~r rotate in a circle with angular velocity
ωB. The radius a of this circle is determined from
v⊥ = ωBa, so

a =
v⊥
ωB

=
p⊥
mγ

/
qB

γmc
=

p⊥c

qB
.
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Bending of a beam

This bending of a beam in a magnetic field is used to
measure momentum (actually p/q) of particles in beams
at all high energy and nuclear accelerators.

What field needed at LHC, 7 TeV protons in a circle with
circumference 27 km?
In SI units need extra c: B = P⊥/qR, get B = 5.4 T.
Actually need 8.3 T because the magnets don’t fill the
whole circumference.1

1B = P⊥c/qR in gaussian units, but B = P⊥/qR in SI units. As
P⊥ ≈ E/c and E/q = 7× 1012 V, R = 4300 m, B = 5.4 T.
Unfortunately the 1232 dipole magnets, each 14.3 m long, do not
cover the whole circumference, but only 17.6 km, so the magnets
need to be 8.3 T, which is considerably harder to maintain.
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That ωB/2π = qB/2πmcγ, independent of v for v � c
makes cyclotrons work.

Lawrence 1930 4 in 80 KeV
Lawrence 1931 11 in 1.1 MeV

L&McMillan 1946 184 in 195 MeV∗

Koeth 2001 12 in 1 MeV
∗ synchrocyclotron, deuterons

Lawrence’s cyclotron Koeth’s cyclotron
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Constant Uniform ~E and ~B
With an ~E field, energy no longer constant. But if
~E ⊥ ~B, can use Lorentz transformation to make simpler.
Suppose ~E ‖ y and ~B ‖ z, and we transform to O′ moving
‖ x with ux = c tanh ζ. Then

Aµ
ν =




cosh ζ sinh ζ 0 0
sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1


 ,

Fµν =




0 0 −Ey 0
0 0 −Bz 0

Ey Bz 0 0
0 0 0 0


 → F ′µν =




0 0 −E′
y 0

0 0 −B′
z 0

E′
y B′

z 0 0
0 0 0 0


 ,

with

E′
y = cosh ζ Ey − sinh ζ Bz

B′
z = cosh ζ Bz − sinh ζ Ey
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More generally, if ~u ⊥ ~B, ~u ⊥ ~E, then

~E ′ = γ( ~E +
~u

c
× ~B), ~B ′ = γ( ~B − ~u

c
× ~E).

Choose ~u = c ~E × ~B/B2, so

~E ′ = γ
(

~E + ( ~E × B̂)× B̂
)

= γ
(

~E − ~E + ( ~E · B̂)B̂
)

= 0

~B ′ = γ

(
~B − 1

B2
( ~E × ~B)× ~E

)
= γ ~B

(
1− E2

B2

)
=

1
γ

~B,

O′ sees our previous situation, particle in helix around
~B ′, but to O also have an “ ~E × ~B drift” velocity
~u = c ~E × ~B/B2, in a direction independent of sign of
charge, while helical motion reverses with charge.

Important special case: If helical motion degenerates
(uniform motion along ~B ′), ~v ′ is constant along ~B ′, but
drift is in the ~E × ~B direction with u = cE/B Only
particles with that vx will travel in a straight line.
Apertures then create a velocity selector. You learned all
this as freshman, though then you assumed ~u ⊥ ~B.
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If | ~E| > | ~B|?
If | ~E| > | ~B|, the above would give |~u| > c and imaginary
~B, which is not physical. We cannot transform ~E away,
but we can transform away ~B instead, with
~u = c ~E × ~B/E2. Then ~B ′ = 0, we have constant uniform
~E ′ and constant d~p ′/dt′. Nonrelativistically simple
ballistic (parabolic) motion, but variation of γ makes
solution more difficult, but still doable.

What keeps us from transforming something away?
In homework 6 problem 5, you will show E2 −B2 and
~E · ~B are invariants. That is why, for ~E ⊥ ~B, there are
two different cases, E2 −B2 negative or positive.

Also, if ~E is not perpendicular to ~B in any one frame,
then ~E · ~B 6= 0 in that frame or any other, and they are
not perpendicular in any other frame, and neither can be
made to vanish. Still the uniform field problem can be
solved by brute force.
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Constant direction, transverse gradient

Arbitrarily varying fields are not subject to analytic
solution, but a useful approximation is perturbation
around uniform fields.
In uniform ~B, motion is helical. If radius is small
compared to scale of variation of ~B, perturbation is
reasonable.

Consider ~B(~r) parallel to z everywhere and constant in z,
so ~B(~r) = B(~r⊥)êz, but varying in x on a scale large
compared to ~x⊥(t) = ~r⊥(t)− ~r0⊥, the displacement from
the center of the helix of unperturbed motion.
No electric field, so γ constant and vz constant.
Let ~v0(t) be the transverse velocity of the unperturbed
motion and ~v⊥(t) = ~v0(t) + ~v1(t) be the full transverse
velocity. Work to first order in the gradient of B, which is
also first order in ~v1.
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So ~B = êz

(
B0 + ~x⊥ · ~∇⊥B

∣∣∣
0

)
, and

d~v⊥
dt

=
q

γmc
~v⊥× ~B(~x) ≈ q

γmc
~v⊥× ~B0

(
1 +

1
B0

~x⊥ · ~∇⊥B
∣∣∣
0

)
.

d(~v0 + ~v1)
dt

=
q

γmc
~v0 × ~B0

+
q

γmc
~v1 × ~B0 +

q

γmc
~v0 × êz

(
~x⊥ · ~∇⊥B

)
.

The first term on the right is d~v0/dt, so

d~v1

dt
=

q

γmc

(
~v1 × ~B0 + ~v0 × êz (~x⊥ · ~∇⊥B)

)
.

The unperturbed ~x⊥ is circular motion with radius a,
with ~v0 × êz = −ω0~x⊥. So the average
〈~v0× êz(~x⊥ · ~∇⊥B)〉 = −ω0〈~x⊥(~x⊥ · ~∇⊥B)〉 = −1

2ω0a
2~∇⊥B.
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We can find a constant drift velocity 〈~v1〉 on top of the
oscillatory motion if 〈d~v1/dt〉 = 0. Thus

〈~v1〉 × ~B0 =
1
2
ω0a

2~∇⊥B,

or

〈~v1〉 =
1

B2
0

~B0 ×
(
〈~v1〉 × ~B0

)
=

ω0a
2

2B2
~B ×∇⊥B.

Thus the particle moves approximately in a helix as
before, around a magnetic field line, but the helix drifts in
the direction perpendicular to the field line and to the
gradient.
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Slowly bending ~B
At any point, a mag-
netic field line has a cen-
ter of curvature. Take
that as the origin of po-
lar coordinates, (ρ, φ, z),
with ~B = Bêφ.
Again, |~v| and γ are con-
stants,

ρ

φ

B

0

d~v

dt
=

1
mγ

d~p

dt
=

q

mγ
~v × ~B =

qB

mγ
(vρêz − vz êρ)

=
qB

mγ
(ρ̇êz − żêρ)

=
d

dt

(
ρ̇êρ + ρφ̇êφ + żêz

)

= ρ̈eρ + 2ρ̇φ̇êφ + ρφ̈êφ − ρφ̇2êρ + z̈êz,

where we have used dêρ = φ̇eφ, dêφ = −φ̇eρ, dêz = 0.
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qB

mγ
(ρ̇êz − żêρ) = ρ̈eρ + 2ρ̇φ̇êφ + ρφ̈êφ − ρφ̇2êρ + z̈êz.

The φ component gives 2ρ̇φ̇ + ρφ̈ = 0 or ρ2φ̇ = Rv‖, a
constant. The other two components satisfy

ρ̈− ρφ̇2 = − qB

mγ
ż, z̈ =

qB

mγ
ρ̇.

If2 ρ ≈ R, ρ̇ remains bounded, we can ignore ρ̈ by
averaging, we have from the first equation that

〈ż〉 ≈
mγv2

‖
qBR

.

So we have a drift, again in a direction perpendicular to
the center of curvature and to the direction of the field.

2See lecture notes for how Jackson assures this
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Adiabatic Invariants

The last approximation we wish to consider uses the
adiabatic invariance of the action. The action involved is∮

~P⊥ · d~r⊥ for the motion in the plane perpendicular to
the field lines. But before we can discuss this, we need to
know the canonical momentum ~P conjugate to ~r, which
is not the ordinary momentum ~p = mγ~u. To find the
canonical momentum we need to discuss the
Lagrangian.


