Physics 504 Project #2 Solutions
Due: Thursday, February 28, 2009

We are asked to find the electrostatic potential outside a charged conductor
in the shape of an oblate ellipsoid,
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with A > B. This is an oblate ellipsoid. So we should look at oblate
ellipsoidal coordinates,

x = a coshyu cosv coso Define £ = sinv € [—1, 1],
y = a coshpu cosv sin¢ ¢ = sinhp € [0, 00),
2z = a sinhp sinwv. p= Vx2+92:@\/(1—§2)(1+g2)-

where p is the usual cylindrical coordinate. In terms of these
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A surface of constant p or ( is clearly bounded, while those of constant v
are not. In fact pu = pg is the surface
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so A = acoshpy, B = asinhpy, B/A = tanh g = (o/y/1+ (2 and a =
VA% — B? will give our conductor at ¢ = (.

To find the laplacian, we write the measure
ds* = da* +dy* + d2* = (dp)* + (dz)?
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= (he d&)* + (he dC)* + (hy d¢)?,

with
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In general the Laplacian is
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so the equation for the electrostatic potential V2V = 0 reads 1/a*(¢? + £?)
times
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Let us look for a solution by separation of variables,

V(£ ¢ ) = X(§)Z(C)2(0),
so dividing (1) by V gives
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Only the last term can depend on ¢, so it cannot, and we must have
(®(¢))rd*®(p/d¢* = C, a constant, with exponential solutions. But ¢
is defined only modulo 27, so we require ®(¢) = ®(¢ + 27), which requires
C=-m?*meZ.

The boundary conditions for our conducting spheroid is that V' =V}, at
¢ = (p for all £ and ¢, so in particular we need ®(¢) is a constant, m = 0,
and then the ¢ and £ dependent terms decouple, we also need X (&) to be
constant, and our problem reduces to V' = Z(() with

(1+§2)% =—-K=7= _/dgéﬁ = —Kcot ' ( + K,

where K and K are constants. At 7 — oo, which is ( — oo, cot™1(¢) — 0,
we set the potential to zero, so Ky = 0 with cot™*(¢) defined into [0, 7/2]
for ¢ € [0, 00).

From V =V} at ( = (o, we have
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(b) Consider varying our problem’s spheroid, letting (y — 0, which reduces
our spheroid to a thin disk of radius a. Then cot™ (s — 7/2,
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because r* = a®[((1 + ¢?) (1 — &) + (3¢?)] 2 a’C?. At large distances
the potential is Q) /4megr, so the total charge on the disk is @ = 8epa Vp, and
the capacitance is C' = Q/V, = 8¢pa.

Consider the coordinates 1 and £ for the plane with
asinhn B asin &
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Then
(z — acothn)? +y* = a® csch®n,

so constant 7 contours are circles centered at x = acothn, y = 0, while
2* + (y —acot £)® = a® csc? &,

so constant & are circles centered at x =0, y = acoté.

The connection of £ and 7 to the distances rq
and 7o and the angles ¢, and 6y from the points r 2
(£a,0), as shown, can be found from

r? = 2* +2ax + a® + y?
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so ridrs = 22°+2a*+ 297
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Thus
2 = 9g? cosh 7 + sinhn _ 9g2en 1
coshn — cos & coshn — cos &
2 = 22 coshn — sinh 7 _ 9g2pT 1
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so ri/ry = €.

From the law of cosines for the triangle shown,
4a* = r? + 13 — 2ryry cos(fy — 61) so
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B < cosh 7

———— — 1| coshn — cos& = cosé,
coshn — cos &

80 § =0, — 01, n=In(r1/ry).
Let’s get the metric tensor:
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gm = gee = a/(coshn —cos§), gy = 0.

Consider two circular wires of radius R with their centers separated by
a distance 2L, at x = +L, y = 0. The potential problem in which they
carry voltages £V satifies the two-dimensional Laplace equation V21 = 0
with ¢ = £V on the circles representing the boundaries of the two wires,
at (z F L)* + y* = R2. The positions on the z axis are for £ =0 or £ =,
SO
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for np the value of || on the boundaries.
As the Laplacian is

L
= coshnp = T (3)
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Laplace’s equation becomes simply
0? 0?
— + == =0
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with boundary conditions
77Z)(7]7 7T) = ¢(777 —7T), 77Z)(:tnBa f) = :|:V/27

with V' the maximum value of the voltage between the wires. Thus ¢ has
the unique solution ¢ = Vn/2np.

To calculate the impediance of this cable, we will calculate the average
power flow
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In the first equality in the second line the ¥)V?) term from integration
by parts is zero as 1 satisfies Laplace’s equation. In the evaluation of the
boundary integral in the third equation, the contributions from ¢ = +n

cancel.
To find the impediance we write (P) = (V?)/Z =V?/2Z, so

1
z = BT — = P cosh ! (L/R) = ,/ 1n(L/R+,/——1)
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There is another, perhaps more intuitive, way to find the impediance,
as Z = VI, where I is the current in one of the wires (—1 is in the other).
How do we find I7 We can use Ampere’s law
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where the path is up the y axis from —oo to oo and around a semicircle
at co. As F, = 0 the displacement current doesn’t contribute, and as each
wire gives a B field o< r~!, but in opposite directions, the B field falls off

like 1/r% at inﬁnity and the semicircle integral goes to zero. Thus
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Now
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so, not worrying about overall sign, we have
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Thus
Z=V/I =

If we assume the medium outside the wires is vacuum, and take as the
dimensions R = 0.5 mm, L = 4 mm, so (2) gives a = 3.9686 mm, and (3)
gives np = 2.76866. Noting that the “impediance of the vacuum”

Mo _ 37673 Q,

€0
we have Z = 332 ().

The dimensions given are about right for old “300 ohm” television cable.
That cable, however, does not consist of just two circular wires in vacuum,
but includes a plastic coating including a connecting piece which, I guess,
has a high dielectric constant. This will lower the impediance.



