
Physics 464/511 Homework #2
Due: Sept. 26, 2016 at 5:00 P. M.

1 [5 pts] Evaluate
1

3

∫

S

~r · d~σ

over the unit cube defined by the point (0, 0, 0) and the unit intercepts on
the x-, y-, and z-axes. Note that

(a) ~r · d~σ is zero for three of the surfaces and

(b) each of the three remaining surfaces contributes the same amount to the
integral.

2 [5 pts] Show that
1

3

∫

S

~r · d~σ = V

where V is the volume enclosed by the closed surface S.

3 [5 pts] An algebra consists of a vector space A over a field F , together
with a binary operation of multiplication on the set A of vectors, (A×A→ A)
such that for all a ∈ F and α, β, γ ∈ A, the following are satisfied:

(A) (aα)β = a(αβ) = α(aβ)

(B) (α+ β)γ = αγ + βγ

(C) α(β + γ) = αβ + αγ

If, in addition, (D): α(βγ) = (αβ)γ, A is an associative algebra.

(a) Show that linear transformations on a finite-dimensional vector space V
into itself (endomorphisms) form an associative algebra A.

(b) Define the commutator of two elements T1 and T2 of A by [T1, T2] :=
T1T2 − T2T1. Show that



(i) [T1, T2] = −[T2, T1].

(ii) [[T1, T2], T3] + [[T2, T3], T1] + [[T3, T1], T2] = 0.

Condition (ii) is called the Jacobi identity. Note that it implies that the
commutation relation is not an associative multiplication, as in general
it implies

[[T1, T2], T3]− [T1, [T2, T3]] = [[T1, T2], T3] + [[T2, T3], T1] = −[[T3, T1], T2]

which need not be zero.

A vector space L with an additional bilinear operation L × L → L
satisfying conditions (i) and (ii) is called a Lie algebra. The elements
need not come originally as a commutator of elements of an associative
algebra, as they did here. But from a Lie algebra we can define the
enveloping algebra, which is associative.

4 [5 pts] [Note: I don’t expect you to completely resolve the difficulties
here, but I want you to show that you recognize what the issues are, and give
indications of how to resolve them.]

In quantum mechanics, the states of a system are taken to be a Hilbert
space. For a single particle in one dimension, the wave functions ψ(x) have
an inner product given by 〈φ||ψ〉 =

∫

R
φ∗(x)ψ(x) dx. The classical degrees of

freedom such as position x and momentum p are replaced by linear operators
x and p or combinations of these, and the reality of these variables classically
become conditions that the operators are hermitian, which means equal to
its adjoint. The adjoint of a linear operator A is a linear operator A† such
that 〈φ||Aψ〉 =

〈

A†φ
∣

∣

∣|ψ〉 for any wave functions ψ and φ.
The expected value of a classical quantity represented by A in a state

represented by a normalized wavefunction ψ is given by 〈A〉 = 〈ψ||Aψ〉 =
∫

R ψ∗Aψ dx. Its complex conjugate is 〈A〉∗ = 〈Aψ||ψ〉 = 〈ψ|
∣

∣

∣A†ψ
〉

, so it is

real if A is hermitian. The momentum operator is p =
h̄

i

∂

∂x
, and then the

commutator [x,p] := xp− px acting of a wave function |ψ〉 gives

x
h̄

i

∂ψ

∂x
−
h̄

i

∂

∂x
xψ = ih̄ψ so [x,p] = ih̄



and x and p are canonically conjugate variables.
Clearly x is hermitian, but how is it that p is? That is, what have we been

sloppy about in specifying our space of wave functions that needs specifying
to verify that p = p†?

Perhaps it will be illuminating to consider instead the azimuthal angle φ

and the z component of angular momentum, Lz =
h̄

i

∂

∂φ
with [Lz, φ] = ih̄.

These have the same commutation relation as p and x. According to the
Heisenberg uncertainty principle1, if [A,B] = iC, then the uncertainty in
A, given by (∆A)2 =

∫

ψ∗ (A− 〈A〉)2 ψ dx, and the uncertainty in B are
restricted by ∆A∆B ≥ 1

2
|〈C〉|. So ∆Lz ∆φ ≥ h̄/2, but we can have states of

definite Lz, so ∆Lz = 0, while −π ≤ φ ≤ π, so ∆φ ≤ π. How can that be?

1Proof: We need to use the Schwarz inequality:

||φ||2||ψ||2 ≥ |〈φ||ψ〉|2.

As (∆A)2 = ||(A− 〈A〉 )ψ||2 the Schwarz inequality tells us

(∆A)2 (∆B)2 ≥ |〈(A− 〈A〉 )ψ||(B − 〈B〉 )ψ〉| = 〈ψ||(A− 〈A〉 ) (B − 〈B〉 )ψ〉

=
1

2

〈

ψ
∣

∣

∣

∣

∣

∣

[

(A− 〈A〉 ) (B − 〈B〉 ) + (B − 〈B〉 ) (A − 〈A〉 ) + [A,B]
]

ψ
〉

|.

The first two terms are hermitian conjugates so give a real value, while the commutator
is i times the hermitian operator C, so gives an imaginary, and the absolute value must
be ≥ the imaginary part.


