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Physics 464/511 Lecture H Fall, 2015

1 Review of Complex Variables

In ancient Greece, it was believed that all real numbers (actually all ratios of
lengths) were rational numbers. When the Pythagorians discovered this was
not so, they regarded the new “irrational” numbers as so unnatural that only
members of their priestly band could cope with the dark secret of their exis-
tence. So top-secret was the existence of these irrational numbers that when
one of their members leaked this information to the general public, he was
put to death. Probably the funny association of “rational” and “irrational”
as properties of numbers and of human minds stems from that time.

The Pythagorians found irrationals by trying to solve the
equation x2 = 2. That the rationals were an incomplete set
in that this equation had no solution therein clearly did not
mean no solution existed, because it could be constructed
geometrically as h/a. a

h a

The real numbers are similiarly incomplete with respect to the equation
x2 = −1. The solutions we call ±i. The “existence” of i is not realized by
ratios of lengths or other classical objects. But one can create an algebra
for the complex variables, things of the form z = x + iy, where x and y
are real numbers, which is consistent and useful. Still, i troubled people
philosophically and hence we call it an “imaginary” number. But all numbers
are imaginary — it is just harder to find physical objects which use the rules
of complex arithmetic than objects using integer arithmetic.

The algebra assumes i commutes with everything, and i2 = −1. Any
polynomial or power series in z can thus be evaluated,

f = f(z) =
∑

i

aiz
i = f(x, y)

and is a complex number (or function) Re f + i Im f.

The magnitude of z is defined as |z| =
√

x2 + y2, a positive (or 0) real

number. The complex conjugate of z = x + iy is z∗ = x − iy. The argument
φ of z is such that x = |z| cosφ, y = |z| sin φ.

From the power series expansions of ez and for sin φ and cos φ, we find

eiφ = cos φ + i sin φ.
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Functions:
In a sense, a complex valued function of a complex variable f(z) can be

any pair of real valued functions u and v of two real variables

f(x + iy) = u(x, y) + iv(x, y).

The notion of (x, y) and (u, v) corresponding to complex variables is only
useful if the functions satisfy certain properties. In particular, think of the
derivative,

df

dz
= lim

∆z→0

f(z + ∆z) − f(z)

∆z
.

Assuming u and v are differentiable, this is

lim
∆x→0

∆y→0

(
∂u

∂x
+ i

∂v

∂x

)

∆x +

(
∂u

∂y
+ i

∂v

∂y

)

∆y

∆x + i∆y

=
∂u

∂x
+ i

∂v

∂x
+

(
∂u

∂y
+ i

∂v

∂y
− i

∂u

∂x
+

∂v

∂x

)
∆y

∆x

1 + i∆y/∆x

The derivative is meaningful as a complex quantity only if the limit does not
depend on the direction ∆y/∆x, which means the coefficient must vanish.
This requires both the real part and the imaginary part to vanish, which
gives the Cauchy-Riemann conditions

∂u

∂y
= −∂v

∂x
,

∂v

∂y
=

∂u

∂x
.

If these are satisfied we say f has the derivative

df

dz
=

∂u

∂x
+ i

∂v

∂x
.

If, for some small region in the (x, y) plane around z0, f(z) is differentiable
in this sense, we say f(z) is analytic at z = z0. If f(z) is analytic at every
point in a region D of the complex plane, we say it is analytic in D. If f(z)
is analytic in the whole complex plane, then f(z) is an entire function.

Note any function f(z) expressed in terms of elementary functions of
z, (not of x and y separately) will satisfy the Cauchy-Riemann equations
whenever the partial derivatives exist, and will therefore be analytic there.
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Note that the complex conjugation function f(z) := z∗ = x− iy is NOT

analytic. Neither is z 7→ |z| :=
√

x2 + y2. Recall that z∗ is called the
complex conjugate of z and |z| is called the absolute value or magnitude of
z.

1.1 Contour Integrals

If f = u + iv,

∫

C

f(z)dz :=

∫

[u(x, y) + iv(x, y)] (dx + idy) =

∫

u dx−v dy+i

∫

u dy+v dx.

For the first term, think of f as a vector ~A = (u,−v, 0), where the third com-

ponent is just added in for convenience. For the second, let ~B = (v, u, 0) =

ê3 × ~A.

∫

C

f(z)dz =

∫

~A · d~r + i

(∫

~B · d~r
)

=

∫

S

(

~∇× ~A + i~∇× ~B
)

z
dσ

=

∫

S

{

−∂v

∂x
− ∂u

∂y
+ i

(
∂u

∂x
− ∂v

∂y

)}

dσ = 0

which vanishes due to the Cauchy-Riemann conditions, if f is analytic on
the surface S bounded by the closed curve C.

This theorem:
∮

C

f(z)dz = 0 if f is analytic within the area of the complex

plane S bounded by the contour C

is called the Cauchy Integral Theorem.

Now consider

∮

C

f(z)

z − z0
dz, where f is analytic on S, but z0 is a point

within S, so of course there is a pole from the
1

z − z0
.
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First consider the contour C ′ which consists of
C, followed by L, R, and −L, where −L means
we retrace the same path in the opposite direc-
tion. R is a circle of small radius ρ centered on
z0. Now C ′ is a closed path enclosing the area S ′

which does not include the point z0, and so has
no singularities of f(z)/(z − z0), so

0 =

∮

C′

f(z)

z − z0
dz =

∮

C

+

∫

L

+

∮

R

+

∫

−L

.

L
−L

C’
C

z
0

R
B

A

Now
∫

L
=

∫ B

A
( )dz while

∫

−L
=

∫ A

B
( )dz =

∫ B

A
( )(−dz) = −

∫ B

A
( )dz, so

∮

C

f(z)

z − z0

dz = −
∮

R

f(z)

z − z0

dz.

On R, z − z0 = ρe−iφ and dz = −iρe−iφdφ so

∮

C

f(z)

z − z0
dz = −

∫ 2π

0

f(z0 + ρe−iφ)

ρe−iφ
(−iρ)e−iφdφ

= i

∫ 2π

0

f(z0 + ρe−iφ) dφ

Now we can choose ρ arbitrarily small, and as f is assumed analytic (and
therefore continuous) at z = z0, as ρ → 0, f → f(z0), a constant, and
∫

dφ = 2π, so
∮

C

f(z)

z − z0
dz = 2πif(z0)

for f analytic within C and z0 within C. This is called the Cauchy integral

formula. It is a very powerful tool, for it tells us that the value of f within
some region on which it is analytic is determined by the value of f on the
boundary:

f(z) =
1

2πi

∮

C

f(z′) dz′

z′ − z
.

We can also evaluate the derivatives:

f (n)(z) =
1

2πi

∮

C

f(z′) dz′
(

d

dz

)n
1

z′ − z
=

n!

2πi

∮

C

f(z′) dz′ (z′ − z)
−n−1

.
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This expression is perfectly well defined for all n. We will call it the Cauchy

differentiation formula. We see that an analytic function is infinitely differ-
entiable on the open set D on which it is analytic.

A consequence of the Cauchy integral formula is that a power series for
an analytic function about z0 converges within the largest circle around z0

which contains only analytic points of f .

Let z1 be the closest nonanalytic point, and C a
circle of radius just less than |z1 − z0|. Then f is
analytic within and on C, so for z within C,

f(z) =
1

2πi

∮

C

f(z′) dz′

z′ − z
.

But z′ − z = (z′ − z0)

(

1 − z − z0

z′ − z0

)

, and as
∣
∣
∣
∣

z − z0

z′ − z0

∣
∣
∣
∣
< 1,

z
0

C
z

1

f(z) =
1

2πi

∮

C

f(z′) dz′

(z′ − z0)

(

1 − z − z0

z′ − z0

) =
1

2πi

∞∑

n=0

∮

C

f(z′) dz′ (z − z0)
n

(z′ − z0)n+1

=

∞∑

n=0

f (n)(z0)

n!
(z − z0)

n.

In other words, we’ve proven that f(z) is given by a power series expansion
in z within any circle around z0 of radius less than |z1 − z0|.

1.2 Analytic Continuation

Now we will show an amazing manifestation of Blake’s statement that ev-
ery grain of sand reflects the whole universe. Well — at least for analytic
functions.

Let f be a function analytic on a connected open set S, and L be a
short line segment (of non-zero length) contained in S. Then f is completely
determined by its values on L.

That is, if f and g are analytic in S and f = g on L, f = g everywhere
in S.
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The proof uses the concept of analytic continuation as well as concepts
from topology. Start with a circle C within S about a point z0 on L. Then
f and g have power series expansions which converge within C to the same
values, so f − g has a power series expansion which converges to zero on L.
Thus each term in the expansion must be zero, and f = g within C.

Now I claim f = g everywhere in S. If not, there exists a z1 such that
f(z1) 6= g(z1) with z1 in S. Connect z0 to z1 by a path lying within S.

We have seen that for part of this path, f = g. The interval along
this path where f = g must end somewhere, say at z = z2. Draw a circle
around z2 which lies within S, and then
pick a point z3 on the f = g part of the
path close to z2, and draw a circle S3 about
it, including z2 and within the first circle.
Then again the power series for f − g → 0
about z3, so its coefficients are all zero and

f=g

f=g

z
2

3
z

z

z

0

1

3S

S

it converges within S3 to zero, and f = g within S3, But that includes the
point z2, so f(z2) − g(z2), in contradiction with the assumption.

Therefore f = g all along the path, and hence everywhere within S. Note
that f , given originally within a small circle, can be extended from each circle
to each overlapping circle, so the bounds of the region where a function is
analytic can be extended until some singularity makes the power series’ circle
of convergence not grow.

Example: The Γ function was defined for real z > 0 by Γ(z) =

∫ ∞

0

e−uuz−1du.

Using the complex exponential

uz−1 = e(z−1) ln u = e(x−1) lnueiy lnu,

we see that the integral is absolutely convergent if x > 0. And the derivative
with respect to z is also defined in that region. But away from the real axis
we may continue to negative Re z.

Thus Γ(z) is an analtyic function in the half plane Re z > 0 satisfying

the analytic relationship Γ(z) =
1

z
Γ(z + 1). We may analytically continue

this relation to evaluate Γ(z) for x > −1 except for z = 0. Then we may use
it again and again, until we have determined Γ(z) everywhere except at the
negative integers and zero. Our extension is analytic in each region, so by
our theorem this is the unique analytic continuation of the Γ function.
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Suppose f(z) is analytic in some connected region R which includes an
open interval of the x axis, and suppose f(z) is real on that interval. Then
f(z) = f ∗(z∗) everywhere that z and z∗ are in R.

Proof: The Cauchy-Riemann equations are preserved under v → −v,
y → −y, so g(z) := f ∗(z∗) is an analytic function which coincides with f(z)
on a line segment (the interval of the x axis). Thus f = g everywhere one
can get by analytic continuation, which includes all of R.

1.3 Laurent Series

Sometimes we have a function analytic in an
annulus, say R1 < |z−z0| < R2. Then by writ-
ing a Cauchy integral for f(z) with the solid con-

tour as shown, as f(z) =

∮

C−C′

dz′

2πi

f(z′)

z′ − z
we

may expand
1

z′ − z
=

1

z′ − z0

[

1 − z − z0

z′ − z0

]−1

=

∞∑

n=0

(z − z0)
n

(z′ − z0)n+1
on C where |z−z0| < |z′−z0|, and

z
0

z

C

C’

1

z′ − z
= − 1

z − z0

[

1 − z′ − z0

z − z0

]−1

= −
∞∑

n=1

(z′ − z0)
n−1

(z − z0)n
on C ′,

where |z′ − z0| < |z − z0|.

With bn =

∮

C

dz′

2πi

f(z′)

(z′ − z0)n+1
and cn =

∮

C′

dz′

2πi
f(z′)(z′ − z0)

n−1 we have

f(z) =

∞∑

n=0

bn(z − z0)
n +

∞∑

m=1

cm

(z − z0)m
.

We can combine these by writing

f(z) =
∞∑

n=−∞

an(z − z0)
n with an =

{
bn for n ≥ 0

c−n for n < 0

which is called a Laurent series. The coefficients are given by

an =
1

2πi

∮
f(z′) dz′

(z′ − z0)n+1
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with the integral around a full circle in the annulus.
If the function is analytic in the region inside the annulus as well, all the

an for n ≤ −1 are zero, for f(z′)(z′ − z0)|n|−1 is now analytic and the
∮

of it
is zero. If f has a simple pole at z = z0, a−1 is nonzero but all other an for
negative n are zero. f(z) = g(z)/(z − z0) for g(z) analytic is an example.

If f(z) =
g(z)

(z − z0)N
for g analytic and g(z0) 6= 0, then an = 0 for n < −N ,

but a−N 6= 0. Other negative n′s may or may not have zero an’s. We say
f(z) has a pole of order N at z0.

From the Laurent expansion alone, we cannot conclude what is happening
if nonzero a−n’s continue to arbitrarily large n. For example, the Laurent

series for
1

z − 1
2

found from the annulus |z| = 1 has such an infinite number

of terms. But if f(z) is analytic in some neighborhood of z0 except at z0,
and the Laurent expansion comes from within this neighborhood, then if an

is nonzero for infinitely many n < 0, f(z) has an essential singularity at z0,

which is an obscenity which we shall try to avoid. (the famous e−1/x2

at
x = 0 is one such.)

1.4 Branch points

Consider f(z) = z1/2. How should that be de-
fined? For real positive z we know we want a real
positive number. If z = reiθ, then f(z) =

√
r eiθ/2

meets the requirements. But now consider start-
ing from z = 1, and continuously varying around
the circle z = eiθ until you reach z = −1, θ = π,
f = eiπ/2 = i. Good enough, i =

√
−1 is what we

started complex variables with. But what if we
go continuously along the dashed path z = e−iφ,
φ : 0 → π, so f → e−iπ/2 = −i. Two different
values of f at the same point!

0

[z]

To avoid this, we place an arbitrary cut in the complex plane, and say
that f(z) has a discontinuity along that line.

Note that placing the cut along the negative axis is only a convention. For
the square root function the cut can be along any curve from zero to infinity.
But the ends cannot be moved: they are called branch points and are singular



464/511 Lecture H Last Latexed: October 26, 2016 at 11:16 9

points, not because f blows up there, but because it is not analytic there.
[e.g. ∂f

∂z
∼ z−1/2 blows up.]

If we describe the square-root function u =
√

z with the cut along the
negative real axis, as above, in terms of the magnitude and argument φz of
z, we see that |u| =

√

|z| and φu = 1
2
φz with −π < φz ≤ π, so −π/2 < φu ≤

π/2. But z is equally well defined with 0 ≤ φz < 2π, and then we would have
ũ =

√

|z| continuous along the negative axis, but with ũ(x−iy) = −u(x−iy)

for positive x and y, as φ̃u = φu + π in that region. We see that we might
extend the square-root function’s domain to 0 ≤ |u| and −2π ≤ φu ≤ 2π
constrained1 to be periodic in φu with period 4π. Of course each complex
number z appears twice in the extended domain. If we make a copy of the
z plane, and cut the two copies and glue them together so as to make f a
continuous function, analytic everywhere except at z = 0, we get this space.
Of course the gluing can’t take place without the sheets passing through each
other transparently, so our extended complex plane is a manifold not quite
embeddable in R

3. This space is called a Riemann surface.
Just like the square root, all other fractional powers of z have a branch

point at zero and a cut which is usually taken along the negative real axis.
For zp/q, with p, q ∈ N

+, we need a q-sheeted Riemann surface.

The function (z + 1)1/2 has its branch point at z = −1. We take the cut
along x ≤ −1, y = 0, but this is only by convention.

Now consider f(z) = (z2 − 1)
1/2

= (z + 1)1/2(z − 1)1/2. If I lay both
cuts to the left, we have a line along which f(z) is discontinuous. But if
we examine the discontinuity for z = x ± i0, x < −1, we find there is no
discontinuity there, because each factor has contributed a phase of i above
the cut (total −1) while each gives −i (total −1) below, for continuity. So
in fact we have a branch cut from −1 to +1.

Suppose f(z) is analytic within some contour except at z0. Then
∮

f(z)dz =
2πia−1, where an is the coefficient of the Laurent expansion of f about z0.

1I am skipping fine points about |u| = 0.
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a−1 is called the residue of f at z0. If f has several
isolated singularities, the contour C can be shrunk
until it decomposes into separate contours around
each singularity, and

∮

C

f(z) dz = 2πi
∑

Res
zi

f

where the sum is over the singularities at zi within
C.

C

Examples:

I =

∫ ∞

−∞

1

1 + x2
dx. Consider the contour con-

sisting of the real line from −R to R, and a half
circle R as shown, closing the contour. On R,

z = Reiφ, dz = Reiφi dz. Then

∮
1

1 + z2
dz =

I + lim
R→∞

∫ π

0

R eiφ idφ

1 + R2e2iφ
. As R → ∞, the inte-

grand ∼ R−1 → 0,
∫

R
vanishes, so

I = 2πi
∑

Res
UHP

1

1 + z2

R

The only singularities of
1

1 + z2
=

1

2i

(
1

z − i
− 1

z + i

)

are at ±i, only +i

being in the upper half plane, within the contour, and the residue of 1
z−i

is
1, so ∫ ∞

−∞

1

1 + x2
dx = 2πi

1

2i
= π.

This formula indicates an interesting fact. Consider a contour integral of
f around C. If I move the contour continuously, it makes no difference as
long as I don’t sweep over a pole, but it changes discontinuously if I do. Now
consider what happens if there is a pole on the contour, as in

I =

∫ a

−a

f(x)

x
dx,

where f is analytic for |z| ≤ 1. The integral is not well defined in a normal
Riemann sense, because of the behavior at x = 0. Close the contour with a
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semicircle C: z = aeiθ, 0 ≤ θ ≤ π, so

∫

C

+ I =

∮
f(z)

z
dz. It is, of course,

still not defined, although the
∫

C
part is fine.

Now consider displacing the pole slightly,

∮
f(z)

z − iǫ
dz.

Now the contour includes the pole and the integral is 2πif(iǫ), and as ǫ → 0,
I includes a piece 2πif(0).

Now consider displacing the pole slightly in the other direction,

∫
f(z)

z + iǫ
dz.

Now the contour does not include a singularity near 0, and does not include
the 2πif(0) piece.

The iǫ prescriptions are each well defined, although they give different
answers. We can also take the average, called the principal part

P

∫ a

−a

f(x) dx

x
:=

1

2

[∫ a

−a

f(x) dx

x + iǫ
+

∫ a

−a

f(x) dx

x − iǫ

]

.

It can also be shown (Arfken 2nd ed page 352) that this is the value you
would get if you took

lim
δ→0+

[∫ −δ

−a

f(x)

x
dx +

∫ a

δ

f(x)

x
dx

]

,

excluding symmetrically a region about the pole.

For our next example I need the concepts of fourier transforms. The
fourier transform of a function f(x),−∞ ≤ x ≤ ∞ is the function f̃(k) :=
∫ ∞

−∞

dx√
2π

f(x)e−ikx. We will see in Lecture M that this transform can be

inverted f(x) :=

∫ ∞

−∞

dk√
2π

f̃(k)e+ikx, under appropriate conditions that these

integrals are well defined. For this to be true, we must have

∫ ∞

−∞

eik(x−x′)dk = 2πδ(x − x′).

We will justify this rather ill-defined statement in Lecture M.
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Suppose we want a solution of the 1-D wave equation

∂2f

∂t2
− c2∂2f

∂x2
= s(x, t),

where I have included a source term. If we make a Fourier transform2 in
both variables,

g(k, ω) =

∫ ∞

−∞

dx√
2π

e−ikx

∫ ∞

−∞

dt√
2π

eiωtf(x, t),

then (−ω2 + c2k2) g(k, ω) = s̃(k, ω) := 1
2π

∫
dx dt e−ikx+iωts(x, t). The solu-

tions are clearly given by g(k, ω) = s̃/(c2k2 − ω2).
Suppose the source is a point source at x = 0 oscillating with a fixed

frequency s(x, t) = e−iω0tδ(x), so

s̃ =

∫
dx dt

2π
e−ikxδ(x) ei(ω−ω0)t =

∫
dt

2π
ei(ω−ω0)t = δ(ω − ω0).

Then

f(x, t) =

∫
dk dω

2π
eikx−iωtg(k, ω)

=

∫
dk dω

2π
eikx−iωt δ(ω − ω0)

c2k2 − ω2

=

∫
dk

2π
eikx−iω0t 1

c2k2 − ω2
0

.

Note that the integral is not well defined because
of the poles right on the axis of integration.

1

c2k2 − ω2
0

=
1

2ω0c

(
1

k − ω0/c
− 1

k + ω0/c

)

.

For x > 0, we can throw in the semicircle in the
U. H. P., as

∣
∣eikx

∣
∣ ∼ e−x Im k → 0, so

k

f(x, t) =
ie−iω0t

2ω0c
Res

(

eikx

[
1

k − ω0/c
− 1

k + ω0/c

])

,

2Physicists insist on changing the sign of the exponent ikx → −iωt when the variable

is time rather than space. Of course mathematicians variables are unphysical and can’t

tell the difference.
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but for each pole we must decide whether to use a ±iǫ or a principal part,
or some other prescription for handling the pole. The 1/(k − ω0

c
− iǫ) gives

f(x, t) =
i

2ω0c
e−iω0(t−x/c),

a right-going wave, while if we use 1/(k−ω0/c+iǫ) this gives no contribution.
The 1/(k + ω0/c) gives the opposite wave.

The ambiguity in whether to include the poles on the axis has a physical
origin — we are trying to determine the wave consistent with certain sources,
but any solution to the source-free or homogeneous equation could be added
and we would still have a solution to the equation with the specified source.
The poles at k = ±ω0/c produce such solutions.

1.5 The Beta Function

Now we turn to a very different example. We saw that
√

z2 − 1 has a branch
cut which has branch points at ±1. We could choose to cut it from −1 to
+1. This is also true of the function f(z) = (z − 1)ν(z + 1)n−ν . We discuss
the cuts due to each factor, and then combine them.

The first factor, (z− 1)ν , has a cut to the left of +1 and values as shown:
(1 − x)νeiπν

1 (x − 1)ν

(1 − x)νe−iπν

The second factor, (z+1)n−ν , has a cut to the left of −1 and values as shown:

(−1 − x)n−νeiπ(n−ν)

−1 (x + 1)n−ν

(−1 − x)n−νe−iπ(n−ν)

Together this gives for (z − 1)ν(z + 1)n−ν

(−1)n(1−x)ν(−1−x)n−ν −1
eiπν(1−x)ν(1+x)n−ν

e−iπν(1 − x)ν(1 + x)n−ν
1 (x−1)ν(x+1)n−ν
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with no cuts outside the interval [−1, +1].
If we consider integrating this function around

a contour C, by collapsing we get

C

∮

C

f(z) dz =

∫ 1

−1

(1 − x)ν(1 + x)n−ν ×
{
eiπν(−dx) + e−iπν(dx)

}

= −2i sin(πν)

∫ 1

−1

(1 − x)ν(1 + x)n−νdx.

The Euler Beta function is usually defined by

B(x, y) :=

∫ 1

0

tx−1(1 − t)y−1dt for Re x > 0, Re y > 0

but with u = 2t − 1, this becomes

B(x, y) =

∫ 1

−1

du(1 + u)x−1(1 − u)y−121−x−y.

Thus

B(n + 1 − ν, 1 + ν) =
2−n−2 i

sin(πν)

∮

(z − 1)ν(z + 1)n−ν dz.

Now deform the contour until it is a very large circle
∮

(z − 1)ν(z + 1)n−ν dz =

∮

zn dz

(

1 − 1

z

)ν (

1 +
1

z

)n−ν

=

∮

U

u−n−2du(1 − u)ν(1 + u)n−ν

=
2πi

(n + 1)!

(
d

du

)n+1

(1 − u)ν(1 + u)n−ν

∣
∣
∣
∣
∣
u=0

,

where I have substituted u = 1/z so the contour U is a small circle about 0,
and used the Cauchy Differentiation Formula. The simplest case, n = −1,
gives

B(−ν, 1 + ν) = − π

sin(πν)
.

We shall see, in Lecture K

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
,
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so B(−ν, 1 + ν) =
Γ(−ν)Γ(1 + ν)

Γ(1)
= − π

sin(πν)
,

or Γ(x)Γ(1 − x) =
π

sin(πx)
.

1.6 Mittag Leffler

Suppose f(z) is analytic everywhere ex-
cept at a set of isolated simple poles at zk

and f(z)/zn −→
|z|→∞

0. Let rk = Res
z=zk

f(z) =

lim
z→zk

(z − zk)f(z). Then

f(z) =
1

2πi

∮

C1

f(z′)

z′ − z
dz′

=
1

2πi

∮

C2

f(z′)

z′ − z
dz′ −

∑

k

Res
zk

f(z′)

z′ − z

z

z

z z
z

1

2
3

k

R

C

C2

1

As f(z′) has only a simple pole at zk, and 1
z′−z

is analytic there (for
z 6= zk),

Res
zk

f(z′)

z′ − z
=

1

zk − z
rk.

Suppose f(z) −→
|z|→∞

0, so

∮

C2

f(z′)

z′ − z
dz′ → 0 as R → ∞. Then

f(z) =
∑

k

rk

z − zk
.

If f(z) 6→ 0 but f(z)/z → 0, we cannot ignore the contour at infinity.
But

f(z) =
1

2πi

∮

C2

f(z′)

z′ − z
dz′ +

∑

k

rk

z − zk
.

At zero,

f(0) =
1

2πi

∮

C2

f(z′)

z′
dz′ +

∑

k

rk

−zk

,
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so f(z) − f(0) =
1

2πi

∮

C2

f(z′)

(
1

z′ − z
− 1

z′

)

︸ ︷︷ ︸

z

z′(z′ − z)

dz′

︸ ︷︷ ︸

→ 0 as R f(z)/z2
∣
∣
R
→ 0

+
∑

k

rk

(
1

z − zk
+

1

zk

)

.

This is the first term of the Mittag-Leffler expansion.
If f(z)/z does not vanish at infinity, but f is known to have behavior at

infinity bounded by a polynomial, a subtraction similar to the above, but
with more terms, will work. Then f(z)/zn does vanish for some higher n,
and subtracting the first n terms in a power series expansion of f(z) will
produce an expression in terms of the residues of the poles alone, with the
more complicated integral vanishing in the limit.

1.7 Entire function with simple zeros

Now consider g(z) an entire function with simple zeros at zk. (That is,

g(zk) = 0 but g′(zk) 6= 0.) Let f(z) =
1

g

dg

dz
=

d

dz
ln g. f has simple

poles at zk, with residue 1 (if g ∼ (z − zk)h(z), dg/dz|z=zk
= h(zk), so

Res
1

g

dg

dz
= Res

1

z − zk
= 1). Assuming that f doesn’t blow up as z → ∞,

f(z) =
g′(0)

g(0)
+

∑

k

(
1

z − zk

+
1

zk

)

=
d

dz
ln g

∫ z

0

d

dz
ln g = ln g(z) − ln g(0) =

g′(0)

g(0)
z +

∑

k

ln
z − zk

−zk
+

z

zk
,

and

g = g(0)eg′(0)z/g(0)
∏

k

[

ez/zk

(

1 − z

zk

)]

,

so we have a product expansion of g.
Example:

g =
sin(z)

z
, g(0) = 1, g′ = 0,

sin z

z
=

∏

n 6=0

ez/nπ
(

1 − z

nπ

)

=
∞∏

n=1

ez/nπez/(−nπ)
(

1 − z

nπ

)(

1 − z

−nπ

)

=
∞∏

n=1

(

1 − z2

n2π2

)

.
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so

sin z = z
∞∏

n=1

(

1 − z2

n2π2

)

as promised.

I am going to skip the inversion of a power series expansion and the
stability of amplifiers, although they are nice things. But of much more use
is a method of deriving asymptotic expansions called the

1.8 Method of Steepest Descents

Let us consider I(s) =

∫

C

g(z)esf(z)dz for real s. For large positive s, the

function will be dominated by any region at which Re f takes on its maxi-
mum value along the contour. Assume f and g are analytic where necessary,
and let f = u + iv. Then the integrand would
appear to have a contribution ∼ esmaxC u. But the
contour C can be deformed so that the maximum
of u takes on a different value, without changing

C

of u = Re f
ridge of maxima

integration
contour

the integral. What is happening is that, if the imaginary part of f is varying,
the phase eisv is varying rapidly, and we are not getting a contribution as
large as we think because of these contributions.

Suppose we choose the contour to go over the ridge u = maximum at the
lowest point, the saddle point. Then

∂u

∂x

∣
∣
∣
∣
sp

=
∂u

∂y

∣
∣
∣
∣
sp

= 0, so
df

dz

∣
∣
∣
∣
sp

= 0.

This gives the lowest estimate es max u but this is a good estimate, because
∂v

∂x
=

∂v

∂y
= 0 also, so the phase is not changing, and there are no cancela-

tions.
As the region around the maximum dominates,

I(s) ≈
∫

C

g(z0)e
s
[
f(z0) +

1

2
(z − z0)

2f ′′(z0)
]

dz

= g(z0)e
sf(z0)

∫

e
s
2
(z−z0)2f ′′(z0) dz

︸ ︷︷ ︸
√

2π

−sf ′′(z0)

.
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Example: The Hankel function H
(1)
ν (s) for positive s is defined as

H(1)
ν (s) =

1

iπ

∫

C

e(s/2)(z−z−1) dz

zν+1
.

0

C [z]

Near 0, we go out along the real axis, so e
s
2(z−z−1) ≈ e−s/2z → 0 faster than

1/zν+1 blows up. As z → −∞ it is also well defined.
The maximum of f = 1

2
(z − z−1) is at 1

2
+ 1

2
z−2 = 0, or z = i. So we let

C go thorugh i, and get f = i, f ′′ = −z−3 = −i, so

H1
ν (s) ∼ i−ν−1

πi
eis

√

−2π

s(−i)
= ±

√

2

π

eis

√
s

i−ν−5/2.

The overall sign requires closer inspection, as given in Arfken, showing the
correct sign is −.

Finally, we will get the leading term in Stirling’s approximation to s! for

large positive s. s! =

∫ ∞

0

νse−νdν. Let ν = sz, so

s! = ss+1

∫ ∞

0

zse−szdz = ss+1

∫ ∞

0

es(ln z−z)dz.

The saddle point f ′ = 0 is when d
dz

(ln z − z) = 1
z
− 1 = 0, so z0 =

1, f ′′(z0) = −1/z2 + 0 = −1, f(z0) = −1, so

∫ ∞

0

es(ln z−z)dz ≈ e−s

√

−2π

s(−1)
=

√

2π

s
e−s

where the positive sign is clear from taking the integral of a positive integrand
along the real axis. Thus

s! ∼
√

2πs ss e−s.

This is Stirling’s formula, but we will derive an asymptotic series later, of
which this is the first term. The extra terms, however, are hardly ever needed.


