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Physics 464/511 Lecture R Fall, 2016

1 Geodesic Deviation, and the Field Equa-

tions

Consider a set of trajectories
through spacetime, the set param-
eterized by ρ, the trajectories sep-
arated by a small distance. Each
trajectory is a curve parameterized
by a parameter λ, At each fixed λ,
we may consider

=0
=1 =2λ λλ ρ

ρ ρ+∆

n = ∆P|λ as a vector ∆ρ
∂P
∂ρ

= ∆ρ
∂xµ

∂ρ

∂P
∂xµ

= ∆ρ
∂xµ

∂ρ
∂µ, where xµ are the

coordinates in some chart. We define nµ = ∆ρ
∂xµ

∂ρ
.

Let us ask how n develops as we move along the trajectories, assuming
each of the trajectories obeys the law of geodesic transport:
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Taking ∆ρ
∂

∂ρ
of the geodesic equation, using ∆ρ

∂

∂ρ

∂uν

∂λ
= ∆ρ

∂3xν

∂ρ∂λ2
=

∂2

∂λ2
nµ, we have

∂2nµ

∂λ2
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∂

∂ρ
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ρσ

∣
∣
∣
∣
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︸ ︷︷ ︸

∆ρ ∂xα

∂ρ
Γµ

ρσ,α=nαΓµ
ρσ,α

uρuσ + 2Γµ
ρσu

ρ∂n
σ

∂λ
= 0. (1)

Let us use this to evaluate the second covariant derivative along the free-
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falling path of n, with1 Dn
µ

Dλ
=
∂xσ

∂λ
Dσn

µ =
∂nµ

∂λ
+ uσΓµ

ρσn
ρ,

D
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(
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∂λ
+ Γµ
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ρuσ
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=
∂
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(
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∂λ
+ Γµ

ρσn
ρuσ

)

+ Γµ
αβu

β

(
∂nα

∂λ
+ Γα

ρσn
ρuσ

)

D2nµ

Dλ2
=

∂2nµ

∂λ2
+ Γµ

ρσ,βn
ρuσuβ + 2Γµ

ρσ

∂nρ

∂λ
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ρσn
ρ ∂uσ

∂λ
︸︷︷︸

−Γσ
βα

uβuα

+Γµ
αβΓα

ρσn
ρuβuσ

But from Eq. (1)

0 =
∂2nµ

∂λ2
+ Γµ

σβ,ρn
ρuσuβ + 2Γµ

ρσ

∂nρ

∂λ
uσ

so
D2nµ

Dλ2
=

[
Γµ

ρσ,β − Γµ
σβ,ρ + Γµ

βαΓα
ρσ − Γµ

ραΓα
βσ

]
nρuβuσ

= Rµ
σρβn

ρuβuσ ,

where we have defined2 the Riemann curvature tensor

Rµ
σρβ := Γµ

ρσ,β − Γµ
σβ,ρ + Γµ

βαΓα
ρσ − Γµ

ραΓα
βσ.

The equation
D2nµ

Dλ2
= Rµ

σρβn
ρuβuσ is called the equation of geodesic devia-

tion.
There is another way to understand the curvature tensor, in terms of

the commutator of covariant derivatives. Consider two covariant derivatives
acting on a vector V ρ. First applying Dν ,

(DνV )ρ = V ρ
,ν + Γρ

σνV
σ

and then applying Dµ:

(DµDνV )ρ = V ρ
,ν,µ + Γρ

σν,µV
σ + Γρ

σνV
σ
,µ

+Γρ
τµ

(
V τ

,ν + Γτ
σνV

σ
)
− Γκ

νµ

(
V ρ

,κ + Γρ
σκV

σ
)

1Note: In the next equation, α and β are ordinary space-time indicies, not vierbein

tangent space indices. The replacement of ∂uσ/∂λ with −Γσ
βαuβuα is due to Duν/Dλ =

0.
2There seems to be an overall sign discrepancy in Rµ

σρβ between authors. Take the

following with this in mind.
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Subtracting the interchange µ ↔ ν, using that Γκ
νµ is symmetric, we have

for the commutator

([Dµ, Dν ]V )ρ =
(
Γρ

σν,µ − Γρ
σµ,ν + Γρ

τµΓτ
σν − Γρ

τνΓ
τ
σµ

)
V σ = Rρ

σνµV
σ .

Notice that this tells us that Rρ
σνµ is antisymmetric in its last two indices.

This relation giving the commutator acting on a vector has an inter-
pretation in terms of parallel transporting a vector around a rectangle of
dimensions ∆xµ × ∆xν in the µν plane. The vector will be transformed by
the matrix Rρ

σνµ. As the length of the vector will not be changed (as g is
covariantly constant), this matrix will have to be a Lorentz transformation.

This gives an interesting piece of information about a bunch of particles
initially at rest in a freely falling inertial chart. Then D

Dλ
= d

dt
if we take

λ = τ , the spatial components give the rule for the acceleration of a particle
at separation ~n at rest

(
d2~n

dt2

)i

= −Ri
0j0n

j .

More on the Equivalence Principle

Let T µν be the stress-energy tensor of matter (that is, no gravitational contri-
bution to energy density, etc.), given by special relativity as a function of the
fields, for example, of photons, charged particles, as discussed in Lecture O.
We know if we include all such matter and if there is no gravity, ∂µT

µν = 0.
This must still be true in the local inertial frame even if there is gravity. To
make it a statement independent of chart, note that in the inertial frame
Dµ = ∂µ, so DµT

µν = 0. Similarly for the electromagnetic current

DµJ
µ = 0 = ∂µJ

µ + Γµ
νµJ

ν = g−1/2∂µ

(
g1/2Jµ

)
.

This changed form for the divergence raises the question of whether charge is

conserved! In special relativity we write Q =

∫

J0d3V and use ∂0J
0 = ~∇ · ~J

and
∫
~∇ · ~Jd3V =

∫

S
→ 0 to show dQ/dt = 0. We can write this expression

in an inertial chart

Q =

∫

V

J0dx1 ∧ dx2 ∧ dx3 =

∫

V

ε(J, , , )
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The last expression is entirely geometrical. In an arbitrary frame it reduces
to

Q =
1

3!

∫

V

εµνρσJ
µdxν ∧ dxρ ∧ dxσ =

1

3!

∫

V

√
g ǫµνρσ J

µdxν ∧ dxρ ∧ dxσ.

Let us choose V (which can be an arbitrary spacelike hypersurface) to be t =
constant, so

Q =

∫ √
g J0 dx1 ∧ dx2 ∧ dx3.

dQ

dt
=

∫

V

∂0

(√
gJ0

)
d3V = −

∫

~∇ ·
(√

g ~J
)

d3V → 0,

so Q is indeed conserved.
What about energy and momentum?

DµT
µν = ∂µT

µν + Γµ
ρµT

ρν + Γν
ρµT

µρ = g−1/2∂µ (T µν√g) + Γν
ρµT

µρ.

The first term in the last expression is just what’s needed to make

P ν =

∫ √
g T 0ν d3V

conserved, but the second term breaks the conservation. This is because the
gravitational force changes the momentum of the matter.

We have already discussed the form of Maxwell’s laws in a geometrical
form d∗F = ∗J, which can be written

d (
√
gF µν) ∧ dxα ∧ dxβǫµναβ = ǫµναβ

√
g Jµ dxν ∧ dxα ∧ dxβ

or (
√
gF µν),ν =

√
gJµ.

But DνF
µν = ∂νF

µν + Γµ
ρνF

ρν

︸ ︷︷ ︸

0

+Γν
ρνF

µρ

= g−1/2∂ν (
√
gF µν) = Jµ.

Could we have started with an equation for A in special relativity and
used the equivalence principle? We start with

Jµ = F µν
,ν = −Aµ,ν

,ν + Aν,µ
,ν .
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I can write this covariantly as

Jµ = −Aµ;ν
;ν + Aν;µ

;ν = −DνD
νAµ +DνD

µAν .

But alternatively I could have writen it in flat space as Jµ = −Aµ,ν
,ν +Aν ,µ

,ν

and tried to make it covariant by replacing it by Jµ ?
= −DνD

νAµ +DµDνA
ν .

Are they both correct? The difference is 0
?
= [Dν , D

µ]Aν = Rν µ
ρν Aρ. We

define, in general, the

Ricci tensor: Rµν := Rα
µαν

so we see that they are equivalent only if the Ricci tensor vanishes. The
correct rule is, of course, the first, which is DνF

µν = Jµ. The second can
be ruled out because it is not covariant under electromagnetic gauge trans-
formations. This is a warning that using the equivalence principle to replace
derivatives by covariant derivatives is only straightforward for the first one,
at the point where Γ vanishes. That is, the equivalence principle shouldn’t
be used with too much blind faith, as it never answers 2nd degree derivative
questions. We should not be surprised at its failure here, because we have
had to use second derivatives, which will not be the same even in the local
inertial frame as they are in flat space.

We also define the

Scalar curvature: R := R µ
µ = gµνRµν

and the

Einstein curvature tensor: Gµν := Rµν −
1

2
gµνR.

Bianchi identities involving Ricci and Scalar curvatures:

In homework 2 we found that the operation of commuting elements of an alge-
bra gives a Lie algebra, and the commutation satisfies the Jacobi identity. For
the covariant derivatives, this means Dρ[Dµ, Dν ]+Dµ[Dν , Dρ]+Dν [Dρ, Dµ] =
0 which when applied to an arbitrary vector V β gives us our first Bianchi
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Identity:

B : Rα
βµν;ρ +Rα

βνρ;µ +Rα
βρµ;ν = 0

δµ
αB : Rβν;ρ +Rα

βνρ;α −Rβρ;ν = 0

1

3
ǫ β
κλα Bǫµνρλ : ǫ β

κλα Rα
βµν;ρǫ

µνρλ = 0

= −δµνρ
καβR

αβ
µν;ρ = −Rαβ

κα;β −Rαβ
αβ;κ −Rαβ

βκ;α

= 2Rβ
κ;β − R;κ = 0

The curvature tensor has lots of symmetries in its indices, made clearer if
we lower the first. Then Rµνρσ = Rρσµν , that is, symmetric under exchanging
the first two with the last two. We have already seen it is antisymmetric in the
last two, so must be antisymmetric in the first two as well. Also a cyclicity:
Rµνρσ +Rµρσν +Rµσνρ = 0, which can also be written ǫµνρσRµνρσ = 0. These
are demonstrated in Weinberg, p. 141, starting with the expression in terms
of derivatives, first and second, of g.

Define ∼G to be the double dual of R, that is,

∼Gαβ
µν =

1

4
ǫαβγδR ρσ

γδ ǫρσµν .

Define “Einstein”

Gβ
ν := ∼Gαβ

αν = −1

4
δβγδ
ρσνR

ρσ
γδ = −1

2
R βν

γν − 1

2
R ρβ

γρ = R ρσ
ρσ

= R β
ν − 1

2
Rδβ

ν ,

so Gµν = Rµν −
1

2
gµνR, and the last Bianchi identity is Gµ

ν;µ = 0.

Note Gµ
µ = Rµ

µ − 1
2
δµ
µR = −R.

2 Equations Determining Geometry

Mass is the source of gravity in Newtonian mechanics. Matter must affect
the metric in some way in general relativity. Let us return to the Sun.

∇2φ = 4πGρ, g00 = −1 − 2φ, gµν,0 = 0, all Γ ∝ φ,
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so to first order in φ, Rα
βµν = 2Γα

β[ν,µ], and Rα
0µ0 = Γα

00,µ. Thus R00 =

Γi
00,i − Γ0

00,0
︸ ︷︷ ︸

0

= −1
2
∇2g00 = ∇2φ = 4πGρ.

ρ is the mass density, or energy density, or T00, which suggests a connec-
tion between Rµν and Tµν . We have seen that DµT

µν = 0 is an equation of
motion, at least for particles in an electromagnetic field. So any connection
with Tµν ∝ Rµν cannot be right, because DµR

µν 6= 0. But DµGµν ≡ 0,
so perhaps Tµν ∝ Gµν . But for a point particle at rest, Tµν = 0 unless
µ = ν = 0. So R = −Gµ

µ = −G0
0, so G00 = R00 − 1

2
g00R = R00 + 1

2
G00, or

G00 ≈ 2R00 ≈ 8πGT00. [Note: This G is Newton’s gravitational constant,
not G µ

µ .]
Thus we are led to guess Einstein’s equation:

Gµν = 8πGTµν .

This is a relation between two tensors, so is covariant. Of course there is
another tensor whose covariant divergence vanishes, gµν , and we might have
written

Gµν + Λgµν = 8πGTµν . (2)

Λ is called the cosmological constant. It must be small because empty
space (no matter) could not be flat, Gµν = −Λgµν in empty space, and we
therefore have had a limit |Λ| < 10−56cm−2, or |Λ|−1/2 > 1010 lightyears.
For calculations on motions ≪ 1010 lightyears, |Λ|−1/2 might as well be ∞,
Λ = 0.

When it comes to cosmology it matters whether Λ = 0 or not. Einstein
originally did not include this term, but he found he could not find a stable
configuration for the universe. So he postulated the existence of the cos-
mological term to make it possible for the universe to sit still. Of course,
Hubble found that it wasn’t sitting still at all, but blowing up since the big
bang. Einstein called his postulating the cosmological constant “the biggest
blunder of my life. But it wasn’t a mistake — it may very well be the “dark
energy” that has everyone so excited now.

2.1 Number of degrees of freedom

We have found the equation that determines Gµν in terms of the matter
fields (if Λ = 0, or a combination of Gµν and gµν if Λ 6= 0), but this is only
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a constraint on ten combinations of Rρ
σµν . How do we count the degrees of

freedom which are undetermined?
For a scalar field, say one that satisfies the Klein-Gordon equation

∂µφ ∂
µφ+m2φ2 = 0,

we see that on an initial surface t = t0, one can choose φ(~x ) and φ̇(~x ) inde-
pendently at each spacial point, and its subsequent behavior is determined.
In analogy to a point particle, where x(t0) and ẋ(t0) are required to deter-
mine its subsequent motion, we call this one degree of freedom for each point
in space. Fourier transforming tells us

φ̃ =

∫

d3k φ̃~k e
i~k·~x−iω(|k|)t,

with ω(|k|) =
√
k2 +m2, with φ̃~k an arbitrary function of three-dimensional

momentum.
But counting degrees of freedom when there is a gauge invariance is more

complicated. For example, a massive vector field Aµ(x) satisfies ∂µF
µν +

m2Aµ = 0 (with F µν = ∂µAν − ∂νAµ as usual). This implies ∂νA
ν = 0 as

well as the Klein-Gordon equation for all components Aν . Thus

Ãµ =

∫

d3k Ãµ
~k
ei~k·~x−iω(|k|)t,

with ω(|k|) =
√
k2 +m2, but with the constraint ~k · ~A~k −ω(|k|)A0

~k
= 0. Thus

the four components of Aµ actually only describe three degrees of freedom.
And it gets worse if m = 0, because then, as we know, there is a gauge
invariance that tells us not all of Aµ is physical, that one of these degrees of
freedom is an arbitrary gauge transformation and not a physical degree of
freedom.

Now for gravity, things are much worse, as we know we can make an ar-
bitrary change in the chart coordinates at a point (a GL(4) with 16 arbitrary
parameters). So there is a tremendous set of gauge-like transformations that
do not correspond to physical degrees of freedom.

Let us count the independent degrees of g and R. g is a symmetric 4× 4
matrix, so has 10 parameters. R has four indices which can each take on 4
values, but there are lots of constraints from symmetry. It is antisymmetric
in the last two indices, so there are 6 possibilities there, and also, if we lower
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the first index, it is antisymmetric on those, so 6 possibilities there. But it is

symmetric under interchange of the first two and the last two, so

(
6
2

)

= 21

possibilities. Finally there is one constraint from cyclicity, so finally R lives
in a 20 dimensional space.

The symmetry of interchanging the first two with the last two indices also
tells us that Rµν and Gµν are symmetric tensors, which is why I said 10 field
equations.

But there are not 20, or even 10, free parameters for the physical gravi-
tational field. In fact, there are just two degrees of freedom for each ~k wave,
just as for the photon field. But the field is a tensor field rather than a vector,
describing a massless spin 2 object. A gravitational wave is transverse, just
as a photon is, but corresponds to elliptical distortions which can be along
one transverse axis or along one 45 degrees rotated (around ~k.)

2.2 Deriving the Gravitational Field Equations

Physics begins with an action:

S =

∫

d4x
√
gL.

L is a scalar Lagrangian density, a function of gµν and the matter degrees of
freedom, that is, all other dynamical variables other than space-time. Divide
it into

L = Lgrav + Lmatter.

Here Lgrav depends only on gµν and its derivatives, while Lmatter is specified
by extrapolation, using the equivalence principle, from a world where R = 0.
So we expect Lmatter = Lmatter (gµν , {ψ}) to not depend on derivatives of
g.

What scalar can we take for Lgrav? The only one involving two deriva-
tives of g is R. One could also add a constant Λ.

Euler’s equations need to be reconsidered asR involves second derivatives,
as well as the first derivatives squared that we are used to seeing in ordinary
lagrangian mechanics. If we take

Lgrav =
1

16πG
R− 1

8πG
Λ

and vary S with respect to gµν , and insist on no variation of the action, we
find the field equation Eq. (2).


