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Spin-phonon resonances in nearly polar metals with spin-orbit coupling
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In metals in the vicinity of a polar transition, interactions between electrons and soft phonon modes remain
to be determined. Here we explore the consequences of spin-orbit assisted electron-phonon coupling on the
collective modes of such nearly polar metals in the presence of magnetic field. We find that the soft polar
phonon hybridizes with spin-flip electronic excitations of the Zeeman-split bands leading to an anticrossing. The
associated energy splitting allows for an unambiguous determination of the strength of the spin-orbit mediated
coupling to soft modes in polar metals by spectroscopic experiments. The approach to the polar transition is
reflected by the softening of the effective g factor of the hybridized spin-flip mode. Analyzing the static limit, we
find that the polar order parameter can be oriented by magnetic field. This provides possibilities for alternative
switching protocols in polar metallic materials. We demonstrate that the effects we predict can be observed with
current experimental techniques and discuss promising material candidates.
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I. INTRODUCTION

Though polar metals that undergo inversion-breaking tran-
sitions to phases characterized by polar space groups were
predicted several decades ago [1], it is only relatively recently
that they have been realized experimentally [2–7] with many
more predicted [8–11]. Moreover, many anomalous properties
of polar metals, particularly in the superconducting state, have
been predicted [12–19] by invoking a spin-orbit interaction
mediated coupling between polar fluctuations (arising from
soft polar phonons) and electrons. However, to date there
is no consensus about the magnitude of this coupling. A
recent ab initio study provided an estimate for this type of
coupling in doped strontium titanate [19]; previously its in-
fluence on superconducting state was found to be weak [20].
This nearly polar metal has several unconventional properties
[21], possibly related to quantum polar fluctuations [22–24].
Here we propose a mechanism to probe the strength of this
spin-orbit mediated coupling in nearly polar metals, metals in
the vicinity of their polar transitions on the disordered side.
We demonstrate the presence of a spin-phonon resonance in
magnetic field; the hybridization of the soft transverse optical
phonon and the electronic spin-flip mode lead to an energy
splitting that is a function of coupling strength. Based on our
results, we propose spectroscopic measurements to extract
the coupling strength and we also discuss possibilities for
switching in the structurally polar phase.

In nearly polar metals, the interaction of electronic excita-
tions and the soft phonons is an area of current exploration
[12,16,23,25]. Here we study the consequences of spin-orbit
assisted electron-phonon coupling in the vicinity of a polar
critical point. The appropriate interaction Hamiltonian is

Ĥint = λ
∑
k,q

∑
s,s′

c†
k+q/2,s[(k × σ̂ss′ ) · Pq]ck−q/2,s′ , (1)

where λ is the electron-phonon coupling constant, c†
k,s (ck,s) is

the electron creation (annihilation) operator with momentum
k, spin s =↑,↓, σ̂ is the Pauli matrix for spin (or Kramers
“pseudospin” quantum number), and Pq describes the local
polarization of the crystal at finite momentum q, which is
related to the optical phonon displacement field according
to the formula Pq = n0(Ze)uq with n0 and Ze as ionic den-
sity and Born effective charge, respectively. We note that
Eq. (1) can be straightforwardly generalized to the case of
an inversion-breaking, but nonpolar, phonon. In that case one
should replace Pq → uq, which also results in a symmetry-
allowed coupling. For the remainder of the paper we will
consider mostly materials near polar instability and hence
use the notation in Eq. (1). Here we note that the fluctu-
ating phonon couples to the electronic spin current; since
this coupling remains finite in the limit of q → 0, it allows
direct coupling to the critical mode, leading to a range of
interesting phenomena emerging close to quantum criticality
[12,13,16,17,19]. Alternatively, interaction (1) can be seen as
a dynamical Rashba spin-orbit interaction, where both the
polar axis direction and the coupling magnitude are dynam-
ical fluctuating variables. In Fig. 1(a) we show a schematic
of the dynamical Rashba effect where the conduction bands
have a dynamical shift due to interaction with the fluctuating
soft phonon. As we show below, in the presence of a Zee-
man splitting, this coupling allows for a resonant interaction
between phonons and spin-interband transitions [Fig. 1(b)].
Moreover, with the application of magnetic field, one expects
the spin-rotation symmetry for the conduction electrons, and
consequently for the phonon polarization due to interaction
(1), to be broken, which is otherwise preserved. Indeed, the
interaction Hamiltonian (1) is invariant under simultaneous
rotation of electron spin, momenta, and phonon polarization.
The magnetic field breaks this symmetry, resulting in multiple
coupled phonon and electronic modes.
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FIG. 1. Schematics of (a) the virtual spin-orbit assisted electron-
phonon interaction, where the green (squiggly) line is the soft
transverse optical phonon, (b) the virtual spin-orbit mediated
electron-transverse optical phonon interaction in the presence of a
magnetic field near the chemical potential μ0, (c) the avoided cross-
ing of the soft polar and the electronic collective modes where � is
frequency, B is magnetic field, and � is a function of the Rashba-
type electron-phonon coupling strength λ that can be extracted
experimentally, and (d) orientation of the polar order parameter by
magnetic field.

The resulting coupling between spin and polar degrees
of freedom raises intriguing parallels with insulating mul-
tiferroics. Here, magnetic-field-induced polarization [26],
polarization switching [27], and ferroelectricity [28] have
been observed, offering promise for the development of
magnetically recorded ferroelectric memories [29]. Analo-
gously in these Rashba-type polar metals, the coexistence of
magnetic and polar orders could lead to novel spintronics
functionalities. To assess such prospects of using spin-orbit
coupled polar metals, the strength of λ in Eq. (1) is of crucial
importance. However to date there have been no proposals
to directly measure the magnitude of this spin-orbit assisted
electron-phonon coupling constant.

In this paper, we study the collective modes of a nearly po-
lar metal in the presence of a magnetic field. We demonstrate
that the spin-orbit mediated interaction (1) leads to directly
measurable spectroscopic signatures: avoided crossing (an-
ticrossing) of the spin-flip modes of conduction electrons
and the coupled phonon-plasmon modes [see Fig. 1(c)]. The
magnitude of the coupling can be extracted from the splitting
emerging at the anticrossing point. Furthermore, the collective
electronic spin-flip mode softens as the polar critical point is
approached. In the ordered phase, we show that the spin-orbit
assisted electron-phonon coupling in Eq. (1) makes it possible
to orient the polar order with magnetic field, aligning it in
the plane perpendicular to the field [see Fig. 1(d)]. Finally
we discuss specific experiments that can extract the spin-orbit
assisted coupling between the polar mode and the electrons,
and possible spintronics functionalities.

The rest of the paper is organized as follows. In Sec. II we
describe our model and our general strategy for studying col-
lective modes in magnetic field in nearly polar metals, which

includes the discussion of effects of long-range Coulomb
repulsion on electrons and polar phonons. The hybridization
of phonons, plasmons, and electronic spin-flip modes at finite
energies is discussed in Secs. III A and III B. In Sec. IV we
explore the effects of magnetic field on the order parameter
and the critical low-energy properties near the polar transition.
In Sec. V we discuss the effects of temperature, disorder and
orbital quantization on our results (Sec. V A), results for two-
dimensional (2D) systems (Sec. V B), and the experimental
proposals for extracting the strength of spin-orbit assisted
electron-phonon coupling and orienting the polar order with
magnetic field (Sec. V C). Our results are summarized in
Sec. VI.

II. MODEL AND GENERAL RELATIONS

In this section we describe the model we use to study the
collective modes of a spin-orbit coupled nearly polar metal
in the presence of magnetic field. In Sec. II A we discuss the
effects of Coulomb interactions, in particular the distinction
between longitudinal optical (LO) and transverse optical (TO)
modes that it introduces, and in Sec. II B we present general
relations used to evaluate the collective modes in the presence
of coupling (1).

To facilitate the analytical progress, we consider a sin-
gle parabolic band model for conduction electrons. For most
derivations, we will take T = 0 and ignore the orbital effect
of the magnetic field, focusing only on the Zeeman effect for
conduction electrons (see Sec. V A for the effects of finite
temperatures and orbital quantization which do not change
the qualitative results). We further assume (without the loss of
generality due to spherical symmetry of the model) the mag-
netic field to be applied along the z direction. The electronic
Hamiltonian is written as

Ĥ = Ĥ0 + Ĥint, (2)

where Ĥint is given by Eq. (1) and the single-particle Hamilto-
nian Ĥ0 is given by

Ĥ0 =
∑
k,s

εkc†
k,sck,s + 1

2
gμB

∑
k,s,s′

B · σ̂ss′c†
k,sck,s′ , (3)

where εk = k2/2mb is the free particle dispersion, B = Bẑ is
the magnetic field, g is the Lande g factor, μB is the Bohr
magneton, and mb is the band mass. Additionally, we take
the effects of Coulomb interaction into account, which is
discussed in detail in Sec. II A.

We now discuss the bare phonon part of the system. The or-
der parameter field Pq can be represented in terms of phonon
creation and annihilation operators [30]:

Pq = 1√
V

[
ωq(ε(q) − ε∞)

4π

]1/2

[bqe−iωqt + b†
qeiωqt ]eq, (4)

where ωq is the phonon dispersion, ε(q) and ε∞ correspond
to static and high-frequency dielectric constants in the absence
of free carriers, eq is the unit polarization vector, and V is the
volume of the crystal.

To study the effects of interaction, we require the form of
the phonon propagator. The bare phonon Green’s function can
be obtained by calculating the correlation of order parameter
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fields Pq [Eq. (4)] in the Matsubara formalism:

D0
αβ (q,�m) = 1

V

ωq(ε(q) − ε∞)

4π

−2ωq

�2
m + ω2

q
eα (q)eβ (q). (5)

Using (ε(q) − ε∞) = ε∞ω2
pi/ω

2
q [31], where ωpi =√

4π (Ze)2n0/(ε∞M ) is the ionic plasma frequency with
n0 as the density of ion pairs, Ze as the ionic charge, and M
as the reduced ionic mass, Eq. (5) can be written as

D0
αβ (q,�m) = − 1

V

�2
0

2π

1

�2
m + ω2

q
eα (q)eβ (q), (6)

with �0 ≡ √
ε∞ωpi. For brevity, we will write D0

αβ (q,�m)
as D0

αβ in what follows. We note that the phonon dispersion
(ωq) appearing in the Green’s function (6) does not distinguish
between LO and TO modes. For the same reason, the unit
polarization vector eq obeys eα (q)eβ (q) = δαβ . The distinc-
tion between LO and TO modes amounts to splitting the total
polarization into that for longitudinal and transverse ones,
with the dispersion ωq also being distinguished as that for LO
and TO modes, correspondingly. Later in this section we will
discuss the LO-TO distinction originating from the long-range
Coulomb interaction.

A. Effects of Coulomb interactions near the polar critical point

We now discuss properties of the Coulomb interaction near
a polar critical point (PCP). The Coulomb repulsion experi-
enced between two electrons in a doped polar semiconductor
is screened by both the polar phonons and electrons and is
given by

V (q,�m) = 4πe2

ε(q,�m)q2
, (7)

where

ε(q,�m, T ) = ε∞ + ε∞ω2
pi

�2
m + ω2

TO(q, T )
+ 4πe2

q2
P (q,�m)

(8)

is the dielectric permittivity given by the sum of its lattice
and free electron parts [31]. Here, as mentioned above, ωpi is
the ionic plasma frequency, ω2

TO(q, T ) ≡ ω2
q ≈ ω2

TO(0, T ) +
c2

T q2 is the TO phonon dispersion near the � point of the
Brillouin zone, with ωTO(0, T ) being the temperature (T )-
dependent TO mode frequency and cT being the speed of the
TO mode, and

P (q,�m) = νF

(
1 − �m

vF q
arctan

vF q

�m

)
(9)

is the polarizability of charge carriers for q 
 kF in the
degenerate regime considered within the random phase ap-
proximation (RPA, justified below), with νF as the electronic
density of states.

In the absence of conduction electrons, the energy of the
zone-center TO mode ω2

TO(0, T ) ∝ 1/ε0(T ), where ε0(T ) is
the static dielectric permittivity which diverges at the PCP.
This suggests ωTO(0, T → Tc) → 0 near the PCP. Tc can be
manipulated by a number of means such as stress [32,33], iso-
tope exchange [34], or isovalent doping [35–37] and reached

at the quantum limit (Tc → 0) to be called as the polar (quan-
tum) critical point.

1. Weakness of electron-electron interaction
near the polar transition

Near the PCP, the Coulomb repulsion between electrons
is weak due to diverging contribution of the dielectric per-
mittivity to the soft phonons [24]. In particular, the usual
parameter describing the importance of Coulomb correlations
is r∗

s ∼ 1/(kF aBε0(q)) in the presence of phonon screening,
where q is of the order of the inverse average interelec-
tron distance, i.e., kF . For metals with large kF , the lower
bound for ε0(kF ) is (ωmin

LO )2/(ωmax
TO )2, where ωmax

TO is the max-
imal energy of the TO phonon in the Brillouin zone and
(ωmin

LO )2 = (ωmin
TO )2 + ω2

pi. For sufficiently large Born charge
of the polar mode, ωpi � ωTO, and the dispersion of the LO
mode (as well as the effects of anisotropy at finite momenta)
can be neglected. This results in ε0(kF ) ∼ ω2

pi/(ωmax
TO )2 � 1,

which implies r∗
s 
 1. For lower electron concentrations, the

situation is even more straightforward. Sufficiently close to
the PCP, ε0(kF ) ∼ ω2

pi/c2
T k2

F , suggesting r∗
s to be vanishingly

small as kF → 0. Consequently, the effects of the Coulomb
repulsion on the electrons (e.g., self-energy) can be neglected
for a nearly polar metal with a sufficiently large phonon Born
effective charge at any carrier concentration.

2. Distinction between TO and LO mode frequencies in the
presence of free charge carriers

In insulating ferroelectrics, long-range dipolar interactions
lead to a splitting between LO and TO modes. To assess this
effect in a polar metal, we consider the Coulomb interaction
(7) and substitute Eq. (8) for the dielectric permittivity into
Eq. (7) to obtain the screened Coulomb interaction between
two conduction electrons as

V (q,�m) = 4πe2

ε∞q2 + 4πe2P (q,�m)

�2
m + ω2

TO(q)

�2
m + ω2

LO(q,�m)
,

(10)
where

ω2
LO(q,�m) = ω2

TO(q) + q2ω2
pi

q2 + 4πe2

ε∞
P (q,�m)

, (11)

with ωTO(q) as the TO phonon dispersion near the � point
of the Brillouin zone. The LO mode frequency, ω2

LO(q),
is the pole of Eq. (10) which can be found by solving
ω2

LO(q,−i�) − �2 = 0 (after analytic continuation) for �,
where ω2

LO(q,−i�) is given by Eq. (11). The solution is dis-
cussed in detail in Sec. III B 1; here we discuss the qualitative
aspects of the distinction between LO and TO phonons.

One can split the phonon propagator into contributions of
TO and LO modes using the identity eμ(q)eν (q) = δμν . For
transverse and longitudinal polarizations, this identity can be
split into

eμ(q)eν (q) =
[
δμν − qμqν

q2

]
+

[
qμqν

q2

]
, (12)

where the first term corresponds to the polarization for TO
modes while the second term is for LO modes. Accordingly,
the phonon dispersion in Eq. (6) is replaced by that of TO and
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LO modes, respectively. Upon considering this distinction, the
phonon Green’s function is written as

− �2
0

2πV

[
D0

αβ

]−1 = [
�2

m + ω2
TO(q)

]
δαβ

+ [
ω2

LO(q,�m) − ω2
TO(q)

]qαqβ

q2
. (13)

We now show that the LO-TO distinction [second term on the
right-hand side of Eq. (13)] depends sensitively on the concen-
tration of conduction electrons. In the absence of screening by
conduction electrons one recovers the usual expression for LO
phonon frequency, different from that of the TO one:

ω2
LO(q) = ω2

TO(q) + ω2
pi. (14)

Let us now consider the effect of conduction electrons.
For � � vF q, where � is the retarded frequency, we can
write Eq. (9) as P (q,�m) ≈ (νF /3)(vF q/�m)2, which sub-
sequently gives Eq. (11) to be

ω2
LO(q,�m) ≈ ω2

TO(q) + ω2
pi

1 + ω2
p∞/�2

m

, (15)

where

ωp∞ =
√

4πne2

ε∞mb
(16)

is the bare plasma frequency with n as the carrier concentra-
tion and mb as the electron effective mass. We note that it is
the high-frequency limit of the dielectric function, i.e., ε∞,
that enters into plasma frequency here, not ε0, the static one.

Equation (15) suggests that the LO-TO splitting would be
negligible when ωpi is small. The relevant scale for com-
parison here is ωp∞ which can be tuned by carrier density.
Qualitatively, if we assume that the carrier density is high such
that � ∼ ωLO 
 ωp∞, then Eq. (15) can be written as

ω2
LO(q) ∼ ω2

TO(q)

(
1 + ω2

pi

ω2
p∞

)
. (17)

Furthermore, if ωp∞ � ωpi, then we can ignore the second
term of Eq. (17) which means ωLO(q) ≈ ωTO(q), i.e., no dis-
tinction between LO and TO modes. So the poles of Green’s
function (13) suggest a triple-degenerate phonon mode and a
large energy plasmon, ωp∞.

Finally, if we assume that � 
 vF q (or effectively the
static limit, to be considered in Sec. IV), then P (q,�m =
0) ≈ νF , which simply implies static screening by conduction
electrons. This gives the difference between phonon frequen-
cies (11) to be

ω2
LO(q,� 
 vF q) − ω2

TO(q) ≈ q2ω2
pi

q2 + κ2
, (18)

where we recall that κ =
√

4πe2νF /ε∞ is the inverse screen-
ing length. Equation (18) suggests that the LO-TO splitting in
this regime cannot be ignored at finite q.

B. Electron-phonon interaction and collective modes

Having justified that the electron-electron interaction is
weak near the PCP in Sec. II A 1, we consider electron-phonon
interaction of Rashba spin-orbit coupling (SOC) type (1)
where the polar order fluctuation field Pq couples to electron
density at linear order [12,14–18,38].

To study the eigenmodes emerging in the interacting nearly
polar metal, we study phonon self-energy due to the electron-
phonon coupling (1). Assuming weak coupling, we limit
ourselves to the lowest-order (in λ) self-energy. As we ap-
proach the polar transition from the disordered side, we
assume the characteristic TO mode frequency ωTO(0, T ) to
be finite and large enough, such that the effects of critical
fluctuations can be neglected (see Appendix B). The analog
of the Dyson equation for the full phonon propagator is

D̂(q,�m) = [[D̂0(q,�m)]−1 − �̂(q,�m)]−1, (19)

where �̂(q,�m) is the phonon self-energy and D̂0(q,�m) is
the bare phonon propagator given in Eq. (13). The collective
modes are obtained by solving Det[D̂−1(q,�)] = 0 for �,
where analytic continuation to real frequencies i�m → � +
i0+ is assumed.

The lowest-order self-energy correction to the bare phonon
propagator with the interaction vertex as (k × σ )i from Eq. (1)
can be explicitly written as

�αβ (q,�m) = λ2T
∑
ωn

∑
k

Tr
[
(k × σ̂)α

× Ĝ
(
ωn − �m

2
, k − q

2

)
(k × σ̂)β

× Ĝ
(
ωn + �m

2
, k + q

2

)]
, (20)

where α, β ε (1, . . . , 3) and

Ĝ(εn, k) = 1

2

∑
s

[σ̂0 + sσ̂z]
1

iεn − ξ s
k

, (21)

is a single-particle Green’s function for electrons with ξ s
k =

εk + s�Z/2 − μ(�Z ) and s = ±1. Here, �Z = gμBB is the
Zeeman energy and μ(�Z ) is a chemical potential which
itself is a function of magnetic field; the technical details of
obtaining μ(�Z ) is deferred to Appendix A. The appearance
of σ̂z in the Green’s function is due to magnetic fields applied
along the z direction. Note that the magnetic field affects
directly only the electronic dispersion splitting it into spin-up
and spin-down subbands. Consequently, the magnetic field
effects on the polar order in our model are directly related to
the coupling (1).

The form of self-energy, after the trace is taken and the
frequency summation, can be written as

�αβ (q,�m) = λ2

2

∑
ss̄

∑
k

k2 f ss̄
αβ (θ, φ)

× nF
(
ξ s̄

k−q/2

) − nF
(
ξ s

k+q/2

)
i�m − εk+ q

2
+ εk− q

2
− (s − s̄)�Z

2

, (22)
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where nF (ξ r
k ) is the Fermi function,

∑
k → V

∫
d3k/(2π )3 in

the continuum limit, and

f ss̄
xx (θ, φ) = (1 + ss̄) sin2 θ sin2 φ + (1 − ss̄) cos2 θ,

f ss̄
yy (θ, φ) = (1 + ss̄) sin2 θ cos2 φ + (1 − ss̄) cos2 θ,

f ss̄
zz (θ, φ) = (1 − ss̄) sin2 θ,

f ss̄
xy (θ, φ) = −(1 + ss̄) sin2 θ

sin 2φ

2
+ i(s − s̄) cos2 θ,

f ss̄
yx (θ, φ) = f ss̄

xy (θ, φ)[i → −i],

f ss̄
xz (θ, φ) = −(1 − ss̄)

sin 2θ

2
cos φ − i(s − s̄)

sin 2θ

2
sin φ,

f ss̄
zx (θ, φ) = f ss̄

xz (θ, φ)[i → −i],

f ss̄
yz (θ, φ) = −(1 − ss̄)

sin 2θ

2
sin φ + i(s − s̄)

sin 2θ

2
cos φ,

f ss̄
zy (θ, φ) = f ss̄

yz (θ, φ)[i → −i], (23)

where θ and φ are polar and azimuthal angles of k, respec-
tively. While writing Eq. (22), we assumed the system to be
partially polarized when both the magnetically split spin-up
and spin-down subbands are (partially) occupied. For future
purposes, we refer to this scenario as the “two-band” case.
The fully polarized system, when only the lowest subband
(spin-down) is occupied, is referred to as the “one-band” case.
Unless specifically mentioned, all our discussion is for the
two-band case.

III. SPIN-PHONON-PLASMON RESONANCES AT q = 0

In this section we present the results on the spectrum of
collective modes at low momenta and finite frequencies (in
the limit � � vF q) as a function of magnetic field. Without
interaction (1), the system hosts a doubly degenerate critical
TO mode, two coupled plasmon-LO modes, and a precession-
like spin-flip resonance of conduction electrons with energy
�Z = gμBB. The interaction leads to hybridization between
these modes, resulting in the anticrossing at fields where their
frequencies coincide. The latter can be used to extract the
value of the coupling constant λ from spectroscopic experi-
ments.

Finally, we demonstrate that on approach to the transition,
the effective g factor of the spin-flip mode softens. We further
examine the properties of the polar transition for the interact-
ing system in Sec. IV.

A. Phonon self-energy at q = 0

As a first step towards calculating the collective modes,
we calculate the leading-order self-energy correction at q = 0.
The components of the self-energy can be obtained by substi-
tuting q = 0 in Eq. (22) and performing the k integral. The
explicit calculation at T = 0 gives

�̂(�m) = −λ2m5/2
b V

15π2

L[μ(�Z ),�Z ]

�2
m + �2

Z

ˆ̃�, (24)

where

ˆ̃� =
⎛
⎝�Z −�m 0

�m �Z 0
0 0 2�Z

⎞
⎠ (25)

and

L[μ(�Z ),�Z ] = [(2μ(�Z ) + �Z )5/2 − (2μ(�Z ) − �Z )5/2]

≡ LZ . (26)

The form of L[μ(�Z ),�Z ] given here is for the two-band
case; for the one-band case, the second term of Eq. (26) has
to be omitted. From now on, for brevity, we will refer to
L[μ(�Z ),�Z ] as LZ .

We now discuss the q = 0 results [Eq. (24)] using the
symmetries of the expression for the phonon self-energy
[Eq. (20)]. The phonon self-energy (20) can be identified as
a linear combination of correlators between different com-
ponents of spin current along different directions, which are
related to the response functions as per the Kubo formula. In-
deed, the spin-current operator is defined as ĵσa

i = kiσ̂a, which
is understood as the ith component of spin current along the
a direction. Upon explicitly writing one of the components of
the self-energy, one can easily identify it to be a combination
of several spin current-spin current correlation functions. For
instance, �xx consists of jσz

y - jσz
y , j

σy
z - j

σy
z , jσz

y - j
σy
z , and j

σy
z - jσz

y

correlations.
In the absence of magnetic field, the phonon self-energy

(20), interpreted as a combination of spin current-spin current
correlators, vanishes at q = 0. Indeed, in the absence of mag-
netic field, the spin current is a conserved quantity at q = 0.
So any combination of the spin current–spin current response
functions must vanish in this limit, explaining why the phonon
self-energy is zero in this case.

Once the magnetic field is applied along the z direction,
only the spin current along z, i.e., jσz

i , commutes with terms
having spin current along the z direction in the interaction
Hamiltonian (1). In the self-energy, these kinds of terms either
trace out identically or give intraband contributions, (1 + ss̄),
which has zero spectral weight at q = 0 in agreement with jσz

i
conservation. The terms with spin current along the x and y
directions in Eq. (1), however, do not commute with jσz

i and
give finite contribution to the self-energy. This leaves only
the j

σy
z - j

σy
z correlation contributing to �xx, corresponding to

the second term of f ss̄
xx (θ, φ) in Eq. (23). Due to rotational

symmetry in the xy plane, �yy is identical to �xx. However,
physically it is the jσx

z - jσx
z correlation that contributes to �yy.

Finally, �zz consists of j
σy
x - j

σy
x , jσx

y - jσx
y , j

σy
x - jσx

y , and jσx
y - j

σy
x

correlations. Out of these four, only direct correlations, j
σy
x - j

σy
x

and jσx
y - jσx

y , are nonzero: cross correlations, j
σy
x - jσx

y and
jσx
y - j

σy
x , identically cancel each other according to the Pauli

spin anticommutation principle. Parenthetically, we note that
the cross correlations in �zz do not vanish due to rotational
symmetry in the xy plane as the coherence factor f ss̄

zz (θ, φ)
in Eq. (23) does not include any parity-breaking term (or
odd-in-φ terms). Therefore, �zz has contributions from two
nonzero direct correlations, while �xx and �yy have only one.
This indicates that the weight of �zz is twice that of �xx or
�yy, in agreement with explicit results in Eqs. (24) and (25).
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Along the same lines, one can argue about off-diagonal
components of the self-energy as well. The �xy component is
a combination of jσz

y - jσz
x , j

σy
z - jσx

z , jσz
y - jσx

z , and j
σy
z - jσz

x correla-
tions. Out of these only the j

σy
z - jσx

z correlation yields a nonzero
contribution. The other off-diagonal components, �xz and
�yz, vanish completely due to trace and the rotational sym-
metry in the xy plane, as evident from the forms of f ss̄

xz (θ, φ)
and f ss̄

yz (θ, φ) in Eq. (23).

B. Mode hybridization and approach to the transition

The next step is to calculate eigenmodes of the system. We
will first discuss the �Z = 0 case. In this case we reproduce
the known results for coupled phonon and electronic plasmon
modes. Next, we will consider finite �Z which brings spin-
flip transition modes into consideration. The most important
aspect of the coupling of spin transitions to phonons and
plasmons is the appearance of anticrossing as a function of
magnetic field, which allows to extract the electron-phonon
coupling strength (λ) from spectroscopic experiments. More
detailed discussion of possible experimental proposals to ex-
tract the coupling strength is given in Sec. V C.

1. Phonon-plasmon coupling at �Z = 0

In the absence of magnetic field, the effects of electron-
phonon coupling disappear [�i j (�m) = 0 from Eqs. (24)–
(26)] and the only resonances present are phonon and plasmon
ones. The eigenmodes of the system are then found from

Det[[D̂0]−1] = −
(2πV

�2
0

)3(
�2

m + ω2
TO

)2

×
[
ω2

TO + �2
m

(
1 + ω2

pi

�2
m + ω2

p∞

)]
= 0,

(27)

where ωTO ≡ ωTO(0, T ) at q = 0. Upon performing analytic
continuation (i�m → � + i0+) and solving Eq. (27) for � >

0, we get a double-degenerate solution at � = ωTO, and two
nondegenerate solutions � = �±, where [20,31]

�± = 1√
2

[
ω2

p∞+ω2
LO ±

√
−4ω2

p∞ω2
TO + (

ω2
p∞ + ω2

LO

)2]1/2
,

(28)

with ωLO ≡ ωLO(0) = ω2
TO + ω2

pi as per Eq. (14). The eigen-
vectors of [D0]−1 suggest that the coupled phonon-plasmon
modes (28), as shown in Fig. 2, correspond to longitudinal
polarization. Therefore, the coupling also occurs between
plasmons and the longitudinal component of phonons. This
makes sense because plasmons are longitudinal excitations in
metals which are expected to couple only with LO modes.

Eigenmodes (28) can be understood in the asymptotic lim-
its of high and low carrier densities (n). At high n, ωp∞ �
ωLO, and we get �+ ≈ ωp∞ and �− ≈ ωTO. We can see
that the phononlike mode has a frequency ωTO, not ωLO (see
Fig. 2). This is because the frequency difference between LO
and TO modes is caused by long-range Coulomb interac-
tions. At high n, or for ωp∞ � ωLO, the electron gas screens
these long-range interactions and therefore the splitting (ωpi )
between the LO and TO modes disappears. This is also

FIG. 2. The frequencies of the hybridized phonon-plasmon
modes �+ and �− as a function of bare plasmon frequency (ωp∞),
which grows with electron density. At high carrier densities (ωp∞ �
ωLO), the electron gas screens the Coulomb interaction which in
turn makes the LO-TO splitting disappear. The phononlike mode,
therefore, is �− ≈ ωTO (red curve), while the electronic plasmon is
�+ ≈ ωp∞ (blue curve). At low carrier densities (ωp∞ 
 ωLO), the
phononlike mode is �+ ≈ ωLO, while the plasmon is �− ≈ ωp0 ≡
ωp∞

√
ε∞/ε0. In this regime the longitudinal oscillations are fast

enough to screen plasma oscillations, thereby modifying the plasmon
mode from ωp∞ to ωp0.

consistent with our discussion in Sec. II A 2 that at high carrier
densities the distinction between the energies of LO and TO
modes disappears.

At low n, ωp∞ 
 ωLO and the two roots are now �+ ≈
ωLO and �− ≈ ωp∞ωTO/ωLO. Using the Lyddane-Sachs-
Teller (LST) relation [39], one can write �− ≈ ωp0, where
ωp0 is the low-energy plasma frequency

ωp0 =
√

4πne2

ε0mb
, (29)

which has static dielectric constant ε0 as the screening factor.
So the plasmonlike mode is ωp0, not ωp∞ as discussed in
Sec. II A 2 and shown in Fig. 2. Physically this means that the
longitudinal oscillations are fast enough to screen the plasma
oscillations and modify ωp∞ to ωp0. The coupling between
optical modes and plasmons was verified a long time ago in
GaAs using Raman scattering and the result shows excellent
agreement with the resonance frequencies obtained in Eq. (28)
[40].

In passing we note that as we go closer to the critical point,
the low-energy plasma frequency (ωp0) is expected to vanish
at the critical point, i.e., at ωTO = 0. Its contribution to the
Coulomb interaction is, however, negligible as the value of
the residue of the corresponding plasmon pole turns simulta-
neously to zero.

2. Coupling between phonons, plasmons, and spin-flip modes,
and their criticality

We now study the effect of magnetic field which splits elec-
tron bands into spin-up and spin-down subbands. According
to our model, it can affect phonons and underlying plasmons
only through the electron-phonon interaction, Eq. (1). The
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(a) (b) (c)

FIG. 3. Evolution of q = 0 eigenmodes in the high carrier density regime (ωp∞ � ωpi ) as the coupling constant α [Eq. (31)] grows.
The eigenmodes are plotted with �Z , where all the energy scales are assumed to be much smaller than 2μ0. At low fields, there exist three
phononlike (� ≈ ωTO) and two spin-flip-like (� ∝ �Z ) modes. The electronic plasmon mode is at high energy and is not shown. (a) At small
and finite α, the coupling between phonons and spin-flip mode starts to take place, resulting in the hybridization of modes. (b) The lowest
energy mode �5 (brown) is stable as long as α < α0, and starts to become unstable as the critical point α = α0 is approached. (c) For α > α0,
the lowest energy mode �5 is unstable at low fields, indicating a phase transition into the polar phase (shaded region).

phonon self-energy [Eqs. (24)–(26)] is now finite and there-
fore must be included to get the full phonon propagator (19).

The eigenmodes of the full system can be obtained by
solving Det[[D̂0]−1 − �̂] = 0 (after analytical continuation
i�m → � + iδ), which can be explicitly written as

Det

[(
�2

m + ω2
TO

)
1αβ + ω2

pi�
2
m

�2
m + ω2

p∞

qαqβ

q2

− αLZ

15
(
�2

m + �2
Z

)�̃αβ

]
= 0, (30)

where 1αβ is a component of a 3 × 3 identity matrix,

α ≡ λ2m5/2
b �2

0

2π3
(31)

characterizes the strength of electron-phonon coupling (1),
and LZ and ˆ̃� are given in Eqs. (26) and (25), respectively.
Equation (30) leads to a polynomial equation of sixth or-
der in �2

m with six positive-definite nontrivial roots for �

(i�m → �). These correspond to hybridized electronic and
phonon modes. The case of zero magnetic field leads to �̃ = 0
[see Eq. (24)] and has been discussed in Sec. III B 1. There
exist only four modes: two unhybridized TO modes and two
hybridized modes arising due to the coupling of the LO mode
with plasmon. The two additional modes that appear in finite
magnetic field correspond to spin-flip transitions and will be
discussed below in the regimes of high and low carrier densi-
ties, as outlined in Sec. II A 2.

a. High carrier density metals: �,ωpi 
 ωp∞. Here we
consider the case of high-density metals characterized by a
large bare plasma frequency, �,ωpi 
 ωp∞. Then, as dis-
cussed in Sec. II A 2, the LO-TO splitting can be ignored
[middle term in brackets in Eq. (30)]. In Fig. 3 we plot the
resulting solutions of Eq. (30) as a function of the Zeeman
splitting �Z and the coupling α in Eq. (31) [Figs. 3(a)–3(c)].

One observes that there exist five solutions, correspond-
ing to three phonon modes hybridizing with two spin-flip
modes. Since for high carrier density metals ωp∞ is large, the
corresponding plasmonlike mode exists at large energies and
therefore is excluded from this discussion. It, however, shows
up in the low carrier density metals which we will discuss in
Sec. III B 2 b.

Weak-field regime. We first focus on low fields �Z 
 ωTO

and sufficiently low α [Fig. 3(a)], where all eigenvalues are
real. The eigenfrequencies are given by

�1 ≈ ωTO + �Z
α(2μ0)3/2

6ω2
TO

+ �2
Z

α(2μ0)3/2

6ω3
TO

(
1 − α(2μ0)3/2

4ω2
TO

)

+ O(�3
Z ),

�2 ≈ ωTO + �2
Z

α(2μ0)3/2

6ω3
TO

+ O(�4
Z ),

�3 ≈ ωTO − �Z
α(2μ0)3/2

6ω2
TO

+ �2
Z

α(2μ0)3/2

6ω3
TO

(
1 − α(2μ0)3/2

4ω2
TO

)

+ O(�3
Z ),

�4 ≈ �Z

∣∣∣∣1 − α(2μ0)3/2

3ω2
TO

∣∣∣∣ + O(�3
Z ),

�5 ≈ �Z

√
1 − 2α(2μ0)3/2

3ω2
TO

+ O(�3
Z ), (32)

where μ0 is the chemical potential in the absence of magnetic
field. We identify two modes [�4,5 in Eqs. (32)] with fre-
quency vanishing linearly with �Z , and three modes [�1,2,3 in
Eqs. (32)] saturating at a finite energy ωTO as �Z approaches
zero, as shown in Fig. 3(a). The latter three modes, �1,2,3,
can then be identified as phonon modes which are degenerate
in the absence of magnetic fields. �4,5, on the other hand,
correspond to the electronic spin-flip transitions, with renor-
malized g factor due to electron-phonon coupling, between the
spin-split subbands of the conduction band. One can clearly
see that at α → 0, the effective g factor for �4,5 approaches its
bare value. For the particular case of α = 0, however, Eq. (30)
does give rise to only four roots, with �4,5 being absent. This
describes the decoupling of the spin-flip resonances from the
phonon response in the absence of coupling (1).
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Already at small fields, the degeneracy of modes stem-
ming from phonons (�1, �2, and �3) and electrons (�4 and
�5) breaks, which deserves explanation. If we assume that
there is no electron-phonon interaction, i.e., the correspond-
ing coupling constant, parametrized by α, is zero, then the
precessionlike spin-flip resonances that occur in any doped
semiconductor with fields applied along, say, the z direction
are double degenerate [�4 = �5 = �Z at α = 0 in Eq. (32)]
as a result of rotational symmetry in the xy plane. Likewise,
there is no distinction between two transverse components of
the phonon modes due to underlying rotational symmetry in
the xy plane. The absence of LO-TO splitting for high car-
rier density metals further results in triple-degenerate phonon
modes [�1 = �2 = �3 at α = 0 in Eq. (32)].

In the presence of interaction, i.e., α �= 0, and at weak
magnetic fields, the modes are expected to couple and break
degeneracy too. The interaction Hamiltonian (1) is invariant
under simultaneous rotation of electron spin, momenta, and
phonon polarization. The magnetic field, however, breaks the
spin-rotation symmetry for the conduction electrons and, con-
sequently, for the phonon polarization due to interaction (1).
This explains qualitatively the lifting of degeneracies at finite
fields in Eq. (32) and Fig. 3(a).

Softening of spin-flip mode. On increasing α, the slope of
the spin-flip modes at low �Z decreases, as shown in Fig. 3(b).
Moreover, for α larger than a critical value, the frequency of
the lowest-lying eigenmode (�5) becomes imaginary at low
magnetic field, as shown in Fig. 3(c), indicating the instability
of the system. Beyond that point, a phase transition into the
polar phase occurs and the calculations performed here need
to be modified (see also Appendix B). As the instability takes
place first at �Z = 0, it is instructive to consider eigenfre-
quencies at small fields given in Eq. (32) at α � α0, where

α0 = 3ω2
TO

2(2μ0)3/2
. (33)

At small fields the spin-flip modes (�4 and �5) disperse
linearly with �Z , with effective g factor as a function of
coupling constant (α), TO mode frequency (ωTO), and carrier
density n (through μ0). One observes that the frequency of one
of the spin-flip modes, �5, becomes imaginary for α > α0.
From an experimental point of view, the parameter α is fixed
and the transition is really driven by the softening of ωTO.
Equation (33) can then be viewed as a condition for ωTO.
Using Eq. (31), the instability condition, α > α0, translates
to

ωTO < λ�0

√
nmb

π
. (34)

Additionally, �5 can be rewritten as

�5 ≈ gμB

(
1 − α

α0

)1/2

B, (35)

where α0 is defined in Eq. (33), which shows a linear dis-
persion with magnetic field B, with the effective g factor,
g∗ = g(1 − α/α0)1/2, which softens at α = α0. For α > α0, g∗
becomes imaginary, making �5 also imaginary, indicating the
onset of instability of the system. The form of �4 in Eq. (32)
suggests that the g factor for �4 also vanishes at α = 2α0.

However, unlike �5 it never becomes imaginary, suggesting
that only the softening of �5 indicates the instability.

The dependence of α0 on ωTO [Eq. (33)] and the instability
condition (34) demonstrates the direct impact of spin-orbit
mediated interaction (1) between conduction electrons and TO
modes, in agreement with previous works [14,15,17,18]. This
is in contrast to the gradientlike electron-phonon coupling
which vanishes in the case of transverse phonon mode. As a
result, the soft TO mode frequency effectively decouples from
the electronic states for an isotropic system [17,23,24].

Thus we have demonstrated that the signature of the insta-
bility of the system in the q = 0 regime is the softening of
the spin-flip electronic mode �5 at weak fields. Note that this
does not imply the instability to be of the electronic character
as we have implicitly considered finite frequencies here due
to the condition � � vF q. In Sec. IV, we will show that the
phononic character of the instability is recovered in the � = 0
and q → 0 limit, which indicates the actual polar instability of
the system.

Moderate and large fields. We now propose a way to obtain
the coupling constant λ. At α 
 α0, when the system is stable,
the degeneracy of phonons and spin-flip modes breaks, as
shown in Fig. 3(a). As the magnetic field is increased, the
interaction between phonons and spin-flip resonances occurs,
resulting in the avoided crossing (anticrossing) of modes at
�Z ∼ ωTO. The energy splitting near the anticrossing point
can be obtained analytically. From Fig. 3(a), one observes
that the maximum splitting near the anticrossing point occurs
between �5, and �1 or �2. As the splitting between �1 or �2,
as evident from Fig. 3, is very small, we focus on the splitting
between �2 and �5. The exact analytical forms of �2 and �5

are given by

�2(5) = 1√
2

[
ω2

TO + �2
Z ±

√(
ω2

TO − �2
Z

)2 + 8α

15
�ZLZ

]1/2

,

(36)

with �2 corresponding to the one with the “+” sign, while �5

corresponds to the one with the “−” sign. Here α and LZ ≡
L[μ(�Z ),�Z ] are defined in Eqs. (31) and (26), respectively.

The splitting between square of energies is given by

��2 ≡ �2
2 − �2

5 =
√(

ω2
TO − �2

Z

)2 + 8α

15
�ZLZ . (37)

We observe that the splitting depends strongly on the car-
rier density through LZ : up to leading order in �Z , LZ ≈
5�Z (2μ0)3/2 ∝ n, where n is the free carrier density. This
implies that the splitting between the square of energies in-
creases with the carrier density as ��2 ∝ n1/2, assuming α

remains independent from n. The form of α can be obtained
from Eq. (37) as

α = 3

8�2
Z (2μ0)3/2

[
(��2)2 − (

ω2
TO − �2

Z

)2]
. (38)

Near the anticrossing point (�Z ≈ ωTO), the second term
of Eq. (38) can be ignored. Then using Eq. (31), we find the
coupling constant λ to be

λ =
√

π (��2)2

4nmb�
2
Z�2

0

, (39)
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FIG. 4. Phase diagram of α(�Z )/α(0) vs �Z/2μ0, where α(0) ≡
α0. It can be seen clearly that with the increase in �Z , the system goes
from the two-band case (both spin-up and spin-down subbands are
partially occupied) to the one-band case (only the spin-down subband
is partially occupied). The crossover happens at �Z = 2μ0/21/3.

where n is the carrier density, mb is the effective mass of
electrons, and �0 ≡ √

ε∞ωpi. �0 can be obtained experi-
mentally for doped polar metals from measurements on the
parent insulator, but may not be straightforward to extract for
intrinsic polar metals. On the other hand, the definition of the
phonon Green’s function, Eqs. (30) and (31), suggests that
the expansion parameter for the electron-phonon interaction
is really λ�0. As follows from Eq. (39), from the measured
��2 at a given carrier density and the strength of the applied
magnetic field, one can extract λ�0.

Approaching the polar critical point from the paraelectric
phase, ωTO ≡ ωTO(0, T ) softens to a value that is small in the
weak-coupling case [see Eq. (33) and the related discussion].
It follows then that the required magnetic field to extract λ,
B ≈ ωTO/gμB, also would be small enough and practically
attainable; see also a detailed discussion in Sec. V C.

Finally, at magnetic fields large compared to ωTO but still
smaller than 2μ0, such that ωTO 
 �Z 
 2μ0, the spin-flip
modes (�4 and �5) evolve into phonon modes, while �3

remains phononic. It can be shown analytically that in this
limit their frequencies are shifted downwards by a field-
independent amount from ωTO due to coupling to electrons.
Lastly, �1 and �2 which started off as phonon modes evolve
into spin-flip modes at large fields and their frequencies vary
linearly with �Z . The evolution of eigenmodes of mixed char-
acter at all fields but small α is shown in Fig. 3(a).

Polar instability at �Z �= 0 and phase diagram. The critical
coupling constant α0 [Eq. (33)] was obtained at small fields
based on our observation in Fig. 3(c) that the instability starts
to take place at �Z = 0. Now we will determine how the insta-
bility condition in Fig. 3(c) is modified by the magnetic field
and obtain a phase diagram for the critical coupling constant
α0(�Z ) as a function of magnetic field. We do not limit the
range of magnetic field and allow the corresponding energy
scale �Z to exceed the Fermi energy (2μ0 to be precise) to
reach the one-band limit when the system is fully polarized.
The corresponding phase diagram, obtained numerically, is
plotted in Fig. 4.

We observe in Fig. 4 that the critical coupling constant
starts off with the value α0 at �Z = 0 and increases with the
magnetic field. In the two-band regime, it increases slowly
with field, whereas in the one-band regime the critical cou-
pling constant increases faster following a linear dependence.
The increase of α0(�Z ) conversely implies that the critical
value of ωTO becomes smaller with increasing field. The
crossover from the two-band to the one-band regime happens
at �Z = 2−1/3(2μ0) [see Eq. (A6) and Fig. 6 of Appendix A 1
for the variation of chemical potential with magnetic
fields].

To understand the main features of Fig. 4 analytically, we
use the stability condition of mode �5 for the two-band case
(36), written as√(

ω2
TO − �2

Z

)2 + 8α

15
�ZL(μ,�Z ) < ω2

TO + �2
Z , (40)

and consider higher-order magnetic field corrections to LZ

[Eq. (26)]. We remind the readers that LZ is actually a func-
tional of chemical potential which is a function of magnetic
field [Eq. (A3)]; while taking higher-order field corrections
for LZ , this must be kept in mind. Equation (40) leads to the
condition on the coupling constant α:

α <
15ω2

TO�Z

2LZ
. (41)

This condition is of course for the two-band case as is evi-
dent from the form of LZ [Eq. (26)]. Collecting higher-order
magnetic field corrections of LZ in Eq. (41), the stability con-
straint for �5 can be extended for finite fields as α < α0(�Z ),
where

α0(�Z )

α0(0)
=

[
1 + 1

4

(
�Z

2μ0

)2

+ 9

80

(
�Z

2μ0

)4

+ O
(

�Z

2μ0

)6]
,

(42)

with α0(0) ≡ α0 obtained in Eq. (33).
For fixed carrier density, as the magnetic field is increased

further, the system becomes fully polarized, i.e., only the spin-
down subband remains (partially) occupied. In this case, the
one-band analog of Eq. (36) for �5 takes the form

�5 = 1√
2

[
ω2

TO + �2
Z −

√(
ω2

TO − �2
Z

)2 + 8α

15
�ZLOB

Z

]1/2

,

(43)

where LOB
Z = (2μ(�Z ) + �Z )

5/2
is the one-band analog of

LZ , with μ(�Z ) as the field-dependent chemical potential ob-
tained in Eq. (A5) for the one-band case. Unlike the two-band
case, the exact solution for the chemical potential as a function
of field is possible in the one-band limit (A5), substituting
which in Eq. (43) gives the stability condition for �5 as
α < α0(�Z ), where

α0(�Z )

α0(0)
= 5

25/3

( �Z

2μ0

)
. (44)

The above allows to understand the phase diagram shown
in Fig. 4, in the limit of small and large �Z (with respect to
μ0).
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(a) (b)

FIG. 5. Hybridization of modes at q = 0 in the low carrier density regime (ωp∞ 
 ωpi ) where the LO-TO splitting effects are significant.
In the plot, all energy scales are in units of 2μ0 such that ωpi/2μ0 = 0.5, ωTO/2μ0 = 0.2, and ωp∞/2μ0 = 0.1. The chosen value of ωTO

corresponds to α0 = 0.06, in units of
√

2μ0. The polarization angle θq has been arbitrarily chosen to be π/3. (a) Hybridization of modes in
the presence of magnetic fields for α < α0. The lowest energy mode �5 is stable. (b) For α > α0, �5 becomes imaginary which indicates the
onset of phase transition.

b. Low-density metals: ωp∞ 
 ωpi. We now turn to the
case of low densities where ωp∞ 
 ωpi, appropriate for doped
ferroelectric or paraelectrics, such as BaTiO3 [41,42], or
SrTiO3 [36,37,43]. The LO-TO splitting effects become large
in this regime and we must take the middle term of Eq. (30)
into account. In addition to that, the electronic plasma fre-
quency is of the order of phonon frequency in this regime.
Consequently, the electronic plasmon and its interaction with
the spin-flip and phonon modes will play an important role.
The eigenmodes are shown in Fig. 5(a). As expected, there
are six positive-definite roots in this regime corresponding to
phonon-plasmon modes coupled with spin-flip modes. The
coupling between modes is characterized by anticrossing in
several magnetic field regimes. In Fig. 5, the parameters
are chosen such that ωp∞ 
 ωTO 
 ωpi. This also implies
ωTO 
 ωLO, according to Eq. (14). Like in the high carrier
density regime, discussed in Sec. III B 2 a, in this regime also
one of the spin-flip modes (�5) becomes unstable (imaginary)
above a certain value of α, as shown in Fig. 5(b). More-
over, the instability occurs at �Z = 0, the same way as in
Sec. III B 2 a. We study the weak-field regime to obtain the
critical value of α for this instability followed by moderate
and large-field regimes to study mode anticrossing.

Weak magnetic fields. At small fields, the eigenfrequencies
are obtained as

�1 ≈ ωTO + �Z
α(2μ0)3/2| cos θq|

6ω2
TO

+ O
(
�2

Z

)
,

�2 ≈ ωTO − �Z
α(2μ0)3/2| cos θq|

6ω2
TO

+ O
(
�2

Z

)
,

�3 ≈ 1√
2

[
ω2

p∞+ω2
LO −

√
−4ω2

p∞ω2
TO + (

ω2
p∞ + ω2

LO

)2
]1/2

+ O(�2
Z ),

�4 ≈ �Z

∣∣∣∣1 − α(2μ0)3/2

3ω2
TO

∣∣∣∣ + O
(
�2

Z

)
,

�5 ≈ �Z

√
1 − 2α(2μ0)3/2

3ω2
TO

+ O
(
�2

Z

)
,

�6 ≈ 1√
2

[
ω2

p∞+ω2
LO +

√
−4ω2

p∞ω2
TO + (

ω2
p∞ + ω2

LO

)2
]1/2

+ O
(
�2

Z

)
, (45)

where θq is the polar angle of q with respect to the z axis.
The effect of the direction of q results from the combination
of LO-TO splitting and Zeeman field. For q along the z axis
(θq = 0), �1,2 can be observed to coincide with �1,3 in the
high-density limit [see Eq. (32)]. These modes correspond to
phonons polarized in the xy plane, and thus LO-TO splitting
does not affect them for q along z. The splitting ∼�Z between
them is caused by the off-diagonal terms in the phonon self-
energy (25), that affects only phonons, polarized in the xy
plane. As θq increases, one of the transverse modes’ polar-
izations has to rotate towards z, such that for θq = π/2 it is
fully along z. In that case, the self-energy (25) does not lead to
direct hybridization of the two transverse modes (since there
are no off-diagonal elements coupling z-polarized eigenstates
to the other ones), explaining the absence of a ∼�Z splitting
between �1,2 at θq = π/2. Thus the results of the previous
section can only be recovered in the ωpi 
 �Z limit, where
the LO-TO splitting can be ignored.

At small fields, the coupling between different modes
stemming from phonons, plasmons, and spin flips is weak.
The eigenmodes shown in Fig. 5(a) can be understood in the
following manner. In the ωp∞ 
 ωTO 
 ωpi regime, �4 and
�5 are spin-flip modes and disperse linearly with �Z . Mode
�3 corresponds to the plasmon with ε0 as a screening factor.
And finally �1 and �2 correspond to TO modes, while �3

corresponds to the LO mode. This allows to understand the
instability of one of the spin-flip modes �5 in the same way
as it is discussed in Sec. III B 2 a. Indeed, the form of �5 in
Eq. (45) tells us that the mode becomes unstable for α > α0,
where α0 is defined in Eq. (33) which depends on TO mode
frequency. This is the same condition as that obtained for �5

in the high carrier density (ωp∞ � ωpi) regime.
At �Z = 0, one can find a clear distinction between the

double-degenerate TO mode [�1 and �2 in Eq. (45) and
Fig. 5(a)] and the longitudinal modes [�3 and �6 in Eq. (45)
and Fig. 5(a)], arising from the hybridization between the
electronic plasmon and the LO phonon. Moreover, as long
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as the ωp∞ 
 ωpi condition holds, the hybridization between
plasmon and LO phonon is weak and therefore �3 and �6

can be identified as plasmon and LO phonon, respectively. As
discussed in Sec. III B 1, the plasmon frequency is ωp0 in this
case, due to screening by fast longitudinal oscillations.

Overall, we have demonstrated that in the presence of
LO-TO splitting and low-energy electronic plasmon, the polar
instability of the system in the q = 0 regime manifests itself
in the softening of the spin-current electronic mode �5.

Moderate and large magnetic fields. As the magnetic field
is increased, a coupling of spin-flip modes with plasma and
TO and LO modes occurs, which is characterized by anti-
crossings at �Z ∼ ωp0, �Z ∼ ωTO, and �Z ∼ ωLO, respec-
tively. We reiterate that in the low carrier density regime, the
frequency of the plasmon mode is ωp0, not ωp∞. Therefore,
the strong hybridization of spin-flip modes with plasmons oc-
curs first at �Z ∼ ωp0, and then with TO modes at �Z ∼ ωTO.
As the magnetic field increases further, the LO mode and one
of the spin-flip modes hybridize at �Z ∼ ωLO. Due to this
nontrivial hybridization at moderate and large fields, �4 and
�5, which started off as spin-flip modes, evolve into one of the
TO modes and low-energy plasma mode, respectively. Mode
�3 which started off as ωp0 evolves into another TO mode,
while �2 transforms from one of the TO modes into the LO
mode. Finally, �1 and �6 transform from corresponding TO
and LO modes to spin-flip modes at large fields.

IV. PROPERTIES OF THE POLAR TRANSITION

In the previous section, we discussed the excitations of
the spin-orbit coupled nearly polar metal for the � � vF q
regime. One of our findings was the instability of the
low-energy spin-flip mode above a critical value of the
coupling constant [or for TO phonon frequency below a
critical value, Eq. (34)]. In particular, its frequency depends
linearly on the applied field �Z , but the slope of this
dependence (effective g factor) vanishes at α = α0. However,
to assess the thermodynamic behavior of the system on the
approach to the (quantum or classical) transition, we need
to explore the � 
 q2/2mb 
 vF q regime, where the static
limit � = 0 can be studied.

The goals of this section are to elucidate the nature of
the soft mode: to understand whether it occurs at q → 0 or
finite q and what is its polarization (assuming it has phononic
character). To study this we calculate phonon self-energy,
�αβ , in the static limit up to terms of order q2 assuming
q2/2mb 
 vF q 
 �Z , and evaluate the phonon eigenenergies
and eigenvectors in this limit.

A. Self-energy at � = 0 and finite q

We calculate self-energy at � = 0 in the limit q2/2mb 

vF q 
 �Z . We put � = 0 in the general expression for self-
energy [Eq. (22)] to get

�αβ (q) = λ2

2

∑
ss̄

∫
k

k2 f ss̄
αβ (θ, φ)

× nF
(
ξ s̄

k−q/2

) − nF
(
ξ s

k+q/2

)
−(

εk+ q
2
− εk− q

2

) − (s − s̄)�Z
2

, (46)

where the factors f ss̄
αβ are given in Eq. (23). Note that in con-

trast to the � � vF q case, the intraband contributions to �xx,
�yy, and �xy are not required to vanish by the conservation
law for the spin-current component jσz

i . On the other hand, �zz

is not affected by this, as it consists only of j
σx,y

i correlators,
leading to interband transitions.

Replacing the Fermi functions in Eq. (46) by � func-
tions and upon writing k · q = kq̄, with q̄ = qx sin θk cos φk +
qy sin θk sin φk + qz cos θk, we obtain the conditions on the
limits of the k integral. Upon using these conditions for k
integration, we obtain the self-energy at q → 0 and up to �2

Z
order:

�αβ (q) ≈ − 2πV

�2
0

α(2μ0)3/2

4

[(
8

3
− q2

3k2
F

)
δαβ − qαqβ

3k2
F

− 1

3

(
�Z

2μ0

)2

(δαβ + δα3) +
(

�Z

2μ0

)2{qαqβ

12k2
F

+ δαβ

(
17q2 − 6q2

z

480k2
F

− δα3
29q2 − 12q2

z

480k2
F

)

+ (δα1δβ3 + δα3δβ1 + δα2δβ3 + δα3δβ2)
qαqβ

80k2
F

}]
.

(47)

Terms of order O((q2/2mb)2/2μ0�Z ) and higher are ignored.
One observes that in contrast to the � � vF q case [see
Eqs. (24) and (25)], the diagonal components of �αβ are all
equal at �Z = 0, q → 0. This reflects the additional contribu-
tion of intraband terms to �xx,yy in the static limit discussed
above.

B. Phonon soft mode

Our goal now is to identify the critical mode of the transi-
tion in the static � = 0 limit. To do that, we study when the
phonon eigenfrequencies, renormalized by static self-energy
corrections (47), turn to zero. As discussed in Sec. II A 2,
for the static case the LO-TO splitting is always significant
[Eq. (18)] and must be taken into account. We use the same
form of the phonon propagator as in Eq. (19), but with �αβ

obtained in Eq. (47). After substituting Eq. (18) into Eq. (19),
we get

D−1
αβ =−2πV

�2
0

[(
�2

m+ω2
TO(q)

)
δαβ + ω2

pi

qαqβ

q2 + κ2
+ �̃αβ (q)

]
,

(48)

where �̃αβ (q) ≡ �αβ (q)/(2πV/�2
0). The roots of

Det[D̂−1] = 0 are collective modes of the system.
We start with discussing the case q → 0 (below we will

justify that the soft mode is at q = 0). We find three eigenen-
ergies:

�2
1(q → 0) = ω2

TO

[
1 − α

α0

{
1 − �2

Z

8(2μ0)2

}]
, (49a)

�2
2(q → 0) = ω2

TO

[
1 − α

α0

{
1 − �2

Z

8(2μ0)2

}]
, (49b)
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�2
3(q → 0) = ω2

TO

[
1 − α

α0

{
1 − �2

Z

4(2μ0)2

}]
. (49c)

For �Z = 0 it is evident that all the eigenfrequencies turn
to zero simultaneously at α = α0, corresponding to the usual
O(3) universality class of the transition. At finite �Z , not all
of the frequencies in Eq. (49) go to zero simultaneously on
increasing α. In particular, �1 and �2 go unstable first. Ana-
lyzing the q-dependent eigenvectors of Eq. (48), we conclude
that �1 and �2 in Eq. (49) are always the modes that are
polarized perpendicular to the magnetic field. Consequently,
we find that in a spin-orbit coupled polar metal, the presence
of the magnetic field introduces an easy-plane anisotropy, pin-
ning the polarization of the critical polar mode perpendicular
to magnetic fields.

These results can be understood within the framework of
Landau theory for the polar order parameter in the presence of
a weak magnetic field H. The free energy takes the following
form (consistent with spherical symmetry above transition):

F [P, H] ≈ [a(T ) + ηH2]P2 + ζ (P · H)2 + bP4. (50)

From the above Eq. (50), it follows that in a polar metal with
spin-orbit coupling, the conduction electrons result in η > 0
and ζ > 0. Close to the transition, this implies the possibility
to orient the polar order orthogonal to the applied magnetic
field.

We now turn to the case of finite q. In the q2/2mb 

vF q 
 �Z regime, the q2 corrections to the eigenfrequencies
in Eq. (49) are

�2
1(q) = �2

1(q → 0)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 17

160

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 11

160

�2
Z

(2μ0)2

}]
q2

z , (51a)

�2
2(q) = �2

2(q → 0)

+
[

c2
L + α

α0

ω2
TO

4k2
F

{
1 − 57

320

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 11

160

�2
Z

(2μ0)2

}]
q2

z , (51b)

�2
3(q) = �2

3(q → 0)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 + 3

40

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
L + α

α0

ω2
TO

4k2
F

{
1 − 17

160

�2
Z

(2μ0)2

}]
q2

z , (51c)

where �2
i (q → 0) is given in Eq. (49), cT (L) is the TO (LO)

phonon velocity with c2
L = c2

T + ω2
pi/(q2 + κ2), and α and α0

are defined in Eqs. (31) and (33), respectively.
One observes that the rotational symmetry in the xy plane

(the plane perpendicular to the direction of the magnetic field)
results in the degeneracy of �1 and �2 at q → 0 [Eq. (49)],
which is broken by finite q in the plane [Eq. (51)]. Moreover,
for �Z 
 μ0 the momentum dispersion of each mode in
Eq. (51) (terms of order ∼q2), remains positive. This result

also holds in the opposite regime when �Z 
 q2/2mb 
 vF q
(see Appendix C for technical details). Consequently, the
zero-energy solution first appears at q = 0, proving that the
critical mode of the polar transition remains at q = 0 when
coupled to conduction electrons.

V. DISCUSSION

In this section, we extend the results of Secs. III and IV
and discuss their application to experiments. We first address
the effects of temperature, orbital magnetic field effects, and
finite lifetimes on our results. Next we present an extension
of the results of Sec. III to the 2D case, given the recent
discovery of several 2D polar metals [5,6]. We conclude this
section considering the experimental feasibility of extracting
the coupling constant λ in both three and two dimensions, and
also discuss the field orientation of the polar order.

A. Applicability of approximations

For most of our derivations in Sec. II and results in Secs. III
and IV, we assumed T = 0, clean system, and ignored orbital
quantization in the magnetic field. In this section we will
discuss the effects of relaxing these approximations and assess
their applicability.

1. Finite temperature effects

Finite temperature effects can be analyzed using the gen-
eral expression for the phonon self-energy, Eq. (22). One
observes that T enters the expression only via the Fermi
functions. The k integral for all the components of the phonon
self-energy [Eq. (22)] has the same general form, which can
be written after variable substitution as

�αβ (�m) ∼
∑

ss̄

gss̄
αβ (�m)

∫ ∞

−μ

dξ (ξ + μ)3/2[nF (ξ − �Z/2)

− nF (ξ + �Z/2)], (52)

where ξ = εk − μ and gss̄
αβ (�m) ∼ (i�m − (s − s̄)�Z/2)

−1
.

Assuming temperatures T 
 μ, the lower limit of ξ integra-
tion in Eq. (52) can be extended to −∞. Now we consider two
regimes: �Z 
 T and �Z � T . In the �Z 
 T regime, one
can expand the difference of two Fermi functions in Eq. (52),
yielding a prefactor proportional to �Z/T . However, after
performing the integral to the leading order in T/μ all the T
dependence drops out: the ξ integral gives T μ3/2(�Z/T ) ∼
μ3/2�Z . Likewise, in the opposite regime, i.e., �Z � T , one
finds that the integral is ∝ �Z . Indeed, the explicit calculation
suggests that the T -dependent correction appears as (T/μ)2 in
both limits. The final form of �i j in both regimes, therefore,
reads

�i j (�m) ∝ �Z

{
1+O

(T

μ

)2
}

+ �3
Z

32μ2

{
1 + O

(T

μ

)2
}

+ . . . .

(53)

So the conclusion is that in both the regimes, the T -dependent
correction is small, i.e., O(T/μ)2, regardless of the �Z value.
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2. Resonance broadening due to scattering

We next discuss the broadening of q = 0 eigenmodes due
to scattering of electrons by nonmagnetic disorder or interac-
tions. To make our point, for simplicity, we consider the high
carrier density regime when there is no distinction between
LO and TO mode frequencies. We assume the broadening
effect to be characterized by the scattering rate � which affects
only the electron Green’s function; phonons are assumed to be
sharp in our treatment.

In the phonon self-energy, the presence of disorder simply
amounts to replacing i�m everywhere in Eq. (24) by � + i�
and obtaining real and imaginary parts (see Appendix D
for details). The imaginary part shows spin-flip resonances
peaked at � = �Z with � as the width of the resonance due
to disorder.

We now analyze the effect of this broadening on the hy-
bridized collective modes arising from interaction (1). We
illustrate the effect for the energies near the anticrossing point
(�Z ≈ ωTO) and at high carrier densities, relevant for the
discussion in Sec. V C. We then need to consider the modes
�2 and �5, given in Eq. (36) and shown in Figs. 3(a) and 3(b),
which give maximum splitting near the anticrossing point.
Assuming � to be small compared to the real part of the mode
frequencies, one obtains

��
2 = �2 − i�

2

[
1 − ω2

TO − �2
Z√

8α
15 �ZLZ + (

ω2
TO − �2

Z

)2

]
,

��
5 = �5 − i�

2

[
1 + ω2

TO − �2
Z√

8α
15 �ZLZ + (

ω2
TO − �2

Z

)2

]
, (54)

where �2,5 is given in Eq. (36). Equations (54) can be read
as resonance peaks at ��

2 and ��
5 with widths given by the

imaginary part. As we can see that near the anticrossing
(ωTO ≈ �Z ), the second term of the imaginary part vanishes.
Therefore, the effect of disorder leads to the width of the
resonance for both modes to be �/2.

Finally, in between �2 and �5 in Figs. 3(a) and 3(b), there
exists another mode �3 which also gets broadened due to
disorder. If we assume that the maximum width of �3 is �,
then to resolve all three modes the energy splitting must be
larger than 3�/2.

3. Orbital effects

In our discussion earlier, throughout we only considered
Zeeman effects of the magnetic field and ignored its orbital
effects. The orbital effect of the magnetic field implies Landau
quantization of the electronic levels [44]. In this section we
will argue that finite T and scattering effects smear out orbital
effects allowing to neglect them with respect to the Zeeman
splitting.

Physically, the Landau quantization leads to oscillations of
various physical quantities, such as density of states or resis-
tivity in the presence of magnetic fields. Finite temperatures
reduce the oscillation amplitude by the factor RT Rσ [45] given
by

RT = 2π2 pkBT/h̄ωc

sinh(2π2 pkBT/h̄ωc)
, Rσ = cos

(
π p

�Z

h̄ωc

)
, (55)

where kB is the Boltzmann constant, ωc = eB/mcc is the cy-
clotron frequency with mc as the cyclotron effective mass,
and p is the number of the oscillation harmonic. Here Rσ

comes from the energy difference h̄ωc between spin-up and
spin-down electrons in the magnetic field. The ratio �Z/h̄ωc

can be written as gmc/2me, where me is the free electron mass
and mc is defined as mc = (∂Ae/∂ε)/2π with Ae as the ex-
tremal cross-section area. In a free-electron system, g ≈ 2 and
Ae = πk2

F = 2πmeμ0, which means mc = me. The Zeeman
term thus becomes (−1)p.

If the magnetic field, cyclotron effective mass, and temper-
atures are such that kBT � h̄ωc, we have

RT = 4π2 pkBT

h̄ωc
exp

(
− 2π2 pkBT

h̄ωc

)
. (56)

For practical conditions of T and B, and mc not very different
from me, the above Eq. (56) is a good approximation. As-
suming that the electron mass is not very different from the
cyclotron effective mass and also the g factor is of order 1, one
has h̄ωc ∼ �Z . In this case, for T � �Z , the oscillation am-
plitude is suppressed exponentially, resulting in the smearing
of Landau levels, while the spin-phonon resonances, Figs. 3
and 5, are still expected to be observed. As has been shown
above, for T � �Z , the leading finite T correction to the self-
energy is of order (T/μ0)2, which is small in our assumption.
The spin-phonon resonances, therefore, are not significantly
affected. Thus, at elevated temperatures, the orbital effects can
be ignored.

In the opposite regime, i.e., kBT 
 h̄ωc ∼ �Z , the coupled
spin-phonon modes and Landau levels both are sharp and
on this ground the orbital effect (RT = 1) seems to play a
significant role too. This is where scattering effects play an
important role and we will argue that the orbital effects are
suppressed again.

Finite electronic scattering rate (due to disorder or in-
teractions) suppresses both orbital and spin effects of the
magnetic field. If the electrons have a finite relaxation time
(τ ), parametrized by the damping factor � (τ ∼ �−1), the
otherwise sharp Landau levels broaden, leading to reduction
of the oscillation amplitude [46]. This implies an additional
reduction factor, known as the Dingle reduction factor (RD)
[45,46],

RD = exp
(
−2π p�

h̄ωc

)
, (57)

that is appended with the oscillation amplitude. We see that
the additional factor RD (the overall oscillation amplitude
becomes RT Rσ RD in the presence of disorder) suppresses
the oscillation amplitude exponentially. The spin-phonon res-
onances are also smeared due to disorder, as discussed in
Sec. V A 2; however, the exponential suppression of the or-
bital effects can be much stronger at low to moderate fields.
This suggests that for real not too clean systems, the orbital
quantization effects may be negligible also at low tempera-
tures. We note, however, that in the absence of disorder, a
mixing between the orbital cyclotron resonance and optical
phonons has been theoretically predicted [47] for 2D electrons
in quantum wells.
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B. Summary of 2D systems

Systems such as few layers of WTe2 [5] and trilayer super-
lattices [6] have been reported to be 2D polar metals. With the
advent of these materials, it is therefore imperative to study
the interaction of electronic excitations and phonons in two
dimensions as well. For the purpose of this section we assume
� � vF q where it is legitimate to consider q = 0 as discussed
in Sec. III. Unlike the case in three dimensions, at q = 0 the
LO-TO distinction vanishes for two dimensions, and there is
no need to go to the high carrier density regime [48,49].

In particular, we consider the applied magnetic field to be
in the xy plane. We assume an isotropic 2D electron dispersion
and choose the field to be along the x axis. Upon explicit
calculation at T = 0, the self-energy matrix reads

�̂(�m) = −λ2m2
bAμ0

π

�Z

�2
m + �2

Z

ˆ̃�2D, (58)

where

ˆ̃�2D =
⎛
⎝�Z 0 0

0 �Z −�m

0 �m �Z

⎞
⎠, (59)

and A is area of the crystal. Note that the chemical poten-
tial in two dimensions is unaffected by magnetic fields (see
Appendix A 2).

Physically, the self-energy matrix (58) and (59) can be un-
derstood directly from its three-dimensional (3D) counterpart
as discussed in Sec. III A. Since the field is applied along the
x direction and for two dimensions kz = 0, one can immedi-
ately say that for �xx only the jσz

y - jσz
y correlation contributes.

Similarly for �yy, the only contribution is from the jσz
y - jσz

y

correlation. �zz consists of four terms, j
σy
x - j

σy
x , jσx

y - j
σy
x , j

σy
x - jσx

y ,
and jσx

y - jσx
y correlations, of which only j

σy
x - j

σy
x contributes. So,

unlike for three dimensions, in two dimensions one anticipates
�xx = �yy = �zz already by symmetry. Using similar argu-
ments for the off-diagonal contributions one finds that since
the field is applied along the x direction, only �yz and �zy

remain nonzero [Eq. (59)].
Finally, we calculate the coupling of modes the same way

as that for three dimensions in Sec. III B 2. We note that in
general, the phonon polarized along z should not have the
same energy as the ones polarized in the xy plane, as they
belong to different irreducible representations. Here we ne-
glect this splitting to illustrate the qualitative effects; it can
be included into consideration straightforwardly by modifying
the phonon propagator with an additional term ∼δα,3δβ,3. The
2D analog of Eq. (30), but without LO-TO splitting, can be
written as

Det

[(
�2

m + ω2
TO

)
1̂ − α2D

�Z

�2
m + �2

Z

ˆ̃�2D

]
= 0, (60)

where ˆ̃�2D is given in Eq. (59) and the coupling constant λ is
parametrized by

α2D ≡ λ2m2
b�

2
0Aμ0

2π2V
, (61)

having the unit of Energy2. Note that α2D [Eq. (61)] consists
of the ratio A/V , which in experimental terms is equivalent
to 1/a0, where a0 is the lattice constant. Solving Eq. (60) for

�, we get five positive-definite roots, regarded as spin-phonon
resonances, which disperse with �Z . In this case also only the
lowest lying mode [2D analog of �5 in Eq. (32) and in Fig. 3]
becomes unstable at weak fields for α2D > ω2

TO.
Eigenfrequencies that give maximum splitting near the an-

ticrossing point read

�2(5) = 1√
2

[
ω2

TO + �2
Z ±

√(
ω2

TO − �2
Z

)2 + 4α2D�2
Z

]1/2

,

(62)

where �2 is the one with the “+” sign, while �5 is the one
with the “−” sign. Following the same procedure as discussed
for the 3D case in Sec. III B 2 a, we obtain the coupling con-
stant:

λ =
√

πa0(��2)2

2nmb�
2
Z�2

0

. (63)

Similar to the 3D case, from the measured ��2 at a particular
carrier density and magnetic field, one can determine λ for
known mb, a0, and �0 of the material.

C. Experimental proposal

In this section, we will discuss the prospect to measure the
electron-phonon coupling constant λ [Eq. (1)] and to orient
the polar order by magnetic field. We begin with the former,
assuming the case of high-density metals when LO-TO dis-
tinction can be ignored. In Fig. 3, it has been shown that the
excitations of the nearly polar metal exhibit an anticrossing
at �Z ≈ ωTO. The magnitude of this anticrossing allows to
extract the value of λ directly [Eq. (39)]. Note that it follows
from the definition of the Green’s function, Eqs. (30) and (31),
that the true expansion parameter for the electron-phonon
interaction is λ�0. Consequently, while the ionic frequency
�0 = √

ε∞ωpi may not be straightforward to extract from
measurements (especially in the strongly metallic case), it is
sufficient to deduce for the 3D case

λphys ≡ λ�0 =
√

π (��2)2

4nmb�
2
Z

, (64)

where ��2 is the difference between frequencies squared [see
Eq. (37)]. All quantities on the right-hand side of Eq. (64)
are experimentally measurable. To estimate the value of ��,
which could be relevant in determining possible experimental
probes, we cast λ�0 in Eq. (64) in terms of the parame-
ters used in Refs. [19,20] for the interaction Hamiltonian.
Recalling that �0 ≡ √

ε∞ωpi, we can write λ�0 ≡ δt/
√

ρ,
where δt ≡ n0(Ze)λ is the electron-phonon coupling constant
parametrized in Ref. [20] and ρ ≡ Mn0 is the ionic mass
density with M and n0 as reduced ionic mass and ionic
density, respectively. Replacing �Z by ωTO (valid near the
anticrossing point), we get for �� (assuming weak splitting
��2 ≈ 2ωTO��) as

�� ≈
√

nmbδt2

πρ
. (65)

The value of the splitting of the collective mode fre-
quencies, �� [Eq. (65)], can be measured in spectroscopic
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experiments that can detect q = 0 phonons. The most promis-
ing way to study the phonon excitations is undoubtedly
inelastic neutron scattering; in particular, powder experiments
are sufficient, since the splitting can be observed at q = 0.
For low-density metals or doped semiconductors (such that
the light can penetrate sufficiently deep in the sample), IR
spectroscopy can be alternatively used. Both techniques are
primarily sensitive to the phonon excitations, meaning that
the spin-flip mode itself would be harder to observe. We note
that techniques that couple to spin susceptibility (e.g., electron
spin resonance) will not observe the modes described here; as
has been mentioned above, the spin-flip modes we consider
here arise from the spin-current response function, and not
spin susceptibility.

The important limiting factor in real experiments would
be the magnetic field range needed for the experiments.
Assuming the g factor of conduction electrons to have the
free-electron value, the required field is of the order of 10 T
per 1 meV of the transverse phonon energy ωTO. We note
that for a second-order transition, ωTO would go to zero at
the critical temperature (or value of external parameter for a
quantum transition), and thus the required field can be min-
imized by going close to the transition. To give an example,
for SrTiO3 the relevant phonon energy is around 2 meV at low
temperature [50], suggesting a field of around 20 T (see also
below), accessible in modern laboratories. Using Ca substitu-
tion [36,37,43], however, SrTiO3 can be driven ferroelectric,
allowing for measurements at lower fields due to softening of
the TO phonon.

While the temperature, as discussed above, does not affect
the observation of the anticrossing, the electronic scattering
rate does. In usual metals, the scattering times are of the order
10−14 s [51,52] at room temperature, implying � ∼ 60 meV
and fields in excess of 600 T to observe the splitting. On
the other hand, as the typical residual resistivity ratios can
be often of order 100, this implies that disorder scattering in
clean samples at low temperatures restricts the field to being
above 6 T or less only. This order-of-magnitude estimate
suggests that for polar metals with classical transitions well
below room temperature the spin-phonon resonance can be
potentially observed at fields below 10 T.

We now turn to the possibility of orienting the polar or-
der with magnetic field, discussed in Sec. IV. In particular,
we found that the polar order is “pinned” to the plane or-
thogonal to the field direction (see Fig. 1). The argument
above can be readily generalized to systems of lower sym-
metry. For example, if we consider the tetragonal symmetry,
as considered in SrTiO3 [53], the polar order will be along
the pseudocubic [110] or [110] axis without magnetic field.
For doped SrTiO3, we then predict that orienting the mag-
netic field along one of these axes would pin the polar
order along the other axis, allowing on-demand switching of
polar order by magnetic fields. This presents an attractive
alternative [5,54,55] to electric-field switching that is hard
to apply in bulk materials due to screening by conduction
electrons. The resulting switching can be probed by transport
anisotropy. Indeed, the polar order breaks rotational sym-
metry, as happens also in nematic phases, where resistivity
anisotropy is the conventional probe to detect this state [56].
Field orientation of the polar order would then result in a

change in transport anisotropy, and could have applications in
spintronics.

We next discuss the candidate materials where the effects
discussed here could be observed. Recently, LiOsO3 [3,4,7]
and few-layer WTe2 [5] have been observed to be intrinsic 3D
and 2D polar metals, respectively. On the other hand, there
has been also evidence of artificial 2D metals [6], and 3D
doped systems such as SrTiO3 [36,37,43], BaTiO3 [41,42],
and KTaO3 [57] undergoing polar phase transition. On general
grounds one seeks materials with strong spin-orbit coupling
and not too low density: the actual strength of electron-phonon
coupling effects, Eq. (1), grows with both λ and electron
density (due to k ∼ kF ).

As far as the perovskites are concerned, in SrTiO3 (STO),
λ has been proposed to be the origin of the superconducting
pairing [17,18,20] and there is recent theoretical suggestion
that it can be indeed sizable [19]. However, STO consists of
Ti atoms which are quite light and results in a relatively weak
(20–30 meV) SOC effect in the band structure [58]. BaTiO3

can be then expected to have a comparable λ. Perovskites
consisting of heavier elements, such as LiOsO3 or KTaO3

(KTO), are expected to have stronger SOC, and hence stronger
λ. Indeed, for KTO the SOC-related splitting in the band
structure is around 400 meV [59,60], an order of magnitude
larger than in STO. For LiOsO3 it has been reported that,
unlike other 5d transition-metal oxides, the effect of SOC on
the band structure is small [61]. Nonetheless, the presence of
heavy elements in this polar metal may lead to a large value
of λ which should be checked experimentally.

Let us now discuss in more detail the most well-studied
candidates, STO and KTO. In the insulating phase, the values
of ωTO for STO are known from various experimental means
such as inelastic neutron scattering [50], Raman spectroscopy
[62,63], and hyper-Raman spectroscopy [64–66], while that
for KTO is known from inelastic neutron scattering [67],
infrared [68], and Raman spectroscopy [63,69]. These num-
bers are roughly 1.9 meV [50] and 3.1 meV [67] for STO
and KTO, respectively. Without any modifications moving
the material closer to the polar quantum critical point, we
estimate the required magnetic field near the anticrossing
point, B ≈ ωTO/gμB, for g factors 1.978 [70] for STO and
2.31 [71] for KTO, to be around 17 and 23 T, respectively.
The energy scale �0 also is an experimentally accessible
parameter and for STO and KTO in their insulating phases is
known from inelastic neutron measurements to be 194.4 meV
[50] and 168 meV [67], respectively. Using these values, the
required carrier density to ignore LO-TO splitting (such that
ωp∞ � ωpi) comes out to be around 1019–1020 cm−3.

Now we provide an estimate for the mode splitting, ��

[Eq. (65)], in strongly doped STO near the anticrossing point.
The density functional theory (DFT) calculated value of δt
that appears in Eq. (65) for the case of STO suggests δt =
t ′
xya0 ≈ 421 meV [19], where a0 = 3.9 Å is the lattice con-

stant for STO. However, the pairing interaction energy for
this value of δt is too weak for superconducting Tc to be
consistent with experiments. To get the values of Tc in the rel-
evant range, the BCS coupling constant λBCS = νFVeff, where
νF is the electronic density of states and Veff is the effective
attractive interaction which implicitly depends on δt , needs to
be cranked up. This can be achieved by going near the polar
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quantum critical point (QCP), as shown in Ref. [19]. Using
the values obtained in Ref. [19], we find the cranked up Veff to
be around 2 eV, which gives new δt to be roughly five times
the DFT value. For this new δt , and using the experimentally
known parameters of STO, i.e., mb = 7me [72] with me as
bare electronic mass, and ρ ≈ 5 g/cm3 [20], we obtain the
mode splitting �� [Eq. (65)] to be around 0.4 meV at carrier
densities of order 1020 cm−3. This is the required value of
δ� at the given carrier density if superconductivity in STO
is indeed driven by Rashba-type electron-phonon coupling
[Eq. (1)]. For even higher carrier density, e.g., 1021 cm−3,
�� ≈ 1.3 meV (assuming the same effective mass is appli-
cable). We note that in doped STO, the TO phonon frequency
also increases with density: using the relation in Ref. [73] with
a value of 1.9 meV [50] for the undoped case, we get ωTO ≈
4.6 and 13.5 meV for n = 1020 cm−3 and n = 1021 cm−3,
respectively. This corresponds to magnetic fields of around 50
and 140 T. These numbers, however, can be reduced by tuning
the system closer to the polar QCP: isovalent substitution or
strain can be used for that matter [32,33,43]. In particular, for
systems sufficiently close to QCP, ωTO can be made arbitrarily
small, reducing the required fields to be in the practically
attainable range.

Doped KTO may also be a promising candidate for the
observation of the effects discussed here: with the spin-orbit
coupling effects being roughly 20 times larger than that in
STO [59,60], one can expect the splitting �� to be (using
δt ≈ 20δtSTO, with δtSTO ≈ 421 meV [19], mb ≈ 0.8me [74])
around 0.6 meV for n = 1020 cm−3 (which is achievable with
chemical doping [75]).

From the above discussion, it is clear, however, that an
ideal system for the observation of effects discussed here
would be an intrinsic polar metal with large density of itin-
erant electrons [due to the density dependence of Eq. (65)];
LiOsO3 may provide such an example.

VI. CONCLUSIONS

In this paper, we have analyzed interactions between the
collective modes and the order parameter fluctuations of
metallic systems close to polar transitions in the presence
of magnetic fields. More specifically we have considered the
effects of spin-orbit coupling mediated interactions between
electrons and phonons, both transverse and longitudinal, as
allowed by symmetry. We have found that phonons, plasmons,
and magnetic-field-induced spin-flip transitions all can hy-
bridize, leading to anticrossings in the spectra (Figs. 3 and
5). We have demonstrated that the splitting energies at the
anticrossings can be used to determine the strength of the
spin-orbit coupling mediated interactions between electrons
and phonons in spectroscopic experiments, such as inelastic
neutron scattering or IR spectroscopy (Sec. V C). The polar
transition manifests itself in the softening of the effective g
factor of a hybridized spin-flip excitation at the transition. Ad-
ditionally we have shown (Sec. IV) that the order parameter
of the polar phase can be oriented by magnetic field in a polar
metal; in particular, the electron-phonon interaction pins it
to the plane orthogonal to the field direction. The proposed
measurements will put important constraints on theoretical
descriptions of polar metals, particularly in their supercon-

ducting states where there are many mysteries. More generally
our results facilitate the search for new types of superconduct-
ing and non-Fermi liquid states near polar critical points and
suggest ways to control polar order in metallic systems that
hold promise for future applications.
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APPENDIX A: EFFECT OF MAGNETIC FIELD ON THE
CHEMICAL POTENTIAL

For the purpose of our problem, we do not constrain the
largeness of applied field and in general it can be such that
the system is either partially polarized, when both the spin-
split conduction bands are partially occupied (two-band case),
or fully polarized, when only the lower conduction band is
partially occupied (one-band case). The former corresponds
to the case when chemical potential is the largest energy scale
in the system while the latter corresponds to when Zeeman
energy is the largest scale. In this section, we briefly review
the effect of magnetic field on the chemical potential in both
three and two dimensions.

1. Three dimensions

The exact form of the chemical potential, obtained numer-
ically, as a function of magnetic field is plotted in Fig. 6. One
observes that the crossover from the two-band regime to the
one-band regime occurs at �Z = 2μ0/21/3. To understand this
result analytically, we provide the derivation for two-band and
one-band cases separately.

a. Two-band case. The spin-up and spin-down densities are
n↑ = [mb(2μ(�Z ) − �Z )]3/2/6π2 and n↓ = [mb(2μ(�Z ) +

FIG. 6. Variation of chemical potential with magnetic field.
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�Z )]3/2/6π2. The total number density is the sum of the two:

n = m3/2
b

6π2
[(2μ(�Z ) − �Z )3/2 + (2μ(�Z ) + �Z )3/2], (A1)

which can also be written as

2

(
2μ0

�Z

)3/2

=
(

2μ(�Z )

�Z
− 1

)3/2

+
(

2μ(�Z )

�Z
+ 1

)3/2

.

(A2)

Here μ0 = (3π2n)2/3/2mb is the chemical potential in the ab-
sence of magnetic field. The above Eq. (A2) needs to be solved
for μ(�Z ). The solution exists only when 2μ0 � 21/3�Z .
The exact analytical form is too complicated to provide here;
however, it can certainly be written in the asymptotic limit
when 2μ0 � �Z (by definition it is 2μ0, instead of μ0). The
perturbative solution of Eq. (A2) is

2μ(�Z ) = 2μ0 − �2
Z

4(2μ0)
− �4

Z

16(2μ0)3
. (A3)

As one can see the leading-order correction is quadratic in
Zeeman energy.

b. One-band case. This limit corresponds to 2μ0 
 �Z . In
this case, only the lower conduction band, i.e., the spin-down
subband, is partially occupied and the spin-up density is zero.
So we have the condition

n = n↓ = 1

6π2
[mb(2μ(�Z ) + �Z )]3/2, (A4)

which can be solved straightforwardly for μ(�Z ) to give

μ(�Z ) = 22/3μ0 − �Z

2
. (A5)

While obtaining Eq. (A5), we assumed that 2μ(�Z ) < �Z .
Applying this condition in Eq. (A5), it is trivial to see that
2μ0 < 21/3�Z . So the actual crossover from the two-band to
the one-band regime occurs at 2μ0/�Z = 21/3.

Combining Eqs. (A3) and (A5), we get

μ(�Z )

μ0
=

[
1 − 1

4

(
�Z

2μ0

)2

− 1

16

(
�Z

2μ0

)4
]
�

(
1

21/3
− �Z

2μ0

)

+
(

22/3 − �Z

2μ0

)
�

(
�Z

2μ0
− 1

21/3

)
. (A6)

Note that the expression of the two-band case is obtained
perturbatively, whereas the one-band result is exact.

2. Two dimensions

The spin-up and spin-down densities are n↑ =
[mb(2μ(�Z ) − �Z )]/4π and n↓ = [mb(2μ(�Z ) + �Z )]/4π .
The total density is the sum of n↑ and n↓, which simply
gives n = n↑ + n↓ = mbμ(�Z )/π . This relation suggests
that μ(�Z ) = μ0, which means that the chemical potential
in two dimensions remains the same as that in the absence
of the magnetic field. For the one-band case, similar to three
dimensions, we have μ(�Z ) = 2μ0 − �Z/2.

APPENDIX B: APPLICABILITY OF THE
PERTURBATION THEORY

The calculations we have presented in Secs. III and IV
have been performed in the disordered phase with α < α0

(apart from a phenomenological discussion of Landau theory
in Sec. IV). We have assumed that α is sufficiently small that
we need to consider only leading-order diagrams, noting that
for α > α0 this may not be the case. In this Appendix we
justify our weak-coupling assumption used by estimating the
effect of critical fluctuations on the electronic self-energy;
this we do by calculating its dimensionless coupling con-
stant (C). Qualitatively, we find that C ≈ C1log(mc′2

T /ω′2
TO),

where C1 is some other dimensionless parameter [obtained
later in this section from explicit calculation; see Eq. (B8)]
composed of coupling constant λ and material parameters.
Here, ω′

TO = ωTO(1 − α/α0)1/2 and c′
T are the renormalized

TO phonon mass and velocity, respectively. From the earlier
estimate in Ref. [20], C1 
 1. Therefore, as long as we are
away from the renormalized critical point, the perturbation
theory is valid and our assumption is controllable. At the
critical point, however, i.e., ω′

TO → 0, the log(· · · ) diverges,
and the perturbation theory breaks down. At any rate, we are
always away from the critical point.

Now we discuss the calculation in detail. The fermionic
self-energy for the interaction between electrons and a single
TO phonon can be written as

�(k, εm) = − λ2T
∑

n

∫
q

∑
μν

�μν (k, q)
−2ωq

ω2
n + ω2

q

× G(k + q, εm + ωn), (B1)

where
∫

q is a shorthand for
∫

d3q/(2π )3, G(k, εm) is the
Matsubara analog of the electron’s Green’s function, and

�μν (k, q) = Tr

[(
k + q

2
× σ

)
μ

eμ(q)eν (q)
(

k + q
2

× σ
)

ν

]

× ωq[ε0(q) − ε∞]

4π
(B2)

is the electron-phonon interaction vertex. Upon careful cal-
culation of the interaction vertex [Eq. (B2)], the self-energy
[Eq. (B1)] at T = 0 can be written as

�(k, εm) = λ2�2
0

π

∫
dω

2π

∫
q

1

i(εm + ω) − ξk+q

1

ω2 + ω2
q

×
[

k2(1 + cos2 θ ) + 2kq cos3 θ

+ q2

2

{
sin4 θ

(
1 − sin2 2φ

2

)
+ cos4 θ

}]
. (B3)

We assume that the external frequency ε is small compared
to all the other energy scales in the system. This allows us to
expand the electron Green’s function in Eq. (B3) up to linear
order in iεm. Upon frequency integral, the above Eq. (B3),
after analytic continuation and then derivative with respect to
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ε, can be written as

d�(k, ε)

dε

= −λ2�2
0

π

∫
q

1

2ωq

(
�(ξk+q)

(ωq + ξk+q)2
+ �(−ξk+q)

(ωq − ξk+q)2

)

×
[

k2
(
1 + cos2 θ

) + 2kq cos3 θ

+ q2

2

{
sin4 θ

(
1 − sin2 2φ

2

)
+ cos4 θ

}]
. (B4)

At k = kF , and assuming q 
 kF , the first term of [· · · ]
in Eq. (B4) gives the dominant contribution. The integral
over cos θ in Eq. (B4) has to be done carefully: knowing
that q 
 kF , in the first term the � function constrains the
lower limit of cos θ integral by (−q/2kF ), while in the sec-
ond term it constrains the upper limit by (−q/2kF ). Up
to a prefactor k2

F /(vF q)2, the cos θ integral can be written
as∫ 1

−q/2kF

dx
1 + x2(

x + q
2kF

+ ωq

vF q

)2 +
∫ −q/2kF

−1
dx

1 + x2(
x + q

2kF
− ωq

vF q

)2 ,

(B5)

where x ≡ cos θ . For q � ω′
TO/c′

T , the TO phonon dispersion
can be considered as linear in q. This also bounds the lower
limit of the q integral at ω′

TO/c′
T . Overall, in the limit q/2kF 


c′
T /vF 
 1, the x integral [Eq. (B5)] simply gives 2vF /c′

T .
Finally, Eq. (B4) can be written as

d�(k, ε)

dε
≈ − λ2�2

0k2
F

c′2
T vF 4π3

∫ 2kF c′
T /vF

ω′
TO/s

dqq2 1

q3

≈ − λ2�2
0k2

F

c′2
T vF 4π3

log

(
mc2

T

ω′
TO

)
. (B6)

The dimensionless coupling constant is, therefore,

C = νF
λ2�2

0

c′2
T

1

4π
log

(
mc′2

T

ω′
TO

)
≡ C1log

(
mc′2

T

ω′
TO

)
, (B7)

where

C1 = νF
δt2k2

F

ρ
(
c′2

T k2
F

) 1

4π
(B8)

with νF = mbkF /π2 as the total electronic density of states,
ρ as the ionic mass density, and δt as some energy which
parametrizes electron-phonon coupling defined in Sec. V C of
the main text.

We can compare the dimensionless coupling constant C
with α/α0. From Eqs. (31) and (33),

α

α0
= λ2�2

0m5/2
b (2μ0)3/2

3π3ω2
TO

≡ ν
δt2k2

F

ρω2
TO

1

3π
, (B9)

where we recall that ωTO is the bare TO phonon frequency
which is finite in our model. The forms of C [Eq. (B7)] and
α/α0 [Eq. (B9)] are equivalent (up to a logarithm) except that
in the latter, by definition, it is the TO phonon mass that ap-
pears. This makes sense in the regime when phonon dispersion
is such that ω′

TO 
 cT q 
 ωTO; the former condition is used

for fermion self-energy while the latter is used for phonon
self-energy. The condition ω′

TO = ωTO(1 − α/α0) < ωTO is
legitimate because electron-phonon coupling shifts the polar
critical point to a lower value.

Most importantly, one observes that for any finite fixed
value of ωTO, the self-energy effect can be made small for
α 
 α0 (i.e., λ being small), justifying the perturbative treat-
ment in the main part of the paper.

APPENDIX C: INVESTIGATION OF MODE INSTABILITY
AT FINITE q: �Z � q2/2m � vF q

We discussed in Sec. IV of the main text that in
the q2/2mb 
 vF q 
 �Z regime, the dispersion of phonon
modes never becomes negative [Eqs. (51)]. To show that this
is also the case when q2/2mb, vF q shoots through �Z , we
explore the opposite regime when �Z 
 q2/2mb 
 vF q.

We first calculate phonon self-energy at � = 0 in this
regime which up to order �2

Z and q2 reads

�αβ (q) ≈ −2πV

�2
0

α(2μ0)3/2

4

[(
8

3
− q2

3k2
F

)
δαβ − qαqβ

3k2
F

− 1

3

(
�Z

2μ0

)2

(δαβ + δα3)

+
(

�Z

2μ0

)2{
δαβ

q2

30k2
F

+ qαqβ

15k2
F

+ δαβ (δα1 + δα2)
q2 + q2

z + q2
α

60k2
F

+ (δα1δβ2 + δα2δβ1)
qαqβ

60k2
F

}]
. (C1)

Here, terms of order O(�4
Z/(q2/2mb)2) and higher are ig-

nored.
The eigenmodes of the system are the roots of Det[D̂−1] =

0, where D̂ given in Eq. (48) accounts for phonon self-energy
in Eq. (C1). The resulting modes are

�2
1 = ω2

TO

[
1 − α

α0

{
1 − �2

Z

8(2μ0)2

}]

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 3

20

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 1

5

�2
Z

(2μ0)2

}]
q2

z , (C2a)

�2
2 = ω2

TO

[
1 − α

α0

{
1 − �2

Z

8(2μ0)2

(
2 − q2

z

q2

)}]

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 1

10

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
T + α

α0

ω2
TO

8k2
F

{
1 − 1

5

�2
Z

(2μ0)2

}]
q2

z , (C2b)
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�2
3 = ω2

TO

[
1 − α

α0

{
1 − �2

Z

8(2μ0)2

(
1 + q2

z

q2

)}]

+
[

c2
L + α

α0

ω2
TO

4k2
F

{
1 − 1

5

�2
Z

(2μ0)2

}](
q2

x + q2
y

)

+
[

c2
L + α

α0

ω2
TO

4k2
F

{
1 − 3

20

�2
Z

(2μ0)2

}]
q2

z . (C2c)

We emphasize again that the above result is obtained up to �2
Z

and q2 order. Therefore, from Eqs. (C2) it appears that one
can still go to the q → 0 limit. This would be wrong because
in the nondispersive term of �1,2,3 (or massive terms), the
higher-order correction is of order O(�4

Z/(q2/2mb)2). One
cannot simply take the q → 0 limit here given our initial
assumption. Hence in the small-�Z regime, one must focus
only on dispersive terms (terms of order ∼q2).

It is evident from Eqs. (C2) that for �Z 
 2μ0 the disper-
sion of �1,2,3 never becomes negative, which indicates that
the instability does not occur at finite q. One needs to go back
to the small-q regime to understand the instability at q → 0,
which is discussed in Sec. IV of the main text.

APPENDIX D: SCATTERING EFFECTS ON THE MODE
HYBRIDIZATION AT q = 0

In this section we will give technical details of the effect
of scattering rate, characterized by �, on phonon self-energy
at q = 0 and T = 0. The physical consequences of this on the
mode hybridization are discussed in Sec. V A 2 of the main
text. The electron Green’s function in the spectral representa-
tion [31,76] is written as

1

iωn − ξk − r �Z
2

=
∫ ∞

−∞

d�

2π

A(�, r)

iωn − �
, (D1)

where

A(�, r) = 2�

(� − ξk − r�Z/2)2 + �2
(D2)

is the spectral function. In this representation the phonon self-
energy [Eq. (20)] is written as

�i j (�m) = λ2�2
0

8π2

∑
ss̄

∫ 1

−1
d (cos θ )

∫ 2π

0

dφ

2π
f ss̄
i j (θ, φ)

×
∫ ∞

0

dk

2π
k4

∫ ∞

−∞

d�1

2π

×
∫ ∞

−∞

d�2

2π
A(�1, s̄)A(�2, s)

× T
∑
ωn

1

iωn − �1

1

i(ωn + �m) − �2
, (D3)

where f ss̄
i j is the coherence factor given in Eq. (23) of main

text, and A(�, r) is the spectral function given in Eq. (D2).
The frequency summation in Eq. (D3) gives

T
∑
ωn

1

iωn − �1

1

i(ωn + �m) − �2
= nF (�1) − nF (�2)

i�m − �2 + �1
.

(D4)

Now we take the imaginary part of �i j , which amounts to
writing 1/[i�m − �2 + �1] as −πδ(� − �2 + �1) accord-
ing to the Sokhotski formula. Upon doing the �2 integral,
angle integration, and making a variable substitution from
k to ξk according to the free-electron dispersion relation,
k2/2mb − μ = ξk, we get at T = 0

Im�i j (�) = −α�2

√
2

∑
ss̄

hss̄
i j

∫ ∞

−μ

dξ (ξ + μ)3/2
∫ 0

−�

d�1

2π

× 1

(�1 − ξ − s̄�Z/2)2 + �2

× 1

(�1 + � − ξ − s�Z/2)2 + �2
, (D5)

where ξ ≡ ξk and

hss̄
xx =

∫ 1

−1
d (cos θ )

∫ 2π

0

dφ

2π
f ss̄
xx (θ, φ) = 4

3
,

hss̄
yy =

∫ 1

−1
d (cos θ )

∫ 2π

0

dφ

2π
f ss̄
yy (θ, φ) = 4

3
,

hss̄
zz =

∫ 1

−1
d (cos θ )

∫ 2π

0

dφ

2π
f ss̄
zz (θ, φ) = 4

3
(1 − ss̄),

hss̄
xy =

∫ 1

−1
d (cos θ )

∫ 2π

0

dφ

2π
f ss̄
xy (θ, φ) = 2i

3
(s − s̄). (D6)

Since ξ 
 μ, (ξ + μ)3/2 ≈ μ3/2 and the lower limit of the ξ

integral can be extended to −∞. After doing a straightforward
integral we obtain the imaginary part of �i j :

Im�xx(�) = Im�yy(�) = 1

2
Im�zz(�) = −α(2μ)3/2

12

[
4��

(� − �Z )2 + 4�2
+ 4��

(� + �Z )2 + 4�2

]
,

Im�xy(�) = −Im�yx(�) = −α(2μ)3/2

12

[
4�2 − �2 + �2

Z

(� − �Z )2 + 4�2
− 4�2 − �2 + �2

Z

(� + �Z )2 + 4�2

]
. (D7)

The real parts can be calculated from the Kramers-Kronig relation,

Re�i j (�) = 1

π
P

∫ ∞

−∞
d�′ Im�i j (�′)

�′ − �
, (D8)
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where P denotes the Cauchy principal value, and are written as

Re�xx(�) = Re�yy(�) = 1

2
Re�zz(�) = −α(2μ)3/2

6

[
4�2 − �Z (� − �Z )

(� − �Z )2 + 4�2
+ 4�2 + �Z (� + �Z )

(� + �Z )2 + 4�2

]

Re�xy(�) = −Re�xy(�) = α(2μ)3/2

12

[
4��

(� − �Z )2 + 4�2
− 4��

(� + �Z )2 + 4�2

]
. (D9)

The effect of resonance broadening, coming through self-energy, on hybridized modes is discussed in Sec. V A 2 of the main
text.
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