Physics 464 /511 Homework #2
Due: Sept. 26, 2016 at 5:00 P. M.

1 [5pts] Evaluate
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over the unit cube defined by the point (0,0,0) and the unit intercepts on
the x-, y-, and z-axes. Note that

(a) 7 dd is zero for three of the surfaces and
(b) each of the three remaining surfaces contributes the same amount to the

integral.

2[5 pts] Show that

1
s [rdi=v

where V' is the volume enclosed by the closed surface S.

3  [5pts] An algebra consists of a vector space A over a field F', together
with a binary operation of multiplication on the set A of vectors, (Ax A — A)
such that for all a € F' and «, 8,7 € A, the following are satisfied:

(A) (aa)B = a(ap) = a(ap)

(B) (a+pB)y=ay+py

(C) a(f+7)=aB+ay

If, in addition, (D): a(8v) = (af)y, A is an associative algebra.

(a) Show that linear transformations on a finite-dimensional vector space V'
into itself (endomorphisms) form an associative algebra A.

(b) Define the commutator of two elements T and Ty of A by [T}, Ts] :=
TlTQ — TQTl. Show that

(i) [, ) = —[T», T1).
(i) [[Th, To), T3] + [T, T3], Th) + [[T3, Th], T2] = 0.

Condition (ii) is called the Jacobi identity. Note that it implies that the
commutation relation is not an associative multiplication, as in general
it implies

(11, To], T3] — [T, [T2, T5)] = [[Th, To), T5) + ([T, T3], Th) = —[[T5, TA), T3]

which need not be zero.

A vector space L with an additional bilinear operation L x L — L
satisfying conditions (i) and (ii) is called a Lie algebra. The elements
need not come originally as a commutator of elements of an associative
algebra, as they did here. But from a Lie algebra we can define the
enveloping algebra, which is associative.

4 [5pts] [Note: I don’t expect you to completely resolve the difficulties
here, but I want you to show that you recognize what the issues are, and give
indications of how to resolve them.]

In quantum mechanics, the states of a system are taken to be a Hilbert
space. For a single particle in one dimension, the wave functions ¢ (x) have
an inner product given by (p|¢) = [g ¢*(x)1(x) dr. The classical degrees of
freedom such as position x and momentum p are replaced by linear operators
x and p or combinations of these, and the reality of these variables classically
become conditions that the operators are hermitian, which means equal to
its adjoint. The adjoint of a linear operator A is a linear operator Af such
that (¢|Avy) = <AT¢'1/)> for any wave functions v and ¢.

The expected value of a classical quantity represented by A in a state
represented by a normalized wavefunction v is given by (A) = (Y|Ay) =
JR¥*Atpdx. Tts complex conjugate is (A)* = (Ay|y) = <w'AT¢>, so it is

real if A is hermitian. The momentum operator is p = ———, and then the
commutator [X,p] := xp — px acting of a wave function |¢) gives
ho h o
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and x and p are canonically conjugate variables.

Clearly x is hermitian, but how is it that p is? That is, what have we been
sloppy about in specifying our space of wave functions that needs specifying
to verify that p = pf?

Perhaps it will be illuminating to consider instead the azimuthal angle ¢
h 0
and the z component of angular momentum, L, = —,% with [L,, ¢| = ih.
i

These have the same commutation relation as p and x. According to the
Heisenberg uncertainty principle!, if [A, B] = iC, then the uncertainty in
A, given by (AA)? = [¢* (A— (A))’¢dz, and the uncertainty in B are
restricted by AAAB > 1[(C)|. So AL, A¢ > /2, but we can have states of
definite L., so AL, =0, while —7 < ¢ < 7, so A¢ < 7. How can that be?

IProof: We need to use the Schwarz inequality:
el P11 > Kolw) .
As (AA)? = ||[(A — (A) )¢b||? the Schwarz inequality tells us
(A= (4))I(B = (B))$)| = (WI(A— (4)) (B~ (B))o)
(0 |[(4- ) BB+ B (B) (A- () + (4 Bw)l
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The first two terms are hermitian conjugates so give a real value, while the commutator
is ¢ times the hermitian operator C, so gives an imaginary, and the absolute value must
be > the imaginary part.



