Last Latexed: November 22, 2016 at 9:04 1

Physics 464 Lecture L Fall, 2016

1 Fourier Analysis

Consider the self-adjoint (and simple) equation

d*y 2

—+n"y=0

g2 " Y
on the interval [, 7] with boundary conditions y(—7) = y(7), y'(-7) =
y'(7). The solutions are e*™? and periodicity requires n is an integer. Sturm-
Liouville guarantees completeness, which means any function f(¢) defined
on [—m, m] with at most finitely many discontinuities and no singularities can

be written

in the sense that the norm of (f — ZiVN anei”x) — 0, where the norm

N—oo
g2 = / 9(a)|d.

The function f = 3" a,e™® generated from f is, of course, periodic in x
with period 27, even if f isn’t. The usefulness of the expression depends,
however, on f being periodic, or at least that the properties of f one is
interested in are not affected by making it periodic. A prime example is in
discussing the tone of a musical note. The note is approximately periodic
with period 27 in the variable wt. The fourier series is a description of the
waveform in terms of the harmonics.

The fourier coefficients a,, corresponding to a function f are found by

I : 1 o iy
o /_7T flx)e™"dox = o n;m Qr, /_7T Ty = a,.

If f is real, a,, = a*,,,
if f is symmetric, a,, = a_,,,
if f is antisymmetric, a,, = —a_,.
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Some examples:

Square Wave:

Consider  f(z) = {ngfee((_oéﬂg)

as for a clock in some electronic designs.

1 & . .
a, = —/ flx)e "™ dx = K/ e " dx
2 J 2 J,
LV

Vv ef”“”|z]T —i— m odd
™o 0 m even # 0
v
= — for m=0
2
= Vo2V Sasin[(2n + 1)7]

50 f(x):5+ (e 2n+1

A square wave (of 50% duty cycle) has only odd harmonics.

In any real electronic device f(z) cannot really make an infinitely sharp

z\0 z,0
general feature of the behavior of a fourier series at a discontinuity.
Sawtooth:

The horizontal motion in a
CRT TV set looks roughly

_ 1
transition at x = 0. Note f(0) = V//2, the average 5 <lim +lim ). Thisis a

like a sawtooth, f(z) = x on
—m < z < 7, but periodic with \ \
period 27 (in wt). —TI L1
7 4 i T ;
a, = — vze "™dr = — r—e "dx
2m J_. 2mn J_. dx
i - i o —1)™
- $€72nz’ v e~ T 0 — ( ) n 7& 07
2mn - 2mn J_, n

2m(—1)n T
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and ag = 0.

> gint gminw > nt1SIDNT
Zz [ +— ] = 22(—1) +1T.

Here we see all the harmonics. In both cases we see a, = O(n
which is typical of functions with discontinuities.

ul

~1) at large n,

Full wave rectifier:

V(t) = Vo| sinwt|

Let x=wt, and Fourier
transform | sin wt|:

27

1 2

ag = —/ |smx|dz——/ sinz dr = —

v 0 T

(H#O) an = 2— ‘blnl" mzdx——/ blnx(elmﬂ_’_eﬂnz) dx
Tr —Tr
= L § (eix _e—z‘x) (einx+e—inx) dx

41 J,

s
/ e"*dr = 0 forr even
0

9;
l for r odd.
r

1 Lo LN 2,
i an727r n+1 n—-1 1-n —1-n) anz-1) or T even

2 4 SN cos2na
— | .
T 7r2314n2—1] 0

and a,, = 0 for n odd. So V/V, =

Note here the coefficients fall as n=2, and are absolutely summable. This

is because the function is continuous. Its derivative, however, falls with one
less power of n so is not absolutely convergent, indicating a discontinuity (at
0 and 7).
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1.1 Integration and Differentiation

It f(x) = Z ane™
then  f'(z) = Z ina,e™”

so if the fourier series for f converges it is easy to differentiate the function,
but convergence of the series is made worse by the extra factor of n. On the

other hand
a’" ma:
/ f dt = Qogx + nZ#O in -
this is not a periodic function unless ag = 0, i.e. [ f = 0 over one period,
because otherwise integrating over many periods builds up [ f. But except
for agr the new function is given by a fourier series with
an

bn = —, n;é()
m
a
b = > i,
0= D i
n#0

Note the integral may have an absolutely convergent expansion even if the
function does not.
Consider again the square wave
fa) = % N 2V o sin [(2n + 1)a]
(i 2n+1
which might constitute an ideal clock pulse in a digital electronic circuit.
Real devices, however, have an upper limit to their frequency response, so a
device that should be putting out an ideal waveform f is likely to put out a

truncated version,

1 (7 4
where a,, = —/ f(t)e ™ dt, so
2m

1 /7 al
_ = ¢ in(z—t) dt
| 03
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The sum can be done, as it is a geometric series,

—iN(z—t) _ ei(N+1)(a:7t)

e sin (N + ) (@ — t)]

1 —eile=t) B sin 1(x — t)

For our square wave f =V for z € (0,7), f =0 for z € (—m,0),

v /” sin[(N + 3)(z — t)]

f=— dt.
/ sin 1 (z — t)

2T

For N large, the integrand is very large for z — t ~ O(1/N), and rapidly
oscillating elsewhere. Let y = Nx and change variables to u = Nt, so

V/NTr sin(y —u)  du
0

U o sin[z (y — u)] N’

and only the region y — u < N is significant. Thus we may expand the sine
in the denominator,! As the

Fa K/ sinly = w) g, Z/ 0 Ysiey) = +v + Ssigy).
0 T —y m e

m y—u v

- Vv
Note f(0) = ——si(0) = V/2, as we would expect because the truncation does
77

not affect the antisymmetry (other than the constant piece V/2). Instead of
rising infinitely quickly, however,
N

Po) = Loy = v ) |

NV sin(— NV
f1(0) = =5(0) = = ()
dx dy T Y T

'We need some facts about the si function, which we defined earlier as si(z) =
— [278nt gt s0 si(0) = —% Im jix;o "ft—*l dt. As the integrand has no singularities, the
integral along the real axis is minus the integral over a large circle in the upper half plane,
1 T _iRe'? -1 )
s1(0) = +§ Im / eﬁﬁ iRe™ dp = *g, as the exponential goes to zero for almost
0 €
all ¢ and gives a finite contribution divided by R, so only the —1 contributes. Also, as the

integrand is symmetric, f:oyo = fyoo and so si(—y) = —7 — si(y).
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so for large NN the voltage rises fast,
o N. The maximum f takes, how-

ever, is when f/ = 0 = y = 7 V(t)
(acutally n, but n = 1 is the global V
maximum) with si(—7) = 0.281141, -
SO

Vimax = 1.08949V

independent of how high the cut-
off frequency is. So adding more
overtones fully, up to a larger limit
n, does not help damp the over-
shoot. This is called the Gibbs
phenomenon.

A technique for dealing with this overshoot problem is described in Arfken
(2nd Ed.) under the name of Lanczos convergence factors, which we will not
cover.



