
Physics 504 Project #2 Solutions
Due: Thursday, February 28, 2009

A We are asked to find the electrostatic potential outside a charged conductor
in the shape of an oblate ellipsoid,

(
x

A

)2

+
(
y

A

)2

+
(
z

B

)2

= 1,

with A > B. This is an oblate ellipsoid. So we should look at oblate
ellipsoidal coordinates,

x = a cosh µ cos ν cos φ

y = a cosh µ cos ν sin φ

z = a sinh µ sin ν.

Define ξ = sin ν ∈ [−1, 1],
ζ = sinhµ ∈ [0,∞),

ρ =
√
x2 + y2 = a

√
(1− ξ2)(1 + ζ2).

where ρ is the usual cylindrical coordinate. In terms of these

x = ρ cos φ, y = ρ sin φ, z = aξζ,

A surface of constant µ or ζ is clearly bounded, while those of constant ν
are not. In fact µ = µ0 is the surface

x2 + y2

a2 cosh2 µ0

+
z2

a2 sinh2 µ0

= 1,

so A = a coshµ0, B = a sinh µ0, B/A = tanhµ0 = ζ0/
√

1 + ζ2
0 and a =√

A2 −B2 will give our conductor at ζ = ζ0.
To find the laplacian, we write the measure

ds2 = dx2 + dy2 + dz2 = (dρ)2 + (dz)2

= a2
[(
− ξ√

1− ξ2

√
1 + ζ2dξ +

ζ√
1 + ζ2

√
1− ξ2dζ

)2
+
(
ξ dζ + ζ dξ

)2
]

= (hξ dξ)
2 + (hζ dζ)

2 + (hφ dφ)2,

with

hζ = a

√
ζ2 + ξ2

1 + ζ2
, hξ = a

√
ζ2 + ξ2

1− ξ2
, hφ = a

√
(1− ξ2)((1 + ζ2) = ρ.

In general the Laplacian is

∇2 =
1

h1h2h3

∑
i

∂

∂qi

h1h2h3

h2
i

∂

∂qi
,

so the equation for the electrostatic potential ∇2V = 0 reads 1/a2(ζ2 + ξ2)
times

∂

∂ξ

[(
1− ξ2

) ∂V
∂ξ

]
+

∂

∂ζ

[(
1 + ζ2

) ∂V
∂ζ

]
+

ξ2 + ζ2

(1− ζ2)(1 + ξ2)

∂2V

∂φ2
= 0. (1)

Let us look for a solution by separation of variables,

V (ξ, ζ, φ) = X(ξ)Z(ζ)Φ(φ),

so dividing (1) by V gives

1

X(ξ)

d

dξ

[(
1− ξ2

) dX(ξ)

dξ

]
+

1

Z(ζ)

d

dζ

[(
1 + ζ2

) dZ(ζ)

dζ

]

+
ξ2 + ζ2

(1− ζ2)(1 + ξ2)

1

Φ(φ)

d2Φ(φ)

dφ2
= 0.

Only the last term can depend on φ, so it cannot, and we must have
(Φ(φ))−1d2Φ(φ/dφ2 = C, a constant, with exponential solutions. But φ
is defined only modulo 2π, so we require Φ(φ) = Φ(φ+ 2π), which requires
C = −m2, m ∈ Z.

The boundary conditions for our conducting spheroid is that V = V0 at
ζ = ζ0 for all ξ and φ, so in particular we need Φ(φ) is a constant, m = 0,
and then the ζ and ξ dependent terms decouple, we also need X(ξ) to be
constant, and our problem reduces to V = Z(ζ) with

(1 + ζ2)
dZ

dζ
= −K =⇒ Z = −

∫
dζ

K

1 + ζ2
= −K cot−1 ζ +K2,

where K and K2 are constants. At ~r →∞, which is ζ →∞, cot−1(ζ) → 0,
we set the potential to zero, so K2 = 0 with cot−1(ζ) defined into [0, π/2]
for ζ ∈ [0,∞).

From V = V0 at ζ = ζ0, we have

V = V0
cot−1 ζ

cot−1 ζ0
.

(b) Consider varying our problem’s spheroid, letting ζ0 → 0, which reduces
our spheroid to a thin disk of radius a. Then cot−1 ζ0 → π/2,

V =
2V0

π
cot−1 ζ −→

r→∞
2V0

π
cot−1 r

a
≈ 2V0a

πr
,

because r2 = a2 [((1 + ζ2) (1− ξ2) + ζ2ξ2)] −→
ζ→∞

a2ζ2. At large distances

the potential is Q/4πε0r, so the total charge on the disk is Q = 8ε0a V0, and
the capacitance is C = Q/V0 = 8ε0a.

B Consider the coordinates η and ξ for the plane with

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
.



Then
(x− a coth η)2 + y2 = a2 csch2 η,

so constant η contours are circles centered at x = a coth η, y = 0, while

x2 + (y − a cot ξ)2 = a2 csc2 ξ,

so constant ξ are circles centered at x = 0, y = a cot ξ.

The connection of ξ and η to the distances r1
and r2 and the angles θ1 and θ2 from the points
(±a, 0), as shown, can be found from

r2
1 = x2 + 2ax+ a2 + y2

r2
2 = x2 − 2ax+ a2 + y2

r
r

2

θ θ
1 2

x

y

a−a

1

so r2
1 + r2

2 = 2x2 + 2a2 + 2y2 = 2a2 sinh2 η + (cosh η − cos ξ)2 + sin2 ξ

(cosh η − cos ξ)2

= 2a2 sinh2 η + cosh2 η − 2 cosh η cos ξ + cos2 ξ + sin2 ξ

(cosh η − cos ξ)2

= 4a2 cosh η

cosh η − cos ξ
.

r2
1 − r2

2 = 4ax = 4a2 sinh η

cosh η − cos ξ
.

Thus

r2
1 = 2a2 cosh η + sinh η

cosh η − cos ξ
= 2a2eη 1

cosh η − cos ξ

r2
2 = 2a2 cosh η − sinh η

cosh η − cos ξ
= 2a2e−η 1

cosh η − cos ξ

so r1/r2 = eη.

From the law of cosines for the triangle shown,
4a2 = r2

1 + r2
2 − 2r1r2 cos(θ2 − θ1) so

cos(θ2 − θ1) =
(r2

1 + r2
2)− 4a2

2r1r2

=

(
cosh η

cosh η − cos ξ
− 1

)
cosh η − cos ξ = cos ξ,

so ξ = θ2 − θ1, η = ln(r1/r2).
Let’s get the metric tensor:

dx

a
=

cosh η dη

cosh η − cos ξ
− sinh η

(cosh η − cos ξ)2
(sinh η dη + sin ξ dξ)

=
(1− cosh η cos ξ)dη + sinh η sin ξ dξ

(cosh η − cos ξ)2

dy

a
=

(cos ξ(cosh η − cos ξ)− sin2 ξ)dξ − sinh η sin ξ dη

(cosh η − cos ξ)2

=
(cos ξ cosh η − 1)dξ − sinh η sin ξ dη

(cosh η − cos ξ)2

so

(dx)2 + (dy)2

a2
=

(1− cosh η cos ξ)2 + sinh2 η sin2 ξ

(cosh η − cos ξ)4

(
(dη)2 + (dξ)2

)

=
(dη)2 + (dξ)2

(cosh η − cos ξ)2

so
gηη = gξξ = a/(cosh η − cos ξ), gηξ = 0.

Consider two circular wires of radius R with their centers separated by
a distance 2L, at x = ±L, y = 0. The potential problem in which they
carry voltages ±V satifies the two-dimensional Laplace equation ∇2ψ = 0
with φ = ±V on the circles representing the boundaries of the two wires,
at (x∓ L)2 + y2 = R2. The positions on the x axis are for ξ = 0 or ξ = π,
so

L±R =
a sinh η

cosh η ∓ 1
=⇒ L2 − R2 = a2, (2)

and
L+R

L−R
=

cosh η + 1

cosh η − 1
=⇒ cosh ηB =

L

R
. (3)

for ηB the value of |η| on the boundaries.
As the Laplacian is

gµν∂µ∂ν = (cosh η − cos ξ)

(
∂2

∂η2
+

∂2

∂ξ2

)
,

Laplace’s equation becomes simply(
∂2

∂η2
+

∂2

∂ξ2

)
ψ(η, ξ) = 0,

with boundary conditions

ψ(η, π) = ψ(η,−π), ψ(±ηB , ξ) = ±V/2,
with V the maximum value of the voltage between the wires. Thus ψ has
the unique solution ψ = V η/2ηB.

To calculate the impediance of this cable, we will calculate the average
power flow

〈P 〉 = ẑ ·
∫

A

1

2
( ~E × ~H∗) =

1

2

√
ε

µ

∫
A
ẑ · ( ~E × (ẑ × ~E∗)) =

1

2

√
ε

µ

∫
A
| ~Et|2

=
1

2

√
ε

µ

∫
A
(~∇tψ)2 =

1

2

√
ε

µ

∫
A

~∇t ·
(
ψ~∇tψ

)
=

1

2

√
ε

µ

∮
∂A
ψ~∇tψ

=
1

2

√
ε

µ
2 (2π)

V

2

V

2ηB
=
π

2

√
ε

µ
V 2/ cosh−1(L/R)



In the first equality in the second line the ψ∇2ψ term from integration
by parts is zero as ψ satisfies Laplace’s equation. In the evaluation of the
boundary integral in the third equation, the contributions from ξ = ±π
cancel.

To find the impediance we write 〈P 〉 = 〈V 2〉/Z = V 2/2Z, so

Z =

√
µ

ε

ηB

π
=

1

π

√
µ

ε
cosh−1 (L/R) =

1

π

√
µ

ε
ln


L/R+

√
L2

R2
− 1


 .

There is another, perhaps more intuitive, way to find the impediance,
as Z = V/I, where I is the current in one of the wires (−I is in the other).
How do we find I? We can use Ampère’s law

µ0I =
∮
~B · d~̀− 1

c2

∫
∂ ~E

∂t
· d ~A,

where the path is up the y axis from −∞ to ∞ and around a semicircle
at ∞. As Ez = 0 the displacement current doesn’t contribute, and as each
wire gives a B field ∝ r−1, but in opposite directions, the B field falls off
like 1/r2 at infinity and the semicircle integral goes to zero. Thus

I = ± 1

µ0

∫ ∞
−∞

dy By(0, y) = ±
√
ε0
µ0

∫ ∞
−∞

dy Ex(0, y) = ∓
√
ε0
µ0

∫ ∞
−∞

dy
∂ψ

∂x
(0, y)

= ∓
√
ε0
µ0

∫ ∞
−∞

dy

(
∂ψ

∂ξ

∂ξ

∂x
+
∂ψ

∂η

∂η

∂x

)
= ∓

√
ε0
µ0

∫ ∞
−∞

dy

(
0 +

V

2ηB

∂η

∂x

∣∣∣∣∣
x=0

)
.

Now

η = ln
r1
r2

=
1

2
ln

(x+ a)2 + y2

(x+ a)2 + y2

so
∂η

∂x
=

1

2

(
2(x+ a)

(x+ a)2 + y2
− 2(x− a)

(x− a)2 + y2

)
−→
x→0

2a

y2 + a2
,

so, not worrying about overall sign, we have

I =

√
ε0
µ0

V

ηB

∫ ∞
−∞

dy
a

y2 + a2
=

√
ε0
µ0

π

ηB
V.

Thus

Z = V/I =

√
µ0

ε0

ηB

π
.

If we assume the medium outside the wires is vacuum, and take as the
dimensions R = 0.5 mm, L = 4 mm, so (2) gives a = 3.9686 mm, and (3)
gives ηB = 2.76866. Noting that the “impediance of the vacuum”√

µ0

ε0
= 376.73 Ω,

we have Z = 332 Ω.
The dimensions given are about right for old “300 ohm” television cable.

That cable, however, does not consist of just two circular wires in vacuum,
but includes a plastic coating including a connecting piece which, I guess,
has a high dielectric constant. This will lower the impediance.


