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Intro to Lecture 26 (Dec. 9, 2016)

Last time we showed that space-time is a curved rather than a flat four
dimensional space, and used the equivalence principle to find the gravita-
tional red shift and to argue that light should be deflected by passing near
heavy objects. The equivalence principle says that at each point in space-
time one can erect a Minkowski coordinate system which is inertial, in the
sense that the laws of physics expressed at that point, are what they would be
without gravity, but they only hold in an infinitesimal neighborhood of that
point. We then introduced the Vierbein fields, the transition function from
those inertial charts with coordinates ξα to a more general set of manifold
coordinates xµ,
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Then we have the metric tensor
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for the affine connection.
Comparing the geodesic equation with that of a particle falling in Newto-

nian gravity we found that for nonrelativistic motion g00 = 1 − 2φ, where φ

is the gravitational potential (or 2φ = c2(1 − g00) if you can’t accept c = 1).

Today

We turn to the question of parallel transport, or really the question of
whether two vectors at nearby points are the same or not. We begin by
observing that in the inertial chart at P, parallel transport of a vector at
P through an infinitesimal distance leaves its components unchanged. De-
scribing this infinitesimal parallel transport in some other chart defines the
covariant derivative. Covariantly differentiating a scalar function is just or-
dinary differentiation, and as a 1-form acting on a vector is a scalar, and the
derivatives all obey the product rule, we can find the rules for covariantly
differenting 1-forms as well, and then an arbitrary tensor.

We will see how these affect the differential objects, leaving the gradi-
ent and curl unchanged but affecting the divergence. Finally, in preparation
for exploring curvature next class, but also to show these ideas have wider
application, we will describe the analogous covariant derivative in electromag-
netism, which involves the vector potential Aµ, and perhaps even consider
non-Abelian gauge theory, where the Aµ(x) is not a real number but a gener-
ator of a group transformation. In both cases, considering the integral of the
covariant derivative around an infinitesimal loop gives a variation by the field
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strength 2-form F or tensor F µν . Following the analogue back to space-time,
where the A field represents Lorentz transformations of the inertial frame ξα,
we will see how the curvature Rµ

νρσ is analogous to F µν .

In the last lecture, we will discuss geodesic deviation, which is to say how
the vector that describes two neighboring freely-falling particles changes with
time. This will lead us to the Riemann curvature tensor Rρ

σµν . By insisting
that the energy-momentum tensor T µν be covariantly conserved, we find the
field equations that tells space-time how to curve in the presence of matter.
This involves pieces of Rρ

σµν . Thus we will have found the Einstein field
equations of general relativity.

• Last class, Wednesday Dec. 14 at noon, here as usual

• homework #11 is voluntary, will not be collected, but the solution will
be posted Tuesday.

• final exam Dec. 20 at 8:00 AM in our usual room, Hill 009. I will try
to be more reasonable about the timing, but the exam is three hours.
You may bring 3 pages, 11 × 81

2
inches, with handwritten notes (on

both sides, if you like), but no other materials.


