Ampere’s Law — Project 1 Solution

We need to derive the macroscopic form of Ampere’s law, including the
displacement current.
Start with Ampere’s law in the microscopic description,
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where b and & are the microscopic fields and 7 (Z,t) is the microscopic current
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Here, as in our treatment of the macroscopic version of Gauss’ law, ¢; are the
point charges, divided into the free ones and the ones belonging to molecules.
Again n indexes molecules at positions 7, (and velocities v,,) and %, is the
relative position of the j’th charge of the n’th molecule from its center, with
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As the smearing commutes with dt, upon smearing the left hand side
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The delta functions means we need f(Z — ;) for the free charges and
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'We are assuming the motion is non-relativistic, and ignoring any fundamental term
from the spin of elementary particles.



for the bound charges.
Treating v}, as the same order as Z,, the zeroth order term is
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The first order term is
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Recall P(7,t) = > @@ f(Z—Z,), so the time derivative of the macroscopic
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With p, = 3 m) ¢jTjn, we see that the last two expressions are similar,

differing only in which index gets contracted.
So the a’th component of first order term in 7'(Z, ) is
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AS 3 j(n) 4Tjna = Pna, the second row here is

Z ai <Z (PnaVnp — PnpUna) 6(7 — fn)> . (1)
3 9T \'n

This agrees with the second line of Jackson 6.96
Jackson claims we should define a molecular magnetic moment
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His equation for (j,(Z,t)) contains a term
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From the definition of D (Jackson 6.92), there is one more term in d(D —
€oF)/0t, which is
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The first line here and the magnetization expression both involve
Z (]2] Ljnp Vjnv 5 Pz, f(Z—2,), the magnetization term contracted into 3., €4py€y =
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All together,
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How does this compare to what we need for (j,(Z,t))?
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The second order (in x;, and v;,) terms in (j,(Z,t)) are
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This verifies Jackson’s equation 6.96. As the expression averaged in (1)
is antisymmetric in a «» (3, we can write (1) as
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The same applies to the quadripole terms, where we have
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H at last
Let us define the magnetic field as
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Then Ampere’s microscopic law smeared, V x B — (1/¢2)0E /0t = po(3(Z, 1))
gives us Ampere + Maxwell in media:
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For most purposes, we may drop the terms other than M in the difference
between B and ,uOH



