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We present a method to calculate optical properties of strongly correlated systems. It is based on dynamical
mean-field theory and it uses as an input realistic electronic structure obtained by local density-functional
calculations. Numerically, tractable equations for optical conductivity, which show a correct noninteracting
limit, are derived. Illustration of the method is given by computing optical properties of the doped Mott
insulator La1−xSrxTiO3.
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I. INTRODUCTION

Optical spectral functions such as conductivity or reflec-
tivity are very important characteristics of solids, which give
us a direct probe of their electronic structure. In the past,
very powerful numerical techniques1 based on density-
functional theory (DFT) and local-density approximation
(LDA ) have been developed, which allowed to access the
one-electron spectrum in real materials via association of
LDA energy bands with the real excitation energies. This
approach works well for weakly correlated systems, where,
for example, optical properties can be directly computed2 via
the knowledge of the band structure and the dipole matrix
elements of the material. Furthermore, for weakly correlated
materials LDA is a good starting point for adding perturba-
tive corrections in the screened Coulomb interactions follow-
ing theGW approach.3

Unfortunately, the treatment of materials with strong elec-
tronic correlations is not possible within this framework.
Strong on-site Coulomb repulsion modifies the one-electron
spectrum via appearance of satellites, Hubbard bands,
strongly renormalized Kondo-like states, etc., which are no
longer obtainable using static mean-field theories such as
Hartree-Fock theory or LDA. The wave functions in strongly
correlated systems are not representable by single Slater de-
terminants and dynamical self-energy effects become impor-
tant, thus requiring a new theoretical treatment based on the
dynamical mean-field theory(DMFT).4 Recent advances5 in
merging the DMFT with realistic LDA based electronic
structure calculations have already led to solving such long-
standing problems as, e.g., temperature-dependent magne-
tism of Fe and Ni,6 volume collapse in Ce,7 and huge volume
expansion of Pu.8

In the present work we develop an approach which allows
us to calculate the optical properties of strongly correlated
materials within the combined LDA and DMFT framework.
We discuss the expressions for optical conductivity using
self-energies and local Green’s functions, which are numeri-
cally tractable and correctly reproduce the limit of noninter-
acting electrons. We also check the limit of strong correla-
tions by applying the method to three-band Hubbard
Hamiltonian. Results of this test reproduce the available ex-
perimental and theoretical data with very good accuracy. We

demonstrate the applicability of the present scheme on the
example of doped Mott insulator La1−xSrxTiO3, where we
compare the results of our calculations with the LDA predic-
tions and experiment.

The paper is organized as follows. In Sec. II we describe
the method for calculation of the optical conductivity. Appli-
cation of the method to doped La1−xSrxTiO3 is described and
analyzed in Sec. III, which is followed by conclusions pre-
sented in Sec. IV. Some technical details of the calculations
and the downfolding and upfolding procedures are given in
the Appendix.

II. METHOD

To calculate the optical response functions we utilize the
dynamical mean-field approach where the self-energy of the
many-body problem is approximated by a local operator
Ssvd which is, however, frequency dependent. A physical
transparent description of this method can be achieved by
introducing an interacting analog of Kohn-Sham particles,
ck jsr ,vd;ck jv, which reproduce the local portion of the
Green’s function in a similar way as the noninteracting
Kohn-Sham particlesck jsr d reproduce the density of the
solid in its ground state. This spectral density-functional
approach9 has an advantage that the k-integrated excitation
properties(such as, e.g., densities of states) can now be as-
sociated with the real one-electron spectra. The optical tran-
sitions between the interacting quasiparticlesck jv allow the
excitations between incoherent and coherent parts of the
spectra (e.g., between Hubbard and quasiparticle bands)
which are intrinsically missing in static mean-field ap-
proaches such as DFT but are present in real strongly corre-
lated situations.

In order to find the quasiparticles living at a given fre-
quencyv we solve the Dyson equation with the LDA poten-
tial Vef f and the frequency-dependent correctionSsvd−Sdc,
i.e.,

fs− ¹2 + Vef f + Ssvd − Sdc − ek jvdgck jv
R = 0. s1d

A double-counting termSdc appears here to account for the
fact thatVef f is the average field which acts on both heavy
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(localized) and light(itinerant) electrons. Note that due to the
non-Hermitian nature of the problem, both “right”cR and
“left” cL eigenvectors should be considered, the latter being
the solution of the same Dyson equation(1) with c placed on
the left. The local Green’s function is constructed from the
eigenvectors and eigenvalues in the following way:

Gsvd = o
k j

ck jv
R ck jv

L

v + m − ek jv
. s2d

The local self-energy is calculated from the corresponding
impurity problem which is defined by the DMFT self-
consistency condition

Gsvd = fv − Eimp − Ssvd − Dimpsvdg−1, s3d

whereDimp is the impurity hybridization matrix andEimp are
the impurity levels. From knownDimpsvd, Eimp, and Cou-
lomb interactionU, the solution of the Anderson impurity
problem then delivers the local self-energySsvd. The system
of equations(1)–(3), together with an impurity solver, i.e., a
functionalSfDimpsvd ,Eimp,Ug, is thus closed.

Solution of the Anderson impurity model can be carried
out by available many-body technique4 such as the quantum
Monte Carlo (QMC) method10 which will be used in our
work. In practice,5,8 we utilize the LDA+DMFT approxima-
tion and treat only thed electrons of Ti as strongly corre-
lated, thus requiring full energy resolution. All other elec-
trons are assumed to be well described by the LDA. The
Dyson equation is solved on the Matsubara axis for a finite
set of imaginary frequenciesivn using a localized orbital
representation such as, e.g., linear muffin-tin orbitals
(LMTO’s)11 for the eigenvectorsck jv.

The optical conductivity can be expressed via equilibrium
state current-current correlation function12 and is given by

smnsvd = pe2E
−`

+`

d«fmns« + v/2,« − v/2d

3
fs« − v/2d − fs« + v/2d

v
, s4d

wheree is free electron charge,fs«d is the Fermi function,
and the transport functionfmns« ,«8d is defined as

fmns«,«8d =
1

n
o
k j j 8

Trh=mr̂k js«d=nrk j8s«8dj, s5d

with V being the unit-cell volume and

rk js«d = −
1

2pi
fGk js«d − Gk j

† s«dg s6d

is expressed via retarded one-particle Green’s function
Gk js«d. Using the solutionsek jv andck jv of the Dyson equa-
tion (1) we express the optical conductivity in the form

smnsvd = −
e2

4p
o

ss8=±1

ss8o
k j j 8
E
−`

+`

d«
Mk j j 8

ss8,mns«−,«+d

v + ek j«−
s − ek j8«+

s8

3 F 1

«− + m − ek j«−
s −

1

«+ + m − ek j8«+
s8 G fs«−d − fs«+d

v
,

s7d

where we have denoted«±=«±v /2, and used the shortcut
notationsek j«

+ ;ek j«, ek j«
− =ek j«

* .
The matrix elementsMk j j 8 are generalizations of the stan-

dard dipole allowed transition probabilities which are now
defined with the right and left solutionscR and cL of the
Dyson equation:

Mk j j 8
ss8,mns«,«8d =E sck j«

s ds=msck j«8
−s8 ds8dr

3E sck j8«8
s8 ds8=nsck j«

−s dsdr , s8d

where we denotedck j«
+ =ck j«

L , ck j«
− =ck j«

R and assumed that

sck j«
s d+;ck j«

s andsck j«
s d−=ck j«

s* . Expressions(7) and(8) rep-
resent generalization of the optical conductivity formula for
the case of strongly correlated systems, and involve the extra
internal frequency integral appearing in Eq.(7).

Let us consider the noninteracting limit whenSsvd−Sdc

→ ig→0. In this case, the eigenvaluesek j«=ek j + ig, ck j«
R

;uk jl, ck j«
L ;uk jl* ;kk j u and the matrix elements

Mk j j 8
ss8,mns« ,«8d are all expressed via the standard dipole tran-

sitions ukk j u,uk j8lu2. Working out the energy denominators
in expression(7) in the limit ig→0 and forvÞ0 leads us to
the usual form for the conductivity which for its interband
contribution can be written as

smnsvd =
pe2

v
o

k,j8Þ j

kk j u=muk j8lkk j8u=nuk jl

3ffsek jd − fsek j8dgdsek j − ek j8 + vd. s9d

To evaluate the expressionsmnsvd in Eq. (7) numerically,
we need to perform integration over« and pay a special

attention to the energy denominator 1/sv+ek j«−
s −ek j8«+

s8 d. To
calculate the integral over« we divide frequency domain into
discrete set of points«i and assume that the eigenvaluesek j«
and eigenvectorsck j« to zeroth order can be approximated
by their values at the middle between each pair of points. In
this way, the integral is replaced by the discrete sum over
internal grid«i defined for each frequencyv. To deal with

the strong momentum dependence of 1/sv+ek j«−
s −ek j8«+

s8 d,
linearization of the denominator with respect tok should be
performed as it is done in the tetrahedron method of Lambin
and Vigneron.13 On the other hand, the difference between
single poles[expression in square brackets of Eq.(7)], after
integration over frequency, becomes a smooth function ofk
and can be treated together with the current matrix elements,
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i.e., by linearizing the numerator. The described procedure
produces a fast and accurate algorithm for evaluating the
optical response functions of a strongly correlated material.

III. APPLICATION OF THE METHOD

To illustrate the method of the optical conductivity calcu-
lation in a strongly correlated system we chose paramagnetic
doped Mott insulator La1−xSrxTiO3. LDA cannot reproduce
insulating behavior of this system already atx=0, which em-
phasizes the importance of correlation effects. Upon doping
the system becomes a correlated metal, which atx=1
sSrTiO3d should be considered as a standard band insulator.
Photoemission experiments14 as a function of doping display
both a lower Hubbard band located at near energies 2 eV
below the Fermi levelEF and a quasiparticle band centered
at EF. Previous DMFT based calculations5,15 of the density
of states usedt2g degenerate bands of Ti found nearEF and
reproduced both these features with a good accuracy. The
studies of the optical properties for LaTiO3 with the less
accurate LDA+U method16 have been also carried out.17

We have calculated the electronic structure of
La1−xSrxTiO3 using the LDA+DMFT method. A cubic crys-
tal structure with five atoms per unit cell is utilized which is
a simplified version of a fully distorted 20 atoms/cell super-
lattice. Since the self-energy effects are crucial for the states
near the Fermi energy, we treat correlations only on the
downfolded t2g orbitals of Ti atoms as suggested
previously.5,15 The Anderson impurity model is solved using
quantum Monte Carlo method with Hubbard parameterU
=6 eV atT=1/b=1/32 of Ti t2g bandwidth, which delivers
the self-energySsvd for these orbitals using the self-
consistent DMFT framework. The applicability of QMC is
justified since temperature in our simulation is well below
the coherence energy, which is about 1/8 of the bandwidth.
We also limit our consideration by dopingsx larger than 10
per cent to stay below the coherence temperature. Once the
self-energy is obtained, we upfold it back into the full orbital
space which delivers the one-electron spectrum of the system
with correlation effects taken into account. Detailed descrip-
tion of downfolding/upfolding procedures to get the self-
energy is given in the Appendix.

To treat doping away fromx=0 the self-energy is allowed
to change self-consistently while the one-electron Hamil-
tonian is assumed to be independent on doping. We then
evaluate the frequency-dependent eigenvaluesek jv, ck jv as
functions of doping. This allows us to evaluate the energy
and doping dependent optical conductivity integrals both in
k ande spaces. The integrals over momentum are taken on
the (10, 10, 10) mesh using the tetrahedron method of Ref.
13. To check the convergence we also performed the calcu-
lations on the(6,6,6) mesh which produces the conductivity
within 5% of accuracy. The energy-integration mesh was
chosen to have a step equal to 0.01 eV. We also broaden the
imaginary part of the self-energy for noninteracting bands
with 0.0004 eV. This reproduces the LDA density of states
of the studied compound within the accuracy of 1–2 %.

We first discuss the undoped case withx=0 which corre-
sponds to the insulator with a small gap equal to 0.2–0.5 eV.

Model calculations for threefold degenerate Hubbard model,
used to get the self-energy for Tit2g bands, produce a Mott-
Hubbard gap equal to 2.8 eV but once upfolded into the
LDA Hamiltonian one needs to take into account La 5d
states in the vicinity of the Fermi level. The gap between the
lower Hubbard band and La 5d bands is indeed the charge-
transfer gap and it is equal to 0.2–0.5 eV for the undoped
compound. Optical transitions from the lower Hubbard band
to La 5d give the main contribution to the optical conductiv-
ity in pure LaTiO3.

Upon doping, carriers are introduced, and the system ex-
hibits metallic behavior. Figure 1 shows low-frequency part
of sxxsvd at dopingsx=0.1, 0.2, and 0.3. The optical con-
ductivity exhibits a Drude peak whose strength is increased
with doping. The contribution tosxxsvd at these frequencies
is due to transitions from(i) the coherent part of the spec-
trum near the Fermi level to the upper Hubbard and lantha-
num bands,(ii ) the transitions from the lower Hubbard
band to the upper Hubbard band and lanthanum bands,
and (iii ) transitions from the lower Hubbard band to the
coherent part of the spectra. This trend correctly repro-
duces the optical-absorption experiments performed for
La1−xSrxTiO3.

18 Comparison of our data with these measure-
ments is shown in Fig. 1, where the measured optical con-
ductivity at the doping levelx=0.1 is plotted by symbols.
Overall good agreement can be found for the frequency be-
havior of the theoretical and experimental curves.

The strength of the Drude peak is only slightly overesti-
mated by the present theory as well as some residual discrep-
ancy is seen in the region near 1 eV. We must emphasize that
corresponding calculations based on the local-density ap-
proximation would completely fail to reproduce the doping
behavior due to the lack of the insulating state of the parent
compound LaTiO3. As a result, the LDA predicts a very large
Drude peak even forx=0, which remainslittle changedas a
function of doping. In view of these data, the correct trend
upon doping captured by the present calculation as well as
proper frequency behavior can be considered as a significant

FIG. 1. (Color online) Low-frequency behavior of the optical
conductivity for La1−xSrxTiO3 at x=0.1, 0.2, 0.3 calculated using
the LDA+DMFT method. Experimental results(Ref. 19) are shown
by symbols for the casex=0.1. In the inset the effective number of
carriers is plotted as a function of doping. Squares show the results
of the LDA+DMFT calculations. Circles denote the experimental
data from Ref. 19.
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improvement brought by this realistic DMFT study.
More insight can be gained by comparing the effective

number of carriers participating in the optical transitions
which is defined byNeffsvcd=s2m/pe2de0

vcssvddv, wherem
is free electron mass andvc is the cutoff energy. Experimen-
tal data for Neffsvcd are available for the frequency
vc=1.1 eV.19 They are shown in the inset to Fig. 1 where we
plot the effective number of electrons as a function of hole
concentration both from the theory and experiment.19 At zero
doping the system is an insulator which gives very smallNeff
for x=0 (this value is nonzero since we tookvc larger than
the optical gap of the insulator). Upon doping, increase in
Neff is expected and its values as well as slopedNef f/dx
agree well with experiment.

The main effect introduced by the DMFT calculation on
the strength of the optical transitions can be understood by
looking at the Drude and interband contributions separately
and comparing them with the corresponding LDA values.
The LDA data give a very largeNeff=1.15 which by 90%
consists of the Drude contribution. The latter can be found
from the following equation:Neff

D =s2mV/pe2dsvp
2/8d, where

plasma frequencyvp=4.87 eV is obtained from LDA calcu-
lations. This result is not surprising since in LDA thet2g
states crossing the Fermi level are filled with one electron
which gives an estimation for the effective number of elec-
trons participating in optical transitions at this frequency
range. Thus, due to proximity to the insulator the DMFT
suppresses 90% of the Drude part accounted for incorrectly
by the metallic LDA spectrum.

Now we discuss optical conductivity for the frequency
interval from 0 to 16 eV. Figure 2 showssxxsvd at doping
x=0.1 where we compare our DMFT and LDA calculations
with the measurements in Ref. 18. Sharp increase in optical
conductivity is seen atv,4 eV. This can be attributed to the
transitions from the oxygenp band into unoccupiedd states
of Ti. The main peak of optical transitions is located between
5 and 10 eV, which is predicted by both DMFT calculation
(solid line) and the LDA(dashed line). It is compared well
with the measured spectrum(dashed line with symbols).
Since the self-energy corrections modify only the states near

the Fermi level, we do not expect DMFT spectrum to be
essentially different from the LDA one in this frequency
range. Overall, the agreement at high frequencies is quite
good, which demonstrates reliability of the present method.

As an additional check of the DMFT calculation, we have
extracted the values of the linear specific-heat coefficientg
as a function of doping. Our comparisons with the
experiment20 are given in Fig. 3. For example, atx=0.1,
experimentalg=11 mJ/mol K2, while DMFT producesg
equal to 14 mJ/mol K2. Note that the LDA value here is only
about 4 mJ/mol K2. Since DMFT renormalizes the density
of states at the Fermi level,g obtained by this theory clearly
indicates the importance of band narrowing introduced by
correlations.

IV. CONCLUSION

In conclusion, we have shown how the optical properties
of a realistic strongly correlated system can be computed
using recently developed DMFT based electronic structure
method. We have developed a numerically tractable scheme
which is reduced to evaluating dipole matrix elements as
well as integrating in momentum and frequency spaces simi-
lar to the methods developed for noninteracting systems. As
an application, we have studied the optical conductivity of
La1−xSrxTiO3 and found its correct dependence as a function
of frequency and doping in comparison to the experiment.
Our results significantly advance studies based on static
mean-field approximations such as LDA.

The framework that we presented should be a good start-
ing point for including vertex corrections. Local vertex cor-
rections can be evaluated within DMFT(Ref. 4) while non-
local ones can be incorporated by extending the calculations
of Ref. 21 to the optical conductivity. This is analogous to
how LDA spectra can be improved via theGW method.3
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APPENDIX: COMPUTATION OF THE SELF-ENERGY,
DMFT DOWNFOLDING, AND UPFOLDING

The approach described in Sec. II requires evaluation of
the self-energy operator in Eq.(1) using the LDA+DMFT
method.5 The latter exploits the locality of the self-energy in
some orbital space, and the restriction of the Coulomb inter-
action to a limited set of localized(or heavy) orbitals to be
denoted byh. The rest of the orbitals are taken to be uncor-
related(light) and are denoted byl.

Note that the locality of the self-energy is a basis-
dependent statement. Under a change of the basis the Kohn-
Sham HamiltonianHk is transformed intoUkHUk

†, with Uk
being a unitary transformation. The self-energy transforms
like the Hamiltonian, however, ifSsvd is momentum inde-
pendent in one basis, then in the new basisS8=UkSsvdUk

† in
general becomes momentum dependent. Hence, we need to
work in a very localized basis, such as the nonorthogonal
LMTO’s, where the DMFT approximation is most justified.

Introduction of a basis set allows the partition of the
double-counting subtracted Kohn-Sham HamiltonianHhh

0

=Hhh−Sdc and of the Green’s function into the light and
heavy blocks:

Gsk,vd = Fsv + mdSOhh Ohl

Olh Oll
D

k
− SHhh

0 Hhl
0

Hlh
0 Hll

0D
k

− SShhsvd 0

0 0
DG−1

, sA1d

wheref¯g−1 means matrix inversion,m is the chemical po-
tential, andO is the overlap matrix. Given that the self-
energy is local, it can be obtained from the Anderson impu-
rity model

Simp = o
aa8,tt8

ca
+stdG0aa8

−1 st,t8dca8st8d

+ o
abgd,t

Uabdg

2
ca

+stdcb
+stdcgstdcdstd, sA2d

whereG0 is the bath Green’s function which obeys the self-
consistency condition5 generalized to nonorthogonal basis
set:

G0
−1svd = So

k
1

1

sv + mdO − H0skd − SsvdD
hh

−1

+ Shhsvd.

sA3d

When a group of bands is well separated from the others,
it is possible to recast the previous self-consistency condition
at low frequenciesin a form which resembles the DMFT
equations derived from a Hamiltonian involving theh de-

grees of freedom only. In the one-electron approach it goes
under the name downfolding.22

Performing standard matrix manipulations and a low-
frequency expansion with linear accuracy inv (which is jus-
tified for low-energy calculations, provided the separation of
energy scales between the band near the Fermi level and the
rest) we rewrite the heavy block of the Green’s function as

Ghhsk,vd = fZk
−1v − H̃skd − Shhg−1, sA4d

where renormalization amplitudeZk and effective Hamil-
tonian are given by

Zk
−1 = Ohh + KhlKll

−1OllKll
−1Klh − OhlKll

−1Klh − KhlKll
−1Olh,

H̃skd = Hhh
0 − KhlKll

−1Klh,

Kg = Hg
0 − mOg. sA5d

Hereg stands for a pair of indicesl or h. Finally, we perform
a unitary transformationS in the heavy block, so as to work
in a nearly orthogonal basis in theh sector:

S†Fo
k

ZkG−1
S= 1. sA6d

Applying this transformation to Eq.(A5) we arrive to the
local Green’s function in the new basis,

Ghhsvd = o
k

fsv + mdOeffskd − Heffskd − Ssvdg−1,

sA7d

and to a new DMFT self-consistency condition

G0hh
−1 svd = Ghh

−1 + Ssvd. sA8d

This set of equations has clearly the form of the DMFT equa-
tions of a model involving heavy electrons only, with a
Hamiltonian and an overlap matrix:

Oeffskd = S†Zk
−1S, sA9d

Heffskd = S†H̃skdS+ mOeffskd. sA10d

The self-energyS is still computed from the Anderson
impurity model, but the Coulomb interaction of this model is
renormalized to a smaller effective interactionUeff matrix,

Ueff,a8b8g8d8
8 = o

abgd

fÎZga8afÎZgb8bfÎZgg8gfÎZgd8dUabgd.

sA11d

Until now the discussion is general, and applies to any
system where there is a set of bands well separated from the
rest. Further simplifications are possible, if we assume that
the system has cubic symmetry and that the overlapOeff is
the unit matrix. Ford electrons, cubic symmetry makes the
self-energy and local Green’s function diagonal. In this case
the momentum sum in Eq.(A7) can be replaced by the inte-
gral over energy. The local Green’s function can be calcu-
lated as a Hilbert transformation,
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Gsvd =E
−`

+`

d«
Ds«d

v + m − Ssvd − «
. sA12d

Here,Ds«d is the density of states of the the reduced Hamil-
tonianHeffskd. Note that the cubic symmetry keepsUeff di-
agonal if the bare Coulomb matrixU has that property.

Upfolding is a procedure which is “inverse” to the down-
folding described above. One simply converts the self-energy
S obtained from the DMFT calculation into the block self-
energy Shh=SSS†, which is to be inserted to the original
LDA Hamiltonian, in order to compute the local Green’s
function Gsvd.

In general, the downfolded density of statesDs«d obtained
from Heff has a nonzero first energy moment and depends in
a nonlinear way on the value of the double-counting correc-
tion, as well as on the chemical potential which enters the
formulation of the original problem containing all electronic
bands. Furthermore, the value of the chemical potential in
the LDA+DMFT calculations does not need to be the same
as the LDA value.

The reduction of the self-consistent LDA+DMFT equa-
tions to the form described by Eq.(A12) with Ds«d being the
partial LDA density of states of the heavy orbitals was sug-
gested and used in Ref. 23. Unfortunately, this partial density
of states contains weight at high energies, and if this is omit-
ted, the normalization condition is violated. The derivation
presented in this appendix eliminates these difficulties, and
instead suggests an alternative procedure in which we first
carry out a tight-binding fit of the LDA bands(downfolding)
near the Fermi level, and then use it to estimateDs«d. Our
derivation also indicates how one goes back(i.e., upfolds the
self-energy) to the all-orbital Hamiltonian. In our calcula-
tions using the downfolded equationsm was adjusted to get
the correct density ofd electrons. In the upfolded Green’s
function m was taken to be the LDA chemical potential, and
Sdc was deduced from a constant shift of the heavy orbitals
by obtaining the total number of electrons from the integral
of the spectral function

Asvd = −
1

p
Imo

k
o
ab

Gabsk,vdOab
k ,

multiplied by the Fermi function.

1For a review, see, e.g.,Theory of the Inhomogeneous Electron
Gas, edited by S. Lundqvist and S. H. March(Plenum, New
York, 1983).

2See, e.g., E. G. Maksimov, I. I. Mazin, S. N. Rashkeev, and Y. A.
Uspenski, J. Phys. F: Met. Phys.18, 833 (1988).

3For a review, see G. Onida, L. Reining, and A. Rubio, Rev. Mod.
Phys. 74, 601 (2002).

4For a review, see, e.g., A. Georges, G. Kotliar, W. Krauth, and M.
J. Rozenberg, Rev. Mod. Phys.68, 13 (1996).

5V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,
and G. Kotliar, J. Phys.: Condens. Matter9, 7359(1997).

6A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev.
Lett. 87, 067205(2001).

7K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404(2001).

8S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature(London)
410, 793 (2001).

9G. Kotliar and S. Savrasov, inNew Theoretical Approaches to
Strongly Correlated Systems, edited by A. M. Tsvelik(Kluwer
Academic, The Netherlands, 2001), p. 259; S. Y. Savrasov and
G. Kotliar, Phys. Rev. B69, 245101(2004).

10J. E. Hirsch and R. M. Fye, Phys. Rev. Lett.56, 2521(1986).
11O. K. Andersen, Phys. Rev. B12, 3060(1975).
12G. D. Mahan,Many-Particle Physics, 2nd ed. (Plenum, New

York, NY, 1993).
13Ph. Lambin and J. P. Vigneron, Phys. Rev. B29, 3430(1984).
14A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima,

Y. Tokura, M. Abbate, F. M. F. de Groot, M. T. Czyzyk, J. C.
Fuggle, O. Strebel, F. Lopez, M. Domke, and G. Kaindl, Phys.
Rev. B 46, 9841(1992).

15I. A. Nekrasov, K. Held, N. Bluemer, A. I. Poteryaev, V. I. Anisi-
mov, and D. Vollhardt, Eur. Phys. J. B18, 55 (2000).

16For a review, see V. I. Anisimov, F. Aryasetiawan, and A. I.
Liechtenstein, J. Phys.: Condens. Matter9, 767 (1997).

17I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B53, 7158
(1996).

18Y. Fujishima, Y. Tokura, T. Arima, and S. Uchida, Phys. Rev. B
46, 11167(1992).

19Y. Okimoto, T. Katsufuji, Y. Okada, T. Arima, and Y. Tokura,
Phys. Rev. B51, 9581(1995).

20K. Kumagai, T. Suzuki, Y. Taguchi, Y. Okada, Y. Fujishima, and
Y. Tokura, Phys. Rev. B48, 7636(1993).

21P. Sun and G. Kotliar, Phys. Rev. Lett.92, 196402(2004).
22O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B62, R16219

(2000), and references therein.
23K. Held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and D.

Vollhardt, Int. J. Mod. Phys. B15, 2611(2001).

OUDOVENKO et al. PHYSICAL REVIEW B 70, 125112(2004)

125112-6


