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Lecture 13 March 4, 2010

Algebra of Lorentz Generators

Last time, proper isochronous Lorentz transformations
are exponentials of infinitesimal generators,

Aµ
ν = lim

N→∞

[(
δ·· +

ω

N
L··

)N
]µ

ν

=
(
eωL··

)µ

ν
,

with Lµν = −Lνµ, real. These are linear combinations of
6 basis matrices, Lαβ , Lµ

ν =
∑
αβ

cαβ (Lαβ)µ
ν , where cαβ is

antisymmetric, cαβ = −cβα, and1

(Lαβ)µν = δµ
αδν

β − δν
αδµ

β .

Note up-down motion of indices, and that each Lαβ is a
4× 4 matrix, not the αβ matrix element of one.

1The L of Jackson 11.90 is Lµ
ν =

`
L β

α

´µ

ν
.
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L0j generates a Lorentz boost, Ljk generates a rotation.
Define

(Ki)
·
· =

(L i
0

)·
· , (Si)

·
· = −

1
2
εijk

(
L k

j

)·
·
.

The generators Si are i times the angular momentum
operators with a familiar (from QM) commutator algebra,
[Si, Sj ] = εijkSk. More generally2

[Lαβ ,Lγζ ]
µ
ν =

({(
δµ
α ηβρ δρ

γ ηζν − (α↔ β)
)− (γ ↔ ζ)

}
−(α↔ γ and β ↔ ζ)

)
= ηβγ (Lαζ)

µ
ν − ηβζ (Lαγ)µ

ν

−ηαγ (Lβζ)
µ
ν + ηαζ (Lβγ)µ

ν .

2Lines of algebra skipped — see lecture notes.
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[Lαβ ,Lγζ ]
µ
ν =

(
ηβγ (Lαζ)

µ
ν − (γ ↔ ζ)

)
− (α↔ β).

Note: 1) commutator of two generators is a linear
superposition of generators.
This closure is one requirement for a Lie Algebra.
Symmetry transformations leaving the invariant length
unchanged must form a group, continuous ones make a
Lie Group, with generators forming a Lie Algebra.
2) Commutator of a rotation Lij = εijkSk with a Lorentz
boost L0` = −K`:

[Sk, K`] = −1
2
εijk [Lij ,L0`] =

1
2
εijk {ηj`Li0 − ηi`Lj0}

= εk`iKi,

so the boosts transform like a 3-vector under rotations.
Finally

[Ki, Kj ] = [L0i,L0j ] = −Lij = −εijkSk,

so the commutator of two Lorentz boosts is a rotation!
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Derivatives

In three dimensions we have the gradient operator ~∇. In
four dimensions we use a different notation,

∂µ :=
∂

∂xµ
.

Why covariant? Chain rule:

∂′µ =
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= A ν

µ ∂ν ,

where I have used A ν
µ = ∂xν/∂x′µ derived last time. And

that is the way a covariant vector is supposed to
transform.
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Application to Electromagnetism
We have discussed scalars, invariant under Lorentz
transformations, including rotations, and
4-vectors, a combination of a 3-vector and a scalar, and
could also have
tensors, with several co- or contra-variant indices.3

We saw the energy and momentum are combined into
4-vector pα = (E/c, ~p), but what about the 3-vectors ~E
and ~B?
From the Lorentz force law4 for a particle of charge q,

~F =
d~p

dt
= q

(
~E +

~v

c
× ~B

)
while the rate of change of the kinetic energy of the
particle is the power provided by the electric field,

dE

dt
= q ~E · ~v.

3We will not discuss spinors here.
4Jackson has switched to Gaussian units. See lecture notes, or

appendix of Jackson.
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For a nicely transforming law we should shift to d/dτ ,
using proper time, and the 4-velocity Uα = (cγ, γ~v):

dpα

dτ
=

dt

dτ

dpα

dt
= q

U0

c

(
~E · ~v, ~E +

~v

c
× ~B

)

=
q

c

(
~E · ~U, U0 ~E + ~U × ~B

)
.

~E and ~B cannot transform independently — particle at
rest ignores ~B, one in motion does not. The l.h.s. of this
equation is a contravariant 4-vector depending linearly on
the 4-vector Uβ , but not proportional to it. So the
coefficient must be a tensor, Fα

β, with

dpα

dτ
=

q

c
Fα

βUβ.

Matching terms we see

F 0
0 = 0, F 0

i = Ei, F i
0 = Ei, F i

j = εijkBk.
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Field Strength Tensor

If we raise the second index or lower the first, we get

Fαβ =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 ,

Fαβ =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 .

Ei = F 0
i = F i

0

= −F 0i = F i0

= F0i = −Fi0.

F i
j = εijkBk =⇒

Bi =
1
2
εijkF

j
k

= −1
2
εijkF

jk

= −1
2
εijkFjk

Note that F , which is called the field-strength tensor, is
antisymmetric: Fµν = −F νµ.
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Forms? consider F := 1
2Fαβdxαdxβ. Then dF is a 3-form

associated with the vector

1
12

εαβγζ∂βFγζ ,

where εαβγζ is the totally antisymmetric Levi-Civita
symbol for which5 ε0123 = 1. The zeroth component of 12
times this is

ε0βγζ∂βFγζ = εijk∂iFjk = εijk∂i(−1)εjk`B` = −2~∇ · ~B,

which vanishes according to one of Maxwell’s laws.

5In flat space. In general relativity ε0123 = 1/
p| det(gµν)|.
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The i’th spatial component is

εiβγζ∂βFγζ = εi0jk∂0Fjk + 2εijk0∂jFk0

= −1
c
εijk

(
−εjk`

∂B`

∂t

)
− 2εijk∂j(−Ek)

= 2
(

~∇× ~E
)

i
+

2
c

∂Bi

∂t
,

which also vanishes, by another of Maxwell’s laws. Thus
dF = 0 or

1
2
εαβγζ∂βFγζ = 0 (1)

constitute the sourceless half of Maxwell theory.
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Dual Field Strength

This encourages us to also consider the dual field strength
tensor

Fαβ :=
1
2
εαβγζFγζ =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 ,

which is associated with the Hodge dual ∗F of the field
strength 2-form. Then we can write these Maxwell
equations as

∂µFµν = 0.

The dual field strength tensor is the result of applying the
duality of sourceless electromagnetism, ~E → ~B and
~B → − ~E.

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Lorentz
Algebra,
Field
Strength
Tensor

Generators,
Algebra

Electromagnetis

Field Strength
Tensor

Vector
Potential

But Maxwell’s equations are not invariant under this
duality except in the absence of sources, for there are no
magnetic monopoles, at least as far as we currently know.
What is the equivalent of dF or Eq. 1 with F → F?

εαβγζ∂βFγζ = εαβγζ∂βεγζρσ
1
2
F ρσ = 3

(
δα
ρ δβ

σ − δα
σ δβ

ρ

)
∂βF ρσ

= 6∂βFαβ

Well, the α = 0 component of ∂βFαβ is

∂jF
0j = −~∇ · ~E = −4πρ,

and the spatial components are

∂βF iβ =
∂F i0

c∂t
+∂j(−εijkBk)=

(
−~∇× ~B +

1
c

∂ ~E

∂t

)
i

= −4π

c
~Ji.

We see that we need to combine ~J and ρ into

jα =
(
cρ, ~J

)
and we now have ∂µFµν =

4π

c
jν .
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Notice this has a familiar immediate consequence:

∂ν (∂µFµν) =
4π

c
∂νj

ν = 0

where the vanishing comes because ∂ν∂µ is symmetric
under µ ↔ ν while Fµν is antisymmetric. Thus we see
that

∂νj
ν = 0 =

∂cρ

c∂t
+ ~∇ · ~J =

∂ρ

∂t
+ ~∇ · ~J,

the equation of continuity follows from Maxwell’s
equations.
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Is ρ like x0?

Why does the charge density ρ transform like the zeroth
component of a 4-vector?
Charge is invariant, so the charge in a given infinitesimal
volume, dq = ρd3x should be invariant. But volume has a
Fitzgerald contraction. In fact, the four-dimensional
volume element d4x = dx0d3x is invariant, because

d4x′ = det
(

∂x′µ

∂xν

)
d4x = det

(
Aµ

ν

)
d4x.

Taking the determinant of the condition for A·· to be a
Lorentz transformation,

ηαβAα
µAβ

ν = ηµν (2)

we have det η··(detA··)2 = det η·· or det A·· = ±1.
If we can rule out −1, the answer is yes.
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Proper and orthochronous?

Neglected issue: Is any matrix satisfying (2) a Lorentz
transformation? Can we have detA·· = −1?
If O′’s reference frame was originally boosted from O’s by
firing the rocket engines, the velocity relative to O and
the Lorentz transformation should evolve continuously.
As it starts with Aµ

ν = δµ
ν which has determinant 1, and

a matrix with continuously varying matrix elements has
its determinant varying continuously, the determinant
cannot jump to −1 and must be 1. So d4x is invariant
and ρ transforms the same way dx0 and x0 do.

Are there other constraints on A for a continuous change
in v? Taking the 00’th matrix element of (2), we have
ηµνA

µ
0A

ν
0 = (A0

0)
2 − (Ai

0)
2 = 1, so |A0

0| ≥ 1. Again,
starting at 1, it cannot vary continuously to get to a
negative number.
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We will call any matrix satisfying (2) a Lorentz
transformation, but restrict our attention to those with
determinant +1 (proper Lorentz transformations) and
with A0

0 ≥ 1 (orthochronous Lorentz transformations).
Note the latter is the condition that time runs in the
same direction for both observers. The parity operation
~x → −~x, t unchanged, is an improper orthochronous
Lorentz transformation, while time reversal together with
parity, ~x → −~x, is non-orthochronous but proper.
Physics, so far, is invariant under proper orthochronous
Lorentz transformations, as Einstein wanted, but not the
others (see Wu and Yang, Fitch and Cronin).
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Vector Potential
Recall Maxwell tells us dF = 0, F is closed and should be
exact, so what 1-form A satisfies F = dA? Or, if you are
form-unfriendly, what vector Aν satisfies

Fµν = ∂µAν − ∂νAµ. (3)

Clearly we are to suspect the 4-vector Aµ =
(
Φ, ~A

)
,

where Φ is the electrostatic potential and ~A the usual
vector potential. Indeed the 0j component of (3) says6

Ej =
1
c

∂Aj

∂t
− ∂jΦ = −

(
~∇Φ +

1
c

∂ ~A

∂t

)
j

,

and the ij component gives6

−εijkBk = ∂iAj − ∂jAi = −εijk

(
~∇× ~A

)
k

6 Note Aµ for µ = j is Aj = −Aj = −( ~A)j . I apologize for this
confusing notation, one reason for preferring the opposite choice of
sign for η from the one Jackson chooses.
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The Lorenz gauge condition is

0 = ~∇ · ~A +
1
c

∂A0

∂t
= ∂µAµ.

Finally, the operator for the wave equation in empty
space is

∇2 − 1
c2

∂2

∂t2
= −∂µ∂µ =: − .


