Physics 504 Project #2 Solutions
Due: Thursday, February 28, 2009

We are asked to find the electrostatic potential outside a charged conductor
in the shape of an oblate ellipsoid,
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with A > B. This is an oblate ellipsoid. So we should look at oblate

ellipsoidal coordinates,

x = a coshpu cosv coso Define £ = sinv € [—1,1],
y = a coshpu cosv sin¢ ¢ =sinh p € [0, 00),
2 = a sinhp sinwv. p= v$2+y2:a\/(1—§2)(1—|—g2).

where p is the usual cylindrical coordinate. In terms of these

T =pcosp,  y=psing, z = a&q,

A surface of constant u or ( is clearly bounded, while those of constant v
are not. In fact u = g is the surface
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so A = acoshpg, B = asinhug, B/A = tanhug = (o/\/1+ (3 and a =

VA2 — B2 will give our conductor at ¢ = (.
To find the laplacian, we write the measure
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In general the Laplacian is
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so the equation for the electrostatic potential V2V = 0 reads 1/a*(¢? + £?)
times
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Let us look for a solution by separation of variables,

V(&€ 0) = X(§Z(()2(0),
so dividing (1) by V' gives
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Only the last term can depend on ¢, so it cannot, and we must have
(®(9))1d*®(¢p/dp* = C, a constant, with exponential solutions. But ¢
is defined only modulo 27, so we require ®(¢) = ®(¢ + 27), which requires
C=-m?>mcZ.

The boundary conditions for our conducting spheroid is that V' =V} at
¢ = (p for all £ and ¢, so in particular we need ®(¢) is a constant, m = 0,
and then the ¢ and ¢ dependent terms decouple, we also need X (§) to be
constant, and our problem reduces to V = Z(() with

Kcot™ ¢+ Ky,
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where K and K, are constants. At 7 — oo, which is ¢ — oo, cot™1(¢) — 0,
we set the potential to zero, so Ky = 0 with cot™!(¢) defined into [0, 7 /2]
for ¢ € [0, 00).

From V =V} at ¢ = (p, we have
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(b) Consider varying our problem’s spheroid, letting ¢, — 0, which reduces
our spheroid to a thin disk of radius a. Then cot™ {y — /2,
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because 7? = a?[((1+¢?) (1 — &%) + ¢3¢?)] f— a’c?.

the potential is )/4meqr, so the total charge on the disk is @) = 8¢pa Vp, and
the capacitance is C' = Q/Vy = 8epa.
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At large distances

Consider the coordinates 1 and ¢ for the plane with

asinhn asiné

coshn — cos &’ coshn —cos&’



Then
(z — acothn)® + y? = a®csch® 7,

so constant n contours are circles centered at * = acothn, y = 0, while
2* + (y — acot&)? = a®csc’ €,

so constant ¢ are circles centered at x =0, y = acot.

The connection of £ and 7 to the distances 7, y
and 7o and the angles 6; and 0y from the points r r2
(+a, 0), as shown, can be found from 1 0
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From the law of cosines for the triangle shown,
4a? = r? 4+ 13 — 2rir9 cos(fy — 0;) so
2 2 2
+r5)—4
cos(s — 0,) = 1t —da
27‘17"2

B ( coshn

———— — 1| coshn — cos€ = cos €,
coshn — cos ¢

80§ =0y — 01, n=1n(r1/rz).
Let’s get the metric tensor:
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Consider two circular wires of radius R with their centers separated by
a distance 2L, at * = L, y = 0. The potential problem in which they
carry voltages £V satifies the two-dimensional Laplace equation V2i) = 0
with ¢ = £V on the circles representing the boundaries of the two wires,
at (z F L)* + y* = R?. The positions on the z axis are for ¢ =0 or £ = 7,
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inh
L+R=-100 g2 g2 g2 (2)
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and L+R coshn+1 L
v cosan = coshnp = —. (3)

L—R coshn—1 R
for np the value of |n| on the boundaries.
As the Laplacian is
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Laplace’s equation becomes simply
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with boundary conditions
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with V' the maximum value of the voltage between the wires. Thus ¥ has
the unique solution ¢ = Vn/2np.
To calculate the impediance of this cable, we will calculate the average
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In the first equality in the second line the V21 term from integration
by parts is zero as v satisfies Laplace’s equation. In the evaluation of the
boundary integral in the third equation, the contributions from & = +x

cancel.
To find the impediance we write (P) = (V?)/Z = V?/2Z, so

Z = %%:%\/gcosh (L/R) = \/>1 (L/Rﬂ/— )

There is another, perhaps more intuitive, way to find the impediance,
as Z = V/I, where [ is the current in one of the wires (—1 is in the other).
How do we find I7 We can use Ampere’s law
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where the path is up the y axis from —oo to oo and around a semicircle
at co. As E, = 0 the displacement current doesn’t contribute, and as each
wire gives a B field oc 771, but in opposite directions, the B field falls off
like 1/7? at infinity and the semicircle integral goes to zero. Thus
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Thus
Z=V/I=

If we assume the medium outside the wires is vacuum, and take as the
dimensions R = 0.5 mm, L = 4 mm, so (2) gives a = 3.9686 mm, and (3)
gives np = 2.76866. Noting that the “impediance of the vacuum”

JE = 37673 0
€o
we have Z = 332 Q.

The dimensions given are about right for old “300 ohm” television cable.
That cable, however, does not consist of just two circular wires in vacuum,
but includes a plastic coating including a connecting piece which, I guess,
has a high dielectric constant. This will lower the impediance.



