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URŠI





Acknowledgments

I would like to gratefully acknowledge the supervision of Prof. Janez
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Abstract

Dynamic and static properties of the strongly correlated electrons are
investigated within the paramagnetic metallic state of the t-J model. We
used the Extended dynamical mean field theory, which scales the inter-site
interaction term J in the same way as hopping term t, to the order 1/

√
d. In

the limit of large spatial dimensions the intersite quantum fluctuations are
therefore treated on an equal footing with local ones. The lattice problem is
mapped onto the effective impurity problem where the local moment is cou-
pled to both the self-consistent fermionic and self-consistent vector-bosonic
bath. A diagrammatic auxiliary-particle technique is developed to solve the
self-consistent quantum impurity problem. Thermodynamics, spectral and
charge transport properties are studied as a function of temperature and
doping.

The Mott insulating gap of the half-filled t-J model is slowly destroyed
with adding holes to the system but a remnant of the gap persists up to
the overdoped regime. The non-Fermi liquid state with a large pseudogap
of order J is found in the underdoped regime while a Fermi-liquid metallic
state is stable for doping δ & 24%. The Fermi-liquid characteristic energy
scale ε∗ is monotonically increasing with doping and is found to be of order
J in the crossover region between Fermi and non-Fermi liquid state.

The results furthermore suggest that the Luttinger theorem is not satisfied
for doping below 20%. The Fermi surface is hole-like and centered around
(π, π) for underdoped and optimum doped case, while it is electron-like for the
overdoped system. The Hall number changes sign from positive to negative
slightly above the optimum doping and diverges as 1/(e0δ) close to the Mott-
Hubbard transition in agreement with experiments on cuprates.

As a function of doping, the entropy shows a rather broad maximum at
the hole density of 15% corresponding to optimum doping. The degeneracy
temperature associated with the release of the entropy is relatively small
Tdeg < J . The chemical potential increases with increasing temperature in
the underdoped regime while in decreases with temperature in the overdoped
regime. The point, where µ is temperature independent coincides with the
point of maximal entropy and characterizes optimum doping. An excellent
agreement is found between the exact diagonalization and EDMFT results
for all temperatures and all dopings considered.

We also developed an extension of the non-crossing approximation, used
to solve the quantum impurity problem, to the case of finite U . The ap-
proximation correctly recovers the low energy scale TK , in contrast to other
simpler approximations discussed in the literature.



Povzetek

Dinamične in statične lastnosti močno koreliranih elektronov smo obrav-
navali v okviru paramagnetnega kovinskega stanja modela t-J. Uporabili
smo Razširjeno teorijo dinamičnega povprečnega polja, kjer je sklopitev med
sosedi J skalirana enako kot skakalni člen t, namreč kot 1/

√
d. V limiti vi-

sokih dimenzij so tako kvantne fluktuacije med sosedi obravnavane enako kot
lokalne fluktuacije. Mrežni model se preslika na efektivni kvantni problem
magnetne nečistoče, kjer je lokalni moment sklopljen s fermionskim in bo-
zonskim rezervoarjem, ki morata biti določena samousklajeno. Razvili smo
diagramsko metodo, s katero smo rešili kvantni problem magnetne nečistoče.
Študirali smo spektralne, termodinamske in transportne lastnosti modela v
odvisnosti od temperature in dopiranja.

Mottova energijska špranja polzapolnjenega modela t-J z dopiranjem počasi
izginja vendar je ostanek špranje opazen vse do območja močnega dopiranja.
Pseudo-energijska vrzel velikosti J je prisotna v šibko dopiranem sistemu,
kjer model nima lastnosti Fermijeve tekočine. Šele pri dopiranju nad 24%
postane ta kovina Fermijeva tekočina z značilno energijsko skalo ε∗, ki je v
tem prehodnem območju reda J in z dopiranjem monotono narašča.

Rezultati kažejo, da je v predstavljenem modelu Luttingerjev teorem
kršen pri dopiranju pod 20%. Pri šibkem in zmernem dopiranju ima Fermi-
jeva površina karakter vrzeli s sredǐsčem v (π, π), v področju močnega dopi-
ranja pa dobi elektronski značaj. Predznak Hallovega koeficienta se spremeni
s pozitivnega v negativnega samo malo nad mestom optimalnega dopiranja
in v bližni Mott-Hubbardovega prehoda divergira semiklasično kot 1/(e0δ),
kar je v skladu z eksperimenti na kupratih.

Entropija pri konstantni temperaturi doseže maksimum pri optimalnem
dopiranju δ ∼ 0.15. Kemični potencial narašča s temperaturo v rahlo dopi-
ranem sistemu, medtem ko pada s temperaturo v močno dopiranem sis-
temu. Točka, kjer je kemični potencial skoraj neodvisen od temperature sov-
pada s točko maksimalne entropije in določa optimalno dopiranje. Rezultati
EDMFT in rezulati točne diagonalizacije dvodimenzionalnega t− J modela
se kvalitativno in kvantitativno zelo dobro ujemajo.

Metodo NCA, ki se uporablja za rešitev kvantnega problema magnetne
nečistoče, smo razširili za primer končne Coulombske interakcije U . Za raz-
liko od mnogih enostavneǰsih približkov, ki jih lahko najdemo v literaturi, ta
približek vsebuje pravilno nizkoenergijsko skalo TK .



Contents

Kratek povzetek i
Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Metoda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Rezultati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 3

2 Dynamical mean-field theory 7
2.1 Derivation of DMFT effective action . . . . . . . . . . . . . . 8
2.2 The impurity representation . . . . . . . . . . . . . . . . . . . 12
2.3 Local nature of DMFT . . . . . . . . . . . . . . . . . . . . . . 13

3 Extended dynamical mean-field theory 15
3.1 The EDMFT effective action . . . . . . . . . . . . . . . . . . . 17
3.2 The impurity model . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Still local theory? . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Approximate solution of EDMFT 25
4.1 Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 The auxiliary-particle representation . . . . . . . . . . . . . . 27
4.3 The approximation scheme . . . . . . . . . . . . . . . . . . . . 29
4.4 Non-crossing approximation . . . . . . . . . . . . . . . . . . . 31
4.5 Vertex corrections . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 EDMFT results 39
5.1 Quantum critical point and MFLT . . . . . . . . . . . . . . . 39
5.2 Spectral Functions . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Fermi surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Hall coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Low temperature limit . . . . . . . . . . . . . . . . . . 72

1



5.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . 74

6 Anderson impurity model at finite Coulomb interaction U:
generalized NCA 79
6.1 Pseudoparticle representation of the model . . . . . . . . . . . 80
6.2 Gauge Symmetry and Projection onto the Physical Hilbert

Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Generating Functional . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Results of SUNCA . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusions 93

A Weiss fields 97

B Equation of motion 99

C Derivation of NCA equations 103

D Friedel sum rule 109

E Density of states 115

F Internal and free energy 117

G SUNCA equations 123



Kratek povzetek

Uvod

Odkritje visokotemperaturne superprevodnosti v spojinah na osnovi bak–
rovega oksida [1] je ponovno oživilo zanimanje za star problem močnih ko-
relacij v trdnih snoveh. Skupna značilnost močno koreliranih sistemov je zelo
močna interakcija med elektroni, ki je primerljiva ali celo presega kinetično
energijo. Termodinamske in transportne lastnosti takih sistemov se lahko
bistveno razlikujejo od lasnosti običajnih kovin, ki jih dokaj dobro opǐse
Landavova teorija Fermijeve tekočine.

Visokotemperaturna superprevodnost je skupaj z anomalnimi lastnostmi
normalnega stanja bakrovih oksidov pravgotovo najbolj nenavaden primer
močnih elektronskih korelacij, vendar še zdaleč ni edini. Zelo dolgo poznan
in pogosto proučevan primer je Andersonov problem magnetne nečistoče,
ki vodi do tako imenovanega Kondovega pojava: prevodnǐski elektroni se
sipljejo na magnetni nečistoči in jo pod določeno značilno temperaturo popol-
noma zasenčijo in zato oddaljeni elektroni ne čutijo več njenega magnet-
nega momenta. Pri nizki temperaturi ta nečistoča deluje kot nemagnetni
sipalec, zato lahko sistem še vseeno opǐsemo kot Fermijevo tekočino. Ven-
dar je lahko značilna energija te kvantne tekočine zelo drugačna od značilne
energije prostih delcev. Če pa je magnetna nečistoča s polovičnim spinom
sklopljena z dvema ali več prevodnǐskimi pasovi, jo ti pri nizki temperaturi
preveč zasenčijo in zato sistem nima lastnosti Fermijeve tekočine. Ta sistem
je eden najenostavneǰsih primerov kvantne tekočine, ki ni Fermijeva tekočina.

Napredek pri razvoju teoretičnih metod, ki bi opisale močno korelirane
elektronske sisteme, je bil v zadnjih desetletjih izjemno skromen. Tudi na-
jenostavneǰsi modeli, kot so Hubbardov model, Kondov mrežni model ali t-J
model, so ostali nerešeni. Le v eni prostorski dimenziji imamo na voljo nekaj
teoretičnih metod, s katerimi znamo točno rešiti najenostavneǰsi Hubbar-
dov model. Večino trdnih snovi v naravi pripada dvo ali tri-dimenzioanlnim
sistemom, ki pa jih z enakimi metodami ne moremo rešiti. Pri teh sis-
temih je ponavadi zelo težko ugotoviti, ali je določen fizikalni pojav mogoče
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opisati z obravnavanim idealiziranim modelom in ali določena teoretična
napoved izhaja iz modela ali pa je samo posledica uporabljenega približka.
Te težave izhajajo iz dejstva, da omenjenih sistemov ne moremo rešiti s stan-
dardno teorijo motnje in da imamo v sistemu več približno enako pomembnih
fizikalnih mehanizmov, ki si ponavadi nasprotujejo. Posledica naštetih de-
jstev pa je, da sistema ne moremo opisati z eno samo energijsko skalo, saj
tudi najenostavneǰsi model vsebuje več značilnih energij.

V zadnjih nekaj desetletjih je bilo predlagano mnogo približnih metod, ki
so skušale zaobiti ta problem. Najenostavneǰsa med njimi temelji na Hartree-
Fockovem približku, kjer so vse fluktuacije, tako krajevne kot časovne, zam-
rznjene. Z razvojem okrog Hartree-Fockove rešitve so časovne fluktuacije
pozneje dodane v približku nakljucnih faz. Lokalne časovne fluktuacije pa
pogosto nimajo perturbativnega značaja zato taka teorija ne more uspešno
opisati nizkotemperaturno obnašanje sistemov z močnimi korelacijami. Druga
vrsta približka temelji na razvoju po obratni vrednosti spinske degeneracije
N . V limiti velikega N je spekter sestavljen samo iz koherentnega dela,
nekoherentnega dela pa s to metodo ne moremo izračunati.

V Teoriji dinamičnega povprečnega polja (DMFT) so zamrznjene samo
krajevne fluktuacije, medtem ko so časovne fluktuacije upoštevane točno. To
je še posebej pomembno zato, ker kvantne časovne fluktuacije nimajo pertur-
bativnega značaja in jih ni mogoče obravnavati s teorijo motnje. Hkrati je v
DMFT nizkoenergijski koherentni del spektra obravnavan enakovredno z vi-
sokoenergijskim nekoherentnim delom, kar je pomembno za študij fizikalnih
lastnosti pri končni temperaturi. Največja pomankljivost te teorije pa je, da
nelokalno sklopitev obravnava statično, na nivoju Hartreejevega približka.
Zaradi tega magnetno sklopitev ni moč opisati, kadar je sistem v paramag-
netnem stanju, kadar pa je prisoten red dolgega dosega, teorija upošteva le
statični del magnetne interakcije.

V razširjeni teoriji dinamičnega povprečnega polja (EDMFT)[6, 8, 7, 22]
so kvantne fluktuacije med sosedi obravnavane enako kot lokalne časovne
fluktuacije. EDMFT zato dinamično, in ne le statično kot DMFT, upošteva
magnetno sklopitev med sosednjimi spini. To je še posebej pomembno v t-J
modelu, kjer sta kinetični člen t in magnetni člen J približno enako pomem-
bna in je zato nujno, da ju približek enakovredno upošteva. Prvi namreč
skuša zasenčiti lokalne magnetne momente, medtem ko jih drugi skuša ure-
diti.

V tem delu bomo večino pozornosti posvetili t-J modelu v paramagnet-
nem kovinskem stanju v limiti visokih dimenzij. Z uporabo EDMFT bomo
proučevali enodelčni spekter sistema, termodinamske in transportne last-
nosti modela. Predstavljena metoda ima pomembno prednost pred mnogimi
drugimi numeričnimi metodami, ker z vsega začetka obravnava neskončen sis-
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tem in so zato rezultati že v termodinamski limiti. Največja slabost metode
pa je, da skoraj popolnoma zamrzne krajevne fluktuacije in zato zanemari
odvisnost lastne energije od gibalne količine. To pa najbrž ni bistvenega
pomena za razlago anomalnih lastnosti normalnega stanja bakrovih oksidov.
Tako numerični rezultati [9] kot tudi eksperimenti na kupratih [10] potrju-
jejo, da je le frekvenčna odvisnost bistvena za razlago anomalnih lastnosti in
da bi lahko bila k odvisnost zanemarljiva.

Metoda

Razširjena teorija dinamičnega povprečnega polja enakovredno obravnava
kinetični člen tij in magnetni izmenjalni člen Jij modela t-J. V tej teoriji sta
namreč oba člena enako skalirana z dimenzijo in to kot 1/d|i−j|/2.

Ker nelokalni izmenjalni člen izhaja iz dvostopenskega skakalnega procesa
in je zato sorazmeren z Jij ∝ t2ij/U bi pričakovali, da je reda 1/d|i−j|, če je

tij ∝ 1/d|i−j|/2. V standardni teoriji dinamičnega povprečnega polja, kjer je
tako skaliranje privzeto, izmenjalni člen Jij postane zanemarljiv v primerjavi
s skakalnim členom tij v limiti visokih dimenzij. Edini magnetni prispevek,
ki v tej limiti ostane pomemben, je Hartree-jev prispevek, ki je sorazmeren
zJ 〈S〉 in je v standardni teoriji reda 1, ker je z koordinacijsko število so-
razmerno z dimenzijo d. V paramagnetnem stanju, kjer je 〈S〉 = 0 je ta
najnižji red identično enak nič.

Členi vǐsjega reda so sorazmerni znJ2n+m, kjer sta n in m pozitivni celi
števili. Osnovna ideja razširjene teorije dinamičnega povprečnega polja je,
da lahko J skaliramo tudi kot J〈ij〉 ∝ 1/d|i−j|/2, torej enako kot t〈ij〉. V
limiti visokih dimenzij potem prispevajo vsi členi oblike znJ2n. V stanju
z redom dolgega dosega, kjer je 〈S〉 6= 0 in kjer zato Hartreejev člen ne
odpade, moramo operator spina pred skaliranjem nadomestiti z njegovim
odstopanjem od povprečja S → S − 〈S〉. Ta člen bi bil sicer sorazmeren
zJ ∝

√
d in bi ne imel končne limite.

V razširjeni teoriji dinamičnega povprečnega polja ostanejo prisotne tudi
kvantne fluktuacije med spini na sosednjih mestih in so obravnavane enako-
vredno z lokalnimi kvantnimi fluktuacijami med štirimi možnimi lokalnimi
stanji (|↑〉, |↓〉, |↑↓〉, |0〉).

V nadaljevanju se bomo posvetili predvsem mrežnemu t-J sistemu v para-
magnetni fazi

H = −
∑

〈ij〉,σ
(tij c̃

†
iσ c̃jσ +H.c.) +

∑

〈ij〉
Jij ~Si · ~Sj. (1)

Tukaj so c̃†iσ(c̃iσ) projecirani fermionski operatorji, ki izključujejo dvojno
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zasedenost mesta. Z zgoraj predlaganim skaliranjem t<ij> = t∗/
√

2d in

J<ij> = J∗/
√

2d postane v limiti d → ∞ lastna energija lokalna, zato je
Greenova funkcija mrežnega modela enaka

Gk(ıω) =
1

ıω + µ− εk − Σ(ıω)
. (2)

Spinsko susceptibilnost lahko v isti limiti izrazimo z

χq(ıω) =
1

M−1(ıω) + Jq
, (3)

kjer je M nereducibilna spinska kumulanta in je v tem primeru lokalna (ni
odvisna od valovnega vektorja). Odvisna pa je od frekvence in mora biti
določena samousklajeno.

V standardni teoriji dinamičnega povrečnega polja lahko mrežne mod-
ele vedno preslikamo na Andersonov problem magnetne nečistoče, vendar
morajo biti parametri tega modela določeni samousklajeno [5]. Mrežni t-J
model se v limiti visokih dimenzij in EDMFT skaliranju še zmeraj lahko
preslika na efektivni kvantni problem magnetne nečistoče, vendar pa je v
tem primeru nečistoča sklopljena ne le s fermionskim rezervoarjem (prevod-
nim pasom elektronov), ampak tudi z bozonskim rezervoarjem. Vse lokalne
korelacijske funkcije je zato moč izračunati iz rešitve naslednjega modela

Himp =
∑

lσ

εlc
†
lσclσ + V

∑

lσ

(
c†lσ b

†fσ + f †σ b clσ
)

+

−µnf +
∑

q

wq~Φ
†
q
~Φq + g

∑

q

~Sf · (~Φq + ~Φ†−q), (4)

kjer c†lσ(clσ) pripadajo prevodnemu pasu prostih elektronov in ~Φ†q(~Φq) pred-
stavljajo rezervoar prostih vektorskih bozonov. Operator magnetne nečistoče
c̃†oσ smo nadomestili s produktom pomožnega–fermionskega operatorja fσ
in pomožnega–bosonskega operatorja b tako, da velja c̃†oσ = f †σb. Ker smo
s tem povečali Hilbertov prostor, moramo v rešitvi izluščiti (sprojecirati)
samo fizikalni podprostor, ki ustreza zahtevi, da je v sistemu v vsakem
trenutku točno eden izmed pomožnih delcev. Formalno ta pogoj izrazimo
z Q = nf + nb = 1.

Parametri, ki nastopajo v problemu magnetne nečistoče (4.10) morajo
biti določeni samousklajeno iz naslednji dveh pogojev

G−1
oo (ıω) + Σ(ıω) = ıω + µ−

∑

l

V 2

ıω − εl
(5)

χ−1
oo (ıω)−M−1(ıω) =

∑

q

2 g2wq
(ıω)2 − w2

q

. (6)
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Tukaj je Goo lokalna Greenova funkcija in χoo lokalna spinska susceptibilnost
mrežnega modela, ki pa sovpadata z ustreznimi količinami modela nečistoče
(4.10).

Kvantni problem magnetne nečistoče (4.10) smo rešili s pomočjo dia-
gramske metode pomožnih delcev, katere prednost je, da velja Wickov teorem
in hkrati točno upošteva velik Coulombski odboj med dvema elektronoma na
istem mestu. Poleg tega pa lahko s to metodo točno sprojeciramo fizikalni
podprostor Q = 1 iz celotnega Hilbertovega prostora [26]. Začnemo lahko
z velekanoničnim sistemom, kjer dovolimo poljubno zasedenost lokalnega
stanja (Q poljubno celo nenegativno število) in vpeljemo pripadajoči kemi-
jski potencial λ. Projekcijo potem izvedemo analitično z limito λ → ∞. V
tem pristopu lahko lokalno Greenovo funkcijo Goo povežemo s sprojecirano
velekanonično lastno energijo prevodnǐskih elektonov ΣG

c (ıω) in lokalno spin-
sko susceptibilnost χoo s sprojecirano velekanonično lastno energijo bozonov
ΣG

Φ

χoo(ıω) = − 1

g2
ΣG

Φ(ıω)

Goo(ıω) =
1

V 2
ΣG
c (ıω). (7)

Ti dve količini namreč nastopata v pogojih (5) in (6) in določata parametre
Hamiltonke (4.10).

V približni rešitvi kateregakoli sistema je bistveno, da zajamemo naj–
pomembneǰse fizikalne procese in hkrati dosežemo, da ta rešitev ne krši ohran-
itvenih zakonov in vsotnih pravil. Najlažja pot do takega približka je preko
tako imenovanega Luttinger-Ward funkcionala Φ. Lahko ga zgradimo po po-
tencah sklopitvenih konstant V in g. Ker sta obe sklopitvi šibki, zadostuje že
nekaj najnižjih členov. Hkrati se bomo omejili na najenostavneǰsi približek, ki
zajame Kondo fiziko in vsebuje vse energijske skale problema v standardnem
Andersonovem problemu magnetne nečistoče. V limiti U →∞ zadostuje že
en sam diagram, ki definira tako imenovan približek NCA (prvi diagram na
sliki 1). V primeru standardnega problema Andersonove nečistoče dobimo s
tem približkom rezultate z napako pod 10% vse do temperature T ∼ 0.2TK.

V problemu, ki je definiran s Hamiltonko (4.10), moramo dodati še di-
agrame, ki vsebujejo vektorske bozone iz dodatnih bozonskih rezervoarjev.
Ker je sklopitvena konstanta g majhna, najpomembneǰsi diagrami vsebu-
jejo samo majhno število bozonskih linij. Tudi če se omejimo samo na tiste
renormalizirane diagrame, ki vsebujejo eno samo bozonsko linijo, lahko še
zmeraj narǐsemo neskončno vrsto diagramov, ki prispevajo k Luttinger-Ward
funkcionalu. V paramagnetni fazi sistema pa je zaradi ohranitve spina en sam
tak diagram različen od nič. Vsi diagrami razen drugega na sliki 1 vsebu-
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Figure 1: Dva diagrama najnižjega reda, ki prispevata k Luttinger-Ward funkcionalu
in pripadajoče lastne energije. Prekinjena črta predstavlja pomožne-fermione, valovita
pomožne-bozone, polna prevodnǐske elektrone in vzmet bozone iz rezervoarjev. Predstavl-
jen približek bomo poimenovali NCA približek.

jejo vsaj eno fermionsko zanko narisano na sliki 2. Ker mora biti spin obeh
pomožnih–fermionov v tej zanki enak, se lahko izmenja samo z komponenta
vektorskega bozona. Ta pa vsebuje člen (−1)s in je tako pozitivna za spin
↑ in negativna za spin ↓. Ker v paramagnetni fazi nobena smer spina ni
priviligirana, se prispevek obeh ravno odšteje.

Najenostavneǰsi približek, ki pravilno opǐse vse energijske skale običajnega
Andersonovega problema nečistoče in vsebuje vse dodatne diagrame reda
g2 zaradi dodatnega bozonskega rezervoarja, ter ne krši ohranitvenih za-
konov, je predstavljen na sliki 1. Ker je približek definiran z Luttinger-
Ward funkcionalom, morajo biti lastne energije določene samousklajeno, kar
je enakovredno neskončni vsoti diagramov nerenormalizirane perturbacijske
teorije. Približek, definiran na sliki 1, ne vsebuje prekrižanih diagramov, zato
ga bomo v nadaljevanju imenovali NCA približek.

V območju močnega dopiranja, kjer ima sistem lastnosti Fermijeve teko-
čine in je magnetni člen J nepomemben, NCA približek velja do temperature
T & 0.2ε∗ [28], kjer je ε∗ značilna temperatura Fermijeve tekočine in je
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Figure 2: Fermionska zanka, katere prispevek je v paramagnetnem stanju zaradi ohran-
itve spina enak nič.

velikosti J pri dopiranju okoli 25%. Zaradi odsotnosti popravkov vǐsjega
reda NCA približek odpove tudi v limiti majhnega dopiranja in je zanesljiv
le nad temperaturo T ∼ 0.2J .

Rezultati

Enačbe razširjene teorije dinamičnega povprečnega polja za t-J model (5)
in (6) smo rešili numerično z uporabo NCA rešitve za problem magnetne
nečistoče (4.10). V duhu DMFT teorije smo uporabili gostoto stanj za dvo-
dimenzionalno kvadratno mrežo, da bi izbolǰsali primerjavo med našimi rezul-
tati in rezultati drugih metod, ki so bile večinoma uporabljene le za ta primer
kristalne mreže.

V nadaljevanju se bomo osredotočili le na paramagnetno kovinsko stanje
modela, ker kvantne fluktuacije, vsebovane v EDMFT, uničijo red dolgega
dosega pri vsaki končni temperaturi v eni ali dveh dimenzijah. Hkrati nelo-
kalne kvantne fluktuacije uničijo stanje Fermijeve tekočine pri šibkem in
zmernem dopiranju sistema in odprejo tako imenovano energijsko pseudo-
vrzel. Ta se odraža v močnem zmanǰsanju vrednosti lokalne spektralne
funkcije na Fermijevem nivoju in okoli njega.

V t-J modelu s polzapolnjenim pasom se zaradi močnega Coulombskega
odboja med elektroni ustvari tako imenovana Mottova energijska špranja,
zaradi katere ima sistem lastnosti izolatorja. Z dodajanjem vrzeli pa Mot-
tova energijska špranja počasi izginja, vendar ostaja na Fermijevem nivoju
tako imenovana pseudo-energijska vrzel, ki je opazna vse do območja močnega
dopiranja δ ∼ 0.20. Sistem je prevodnik, vendar v tem področju majhnega in
zmernega dopiranja nima lastnosti Fermijeve tekočine. Pri šibkem dopiranju
je enodelčni lokalni spekter sestavljen iz širokega nekoherentnega Hubbar-
dovega pasu in koherentnega vrha oblečene vrzeli s širino J , ki je pomaknjen
za razdaljo J pod Fermijev nivo µ. Poleg tega pa se pojavi nad µ še ma-
jhen vrh z utežjo 2δ in se z dopiranjem povečuje in približuje µ, dokler se
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v območju močnega dopiranja ne zlije s kvazidelčnim vrhom pod µ. Tako
nastane pri dopiranju δ ∼ 0.24 en sam koherentni vrh širine ∼ J , ki zadošča
Friedelovemu vsotnemu pravilu. To pa pomeni, da ima sistem pri dopiranju
nad δ & 0.24 lastnosti Fermijeve tekočine. To lahko razložimo z dejstvom,
da postane v tem področju magnetna sklopitev nepomembna in je zato efek-
tivni model magnetne nečistoče ekvivalenten standardnemu Andersonovemu
modelu. Slednji pa ima zmeraj lastnosti Fermijeve tekočine z dobro določeno
značilno temperaturo TK , ki je sorazmerna širini kvazidelčnega vrha v spek-
tralni funkciji. Od tod vidimo, da se značilna temperatura Fermijeve tekočine
z dopiranjem monotono povečuje od J do t.

EDMFT rezultati kažejo, da je v predstavljenem modelu Luttingerjev teo-
rem kršen v območju, kjer sistem nima lastnosti Fermijeve tekočine. Kršitev
je najočitneǰsa pri šibkem dopiranju, kjer je volumen znotraj Fermijeve po-
vršine kar dvakrat večji, kot ga napoveduje teorem. Nato pa se monotono
zmanǰsuje tako, da je pri dopiranju nad ∼ 20% Luttingerjev teorem zadoščen.
Rezultati podpirajo skoraj togo sliko dopiranja Mottovega izolatorja, ki jo je
predlagal že Hubbard: v polzapolnjenem pasu je kemični potencial med Hub-
bardovima pasovoma, z dopiranjem pa se ta počasi premika od zgornjega roba
v notranjost spodnjega Hubbardovega pasu. Pri šibkem in zmernem dopi-
ranju ima Fermijeva površina karakter vrzeli s sredǐsčem v (π, π), v področju
močnega dopiranja pa dobi elektronski značaj.

S spremembo značaja Fermijeve površine je tesno povezan Hallov koefi-
cient, ki je pri nizki temperaturi pozitiven v območju majhnega dopiranja
in negativen v področju močnega dopiranja. Predznak se spremeni samo
malo nad mestom optimalnega dopiranja. V bližni Mott-Hubbardovega pre-
hoda divergira semiklasično kot 1/(e0δ), kar je v skladu s semiklasično sliko
dopiranja Mottovega izolatorja z neodvisnimi vrzelmi in eksperimenti na
kupratih. Pri šibkem dopiranju Hallov koeficient monotono pada s tem-
peraturo kar je pravtako v skladu z eksperimenti.

Ker je v EDMFT teoriji privzeto, da je lastna energija neodvisna od val-
ovnega vektorja, kar je popolnoma upravičeno samo v limiti visokih dimenzij,
je ta model lahko slab približek za dvodimenzionalni t-J model. Numerični
rezultati [9] in eksperimenti [10] kažejo, da je v območju optimalnega dopi-
ranja δ ∼ 0.15 lastna energija zares skoraj neodvisna od valovnega vektorja in
so zato EDMFT rezultati smiselni tudi za dve dimenziji. Tega pa ne moremo
trditi v območju zelo majhnega dopiranja, kjer bi bilo potrebno obstoječo
teorijo popraviti, da bi veljala tudi za dvodimenzionalni sistem.

Termodinamske lastnosti sistema smo izračunali iz proste energije, ki se
lahko izrazi s prosto energijo efektivnega modela nečistoče, z enoelektronsko
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Greenovo funkcijo in susceptibilnostjo sistema kot

Ω = NΩimp +
1

β

∑

ıω,kσ

ln(Gkσ(ıω))− ln(Goo(ıω))

−1

2

1

β

∑

ıω,qα

ln(χααq (ıω))− ln(χααoo (ıω)). (8)

Entropija pri konstantni temperaturi doseže maksimum pri optimalnem dopi-
ranju δ ∼ 0.15. Značilna temperatura degeneracije, kjer se entropija bistveno
spremeni, je relativno majhna, celo manǰsa kot J . Specifična toplota je pri
zmernem dopiranju skoraj neodvisna od temperature v širokem obsegu tem-
peratur med T/t∗ ∼ 0.05 − 0.5. Kemični potencial narašča s temperaturo
v rahlo dopiranem sistemu, medtem ko pada s temperaturo v močno dopi-
ranem sistemu. Točka, kjer je kemični potencial skoraj neodvisen od temper-
ature sovpada s točko maksimalne entropije in določa optimalno dopiranje.
Rezultati EDMFT in rezulati točne diagonalizacije dvodimenzionalnega t−J
modela [9] se kvalitativno in kvantitativno zelo dobro ujemajo.
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Chapter 1

Introduction

The discovery of the high-temperature superconduconductivity in the copper-
oxide based compounds [1] has revived interest in the old problem of strong
electronic correlations in condensed matter physics. The common feature of
strongly correlated systems is the strength of the electron-electron interaction
which is comparable to or larger than the kinetic energy. These systems can
display thermodynamic and transport properties which are fundamentally
different from those of the usual metallic systems which are well described
by the Landau Fermi-liquid theory.

While high temperature superconductivity as well as anomalous normal
state properties of the copper oxides are likely to be the most fascinating
examples of strongly correlated electron systems, they are by far not the
only ones. The archetype case of strong electron correlations is the Ander-
son impurity model displaying the Kondo effect, where conduction electrons
scatter off a localized magnetic impurity and form a local singlet. The low
temperature properties of the latter model can still be decribed by the local
Fermi liquid theory, however, the characteristic energy scale can be strongly
renormalized. The multi-channel Kondo problem, on the other hand, is one
of the simplest examples of non-Fermi liquid behaviour due to strong electron
correlations.

The theoretical progress in the field has been impeded by the extreme dif-
ficulty of dealing with even the simplest model Hamiltonians appropriate for
these systems, such as the Hubbard model, Kondo lattice model or the t−J
model. Only in the one-dimensional case, we have a variety of theoretical
tools at our disposal to study the simplest Hubbard model in a systematic
manner. For two- and three-dimensional models, one is often unable to ac-
cess confidently whether a given physical phenomenom is indeed captured
by the idealized Hamiltonian under consideration or whether a theoretical
prediction reflects a true feature of this Hamiltonian, rather than an arti-
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CHAPTER 1. INTRODUCTION

fact of the approximation used in its solution. These difficulties originate
in the nonperturbative nature of the problem, and reflects the presence of
several competing physical mechanisms and several energy scales for even the
simplest models.

Numerous approximation schemes have been employed during the past
decades to circumvent these dificulties. The simplest mean-field methods
are based on the Hartree-Fock approximation, where all fluctuations (spatial
and temporal) are frozen. The fluctuations can than be treated by making
random phase approximation expansion around the static and uniform so-
lution. Local quantum fluctuations, however, are often nonperturbative in
character so that such expansions do not capture them correctly. Another
type of approximation is based on large N expansion [2, 3], where N is spin
degeneracy. In the limit of N → ∞, high energy incoherent excitations
(i.e. Hubbard bands) are completely absent and must be reintroduced by
expanding in 1/N .

The Dynamical mean-field theory (DMFT) [4, 5] freezes only spatial fluc-
tuations while it takes full account of local temporal fluctuations being usu-
ally nonperturbative in character. At the same time, DMFT treates the low
energy coherent and the high energy incoherent excitations on the same foot-
ing. This is important for studying any finite temperature property of the
model. One of the major drawbacks of DMFT is that it treats all nonlocal
interactions on the Hartree level. In particular, the magnetic exchange in-
teraction is therefore completely absent in the paramagnetic state while only
the static part of the interaction is considered in the system with long range
order.

The extended dynamical mean-field theory (EDMFT) [6, 7, 8] treats the
inter-site quantum fluctuations on an equal footing with local ones. EDMFT
thus captures not only the static but also the dynamic component of the
magnetic exchange interaction. It is particularry important for the t − J
model to capture the competition between the kinetic energy term being
reduced due to strong on site repulsion, and magnetic exchange interaction.
The hopping term tends to quench local moments, and gives rise to Kondo
effect in the limit of large dimensions, while the exchange term promotes
magnetic ordering.

In this thesis, we will mostly focus on the paramagnetic metallic state of
the t− J model in the limit of large dimensions. By using EDMFT, we will
study the single particle spectra, thermodynamic and transport properties
of the model. The important advantage of EDMFT over the many other
numerical methods is that the thermodynamic limit is built in from the
beginning in this approach. The major drawback, on the other hand, is that
the spatial fluctautions are mainly frozen, i.e., the self-energy is momentum
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independent. However, this might not be crucial to explain many anomalous
properties of the finite dimensional (or 2D) t−J model since many numerical
studies [9] and also experiments on cuprates [10] suggest that the momentum
dependence of the self-energy is not crucial to explain anomalies.

The thesis is organized as follows. In chapter 2 we give an introduction
to the limit of large dimesions and derive the dynamical mean-field equations
for the Hubbard model. Chapter 3 introduces extended dynamical mean-field
theory that avoids one of the major drawbacks of the usual large d limit. The
corresponding impurity model is presented and it is shown that the theory
remains local despite the introduction of the momentum dependent vertex
function. Chapter 4 presents the auxiliary particle technique and the ap-
proximation scheme appropriate for the EDMFT impurity Hamiltonian. The
NCA equations, which are used in subsequent chapters, are explicitely given
while the vertex corections are discussed and partly calculated. In chapter 5
we present numerical results for the t − J model obtained by EDMFT and
compare them to the exact diagonalization results. Section 5.1 discusses the
possible reason why the momentum dependence of the self-energy might be
neglected. One particle spectra and Fermi-surface of the t−J model are pre-
sented in sections 5.2 and 5.3, respectively. In 5.4 we study thermodynamic
properties like entropy, specific heat and compressibility and compare them
to the exact diagonalization results. The transport properties are considered
in section 5.5 where we particulary focus on the Hall number which is closely
related to the nature of the Fermi-surface. The extension of the auxiliary
particle method to the case of finite Coulomb interaction is given in chapter
6. The impurity spectral function is evaluated numerically and compared to
the NRG result.
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Chapter 2

Dynamical mean-field theory

This chapter introduces the Dynamical mean-field theory (DMFT), a method
that was developed to investigate strongly correlated electron systems. These
are systems in which strength of the electron-electron interaction is compa-
rable to or larger than the kinetic energy therefore there seems to be no
natural small parameter which allows an expansion around a solvable limit.
However, Metzner and Vollhardt [4] realized that on the lattice with coordi-
nation number z (i.e. the number of the nearest neighbors) an expansion in
its reciprocal value 1/z can be performed leading to a nontrivial limit of the
model.

The most serious limitation of the DMFT is that it ignores spatial fluctua-
tions (the wave number dependence of the self energy) and includes only mag-
netic fluctuations of Kondo type while it neglects Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction beyond the Hartree level. The extension of the
method to clusters in k space [11] and clusters in real space [12] has been
proposed recently to include spatial fluctuations. Magnetic fluctuations of
RKKY type can also be included in the theory [7, 6] with not much additional
effort, as will be shown in the next section. On the other hand, it should
be stressed that DMFT does not suffer from the finite-size effects since the
thermodynamic limit is built in from the beginning in this approach.

Let us briefly mention few other approaches to lattice models of strongly
correlated electron systems which have been developed over the last couple
of decades. Several simple models, in particular the Hubbard model can be
solved exactly in one spatial dimension using Bethe Ansatz method [13, 14].
While these solutions have given invaluable insights, the extraction of impor-
tant physical information, in particular of dynamical correlation functions,
is still not possible. Additionally, not many features of one-dimensional so-
lutions survive in higher spatial dimensions. Among the first serious attacks
on the strong correlation problem in more than one spatial dimension were
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the original papers by Hubbard [15, 16, 17] on the Hubbard model. He intro-
duced various expansions around the atomic limit, which are decoupled in an
uncontrolled way. While these approximations capture the high-energy fea-
tures of the Hubbard model correctly, they cannot be trusted to adequately
describe the low energy physics of the metallic regime. Numerical approaches
based on exact diagonalization of small clusters and Monte Carlo methods
have lead to important insights into the complicated physics of strong corre-
lations, but are seriously limited with the size of the clusters since the Hilbert
space grows exponentially with the number of lattice sites.

The essential idea of the presented method is to replace a lattice model
by a single-site quantum impurity problem embedded in an effective medium
determined self-consistently [5]. The impurity model offers an intuitive pic-
ture of the local dynamics of a quantum many-body system while the self-
consistency condition captures the translation invariance and coherence ef-
fects of the lattice.

The DMFT is the natural generalization of quantum many-body problems
of the Weiss mean-field theory familiar from classical statistical mechanics.
The term ”mean-field theory” should be taken with caution however since
the present approach does not assume that all fluctuations are frozen (this
would lead to the Hartree-Fock approximation). Rather, it freezes spatial
fluctuations but takes full account of local quantum fluctuations - of temporal
fluctuations between the possible quantum states at a given lattice site. The
main difference with the classical case is that the on-site quantum problem
remains a many-body problem.

As in classical statistical mechanics, this dynamical mean-field theory
becomes exact in the limit of large spatial dimensions d → ∞, or more
appropriately in the limit of large lattice coordination number z. Note that
this number is already quite large for several three dimensional lattices: z = 6
for simple cubic lattice or z = 12 for a face-centered-cubic lattice. This
ensures the internal consistency of the approach and establishes 1/z as a
control parameter. However, this approach may be viewed in a broader
context, as a starting point for the investigation of many finite-dimensional
strongly correlated systems, in the same sense that the Weiss mean field
theory is the starting point of most investigations in the classical statistical
mechanics.

2.1 Derivation of DMFT effective action

First we will focus on maybe the simplest theoretical model capturing the
competition between itinerant and strong local correlations, the single band
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Hubbard model
H = −

∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓. (2.1)

Figure 2.1: Cavity created in the lattice by
removing a single site and its adjacent bonds.

The derivation presented here will be borrowed from classical statistical
mechanics, where it is known under the name ”cavity method”. The un-

derlying idea is to focus on a given
site of the lattice, say i = o, and
to explicitly integrate out the de-
grees of freedom on all other lat-
tice sites in order to define an effec-
tive dynamics for the selected site.
It will be assumed in this section,
for simplicity, that no symmetry
breaking occurs and we are dealing
with translational invariant para-
magnetic phase.

It is convenient to write partition function of (2.1) as a functional integral
over Grasman variables

Z =

∫ ∏

i

Dc†iσDciσ exp(−S) (2.2)

S =

∫ β

0

dτ

[∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ)−

∑

ij,σ

tijc
†
iσ(τ)cjσ(τ) +

∑

i

Uni↑(τ)ni↓(τ)

]
. (2.3)

The action can be divided into three parts: the on-site part for the chosen
site (S0), the inter-site interaction between the site and the rest of the system
(∆S) and the lattice action in the presence of the cavity (S(0))(i.e. with site
o and its adjacent bonds removed - see Fig. 2.1)

S0 =

∫ β

0

dτ

[∑

σ

c†oσ(τ)(
∂

∂τ
− µ)coσ(τ) + Uno↑(τ)no↓(τ)

]
(2.4)

∆S = −
∫ β

0

dτ

[∑

i,σ

tioc
†
iσ(τ)coσ(τ) + toic

†
oσ(τ)ciσ(τ)

]
(2.5)
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S(0) =

∫ β

0

dτ

[∑

i6=0,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ)−

∑

i6=0j 6=0,σ

tijc
†
iσ(τ)cjσ(τ)+

∑

i6=0

Uni↑(τ)ni↓(τ)

]
. (2.6)

With the definition ∆S =
∫ β

0
∆S(τ) the partition function can be written as

Z =

∫
Dc†oσDcoσ exp(−S0)

∫ ∏

i6=0

Dc†iσDciσ exp(−S(0) −
∫ β

0

∆S(τ)dτ) =

=

∫
Dc†oσDcoσ exp(−S0)

∫ ∏

i6=0

Dc†iσDciσ exp(−S(0))

(
1−

∫ β

0

∆S(τ)dτ+

1

2!

∫ β

0

dτ1

∫ β

0

dτ2Tτ∆S(τ1)∆S(τ2) + ...

)
=

=

∫
Dc†oσDcoσ exp(−S0)Z(0)

(
1−

∫ β

0

〈∆S(τ)〉(0)dτ+

1

2!

∫ β

0

dτ1

∫ β

0

dτ2〈Tτ∆S(τ1)∆S(τ2)〉(0) + ...

)
,(2.7)

where 〈〉(0) means average over cavity action S(0) and Tτ is the usual imag-
inary time ordering operator. All the odd terms in the expansion are zero
therefore the lowest order contribution reads

1

2!

∫ β

0

dτ1

∫ β

0

dτ2

∑

σ

c†oσ(τ1)
∑

ij

tiotoj〈Tτ ciσ(τ1)c†jσ(τ2)〉(0)coσ(τ2) =

1

2!

∫ β

0

dτ1

∫ β

0

dτ2

∑

σ

c†oσ(τ1)
∑

ij

tiotojG
(0)
ij (τ1 − τ2)coσ(τ2) (2.8)

Similarly, the n-th order term contains the 2n-point unconnected Green’s
function of the cavity problem with n incoming and n outgoing propagators.
Due to the Linked Cluster Theorem the effective action

e−Seff/Zeff =

∫ ∏

i6=0

Dc†iσDciσe
−S/Z (2.9)

can now be expressed with the connected n-point Green’s function with an
infinite series

Seff = S0 +
∞∑

n=1

∑

i1,...jn

∫
ti1o...tojnc

†
oσ(τi1)...c†oσ(τin)coσ(τj1)...coσ(τjn)

×G(0)
i1...jn

(τi1 ...τin , τj1τjn) + const. (2.10)
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Remarkable simplification occurs in the limit of large dimensions, namely,
only the first term containing the one particle Green’s function survives.

In order for the large d limit to be well defined hopping amplitude t has
to be scaled as tij = t/

√
2d. Only in that case the kinetic and interaction

energies remain of the same order of magnitude. The Fourier transform of
the εk of tij, which for a generic vector k involves

∑d
n=1 cos(kn), a sum of d

numbers with essentially random signs is of order
√
d. More important, this

scaling ensures that the density of states has a well defined limit form, which
for cubic lattice with nearest-neighbor hopping reads

D(ε) =
1√

2πzt2
exp(− ε2

2zt2
). (2.11)

The one particle Green’s function (i.e. connected two-point function)
Gij is proportional to t|i−j| therefore it scales as 1/d|i−j|/2. Similarly two
particle Green’s function Gijkl falls off as 1/d|i−j|/2d|i−k|/2d|i−l|/2. With that
scaling in mind it is easy to see that higher order terms in Eq. (2.10) indeed
vanish in d → ∞ limit. The first term has a prefactor t2 and one particle
cavity Green’s function G

(0)
ij gives another t2, since i and j are both nearest

neighbors of o and therefore are at least two lattice sites apart (in Manhattan
distance). The double sum over i and j gives d2 so the first term is of order 1.
The second term has a prefactor t4 and involves two particle cavity Green’s
function giving t|i−j|t|i−k|t|i−l|, where all differences are at least two. When
i, j, k and l are all different, there are four sums which give d4, but in the
same time cavity Green’s function is proportional to t6 so that the net results
is at least of order 1/d. Similarly, the terms where i = j (distinct from k
and l with k 6= l) contain three sums, which give d3. Green’s function is
proportional to t4 in that case. The net result is again of order 1/d.

Since only the term involving the one-particle Green’s function survives
the large d limit, the effective action can be reduced to

Seff = −
∫ β

0

dτ1

∫ β

0

dτ2 c
†
oσ(τ1)G−1

0 (τ1 − τ2)coσ(τ2) +

∫ β

0

dτUno↑(τ)no↓(τ)

(2.12)
where the Weiss field G−1

0 is

G−1
0 (τ1 − τ2) = −(

∂

∂τ1
− µ)δτ1τ2 −

∑

ij

tiotojG
(0)
ij (τ1 − τ2). (2.13)

The last equation relates the Weiss field (G−1
0 ) with the cavity Green’s func-

tion of the Hubbard model. To obtain a closed set of equations one still needs

11



CHAPTER 2. DYNAMICAL MEAN-FIELD THEORY

to express the cavity Green’s function with the exact Green’s function of the
original lattice. In the limit of infinite dimensions this relation reads

G
(0)
ij = Gij −

GioGoj

Goo
. (2.14)

The expression was derived already by Hubbard [17] in the early 70s. To
understand it we need to recognize that the additional paths contributing to
Gij and not to G

(o)
ij are those which connect sites i and j through site o. Their

contribution is proportional to GioGoj , but this quantity has to be divided
by Goo in order to count the contribution of paths leaving and returning to
the intermediate site o only once.

2.2 The impurity representation

The on-site model represented with the effective action (2.12) can not be
written in a Hamiltonian form involving only the on-site (atomic) degrees
of freedom since eliminated bath introduces retardation effects in the atomic
problem. However, it is very convenient for practical calculations to have such
a Hamiltonian formulation. It is possible only upon reintroducing auxiliary
degrees of freedom describing the bath. The most popular interpretation of
the action (2.12) is via Anderson impurity problem [18, 19, 20], archetype and
well understood model from the research of magnetic alloys in the metallic
host. The atomic orbital co corresponds to the impurity site while the Weiss
field is mimicked with the conduction band that has to be self-consistently
determined. This mapping is also important since the variety of techniques
developed during the past decades can be used to solve the effective on-site
problem. However, this part of the calculation is the most difficult one and
there is still no reliable tool that would work in the whole temperature range.

The Anderson impurity model

H =
∑

kσ

(
εkc
†
kσckσ + Vkc

†
kσcoσ + V ?

k c
†
oσckσ

)
−
∑

σ

µ c†oσco + Uno↑n0↓ (2.15)

and the corresponding action

S =

∫ β

0

dτ
∑

kσ

[
c†kσ(τ)(

∂

∂τ
+ εk)ckσ(τ) + Vkc

†
kσ(τ)coσ(τ)+

V ?
k c
†
oσ(τ)ckσ(τ)

]
+ S0 (2.16)

S0 =

∫ β

0

dτ

[∑

σ

c†oσ(τ)(
∂

∂τ
− µ)coσ(τ) + Uno↑(τ)no↓(τ)

]
(2.17)

12



2.3. LOCAL NATURE OF DMFT

is quadratic in c†kσ, ckσ and therefore the conduction band electrons can be
integrated out exactly [21] giving the action of the form

S = S0 −
∫ β

0

dτ1

∫ β

0

dτ2

∑

σ

c†oσ(τ1)

(∑

k

|Vk|2
δτ1τ2
∂
∂τ1

+ εk

)
coσ(τ2). (2.18)

This action is equivalent to the effective action (2.12) of the Hubbard model
within DMFT with the requirement

G−1
0 (τ1 − τ2) = −(

∂

∂τ1
− µ)δτ1τ2 −Gc(τ1 − τ2)

Gc(τ1 − τ2) =
∑

kσ

|Vk|2Gkσ(τ1 − τ2) = −
∑

kσ

|Vk|2
δτ1τ2
∂
∂τ1

+ εk
. (2.19)

2.3 Local nature of DMFT

i j
l

k

i j

Figure 2.2: Example of diagrams contributing to the nonlocal self-energy at the third
and fifth order.

In the limit of large dimensions, the lattice self-energy becomes a local
quantity (i.e. k independent) that can be determined from other local quan-
tities (local Green’s function and Weiss field) alone. This important fact can
be shown explicitly with the diagrammatic technique within the perturbation
theory in the interaction strength U . Consider a given diagram (Fig. 2.2),
in which the interaction term Uni↑ni↓ is depicted as a four-leg vertex at site
i, and in which each line stands for a full interacting fermion propagator
between two sites. The crucial observation is that whenever two internal
vertices (i, j) can be connected by at least two paths, they must correspond
to identical sites i = j. This property of d → ∞ limit can be shown by
simple power counting. Since the hopping has been scaled by 1/

√
d, each

path made of fermion propagators connecting i to j will involve at least a
factor 1/d|i−j|/2. The non-local component of the self-energy Σij is thus pro-
portional to 1/dPij |i−j|/2 with Pij being the number of independent paths

13



CHAPTER 2. DYNAMICAL MEAN-FIELD THEORY

joining i to j in the diagram. Fourier transformation for any generic wave
vector q (not q = 0 or q = (π, π, ...)) then brings up a factor of order d|i−j|/2,
as explained in Eq. (2.11). Since Pij, for any skeleton diagram, is larger than
2 the non-local component of the self-energy is at least of order 1/d smaller
than the local one. The Luttinger Ward functional (Fig. 2.3) thus contains

Φ = + + . . .
Hartree Fock

Figure 2.3: First two contributions to the Luttinger-Ward functional. Only first
Hartree term is important in the limit of large dimensions.

only Hartree term (site diagonal contribution) while Fock and higher order
terms vanish in the d → ∞ limit. Green’s function of the original lattice
problem therefore reads

Gk(ıω) =
1

ıω + µ− εk − Σ(ıω)
. (2.20)

With that equation in mind we can easily determine the relationship between
the Weiss field, the local Green’s function and self-energy. The Fourier trans-
form of the sum in the Eq. (2.13) reduces to (see Appendix A)

∑

ij

tiotoj

(
Gij −

GioGoj

Goo

)
= ıω + µ− Σ−G−1

oo (2.21)

and the Weiss field finally reads

G−1
0 = Σ +G−1

oo . (2.22)

This is the central equation of the DMFT and together with the expression
for the local Green’s function

Goo =
∑

k

1

ıω + µ− εk − Σ
(2.23)

and the solution of the Anderson impurity problem

Goo = Gimpurity(G−1
0 ) (2.24)

forms a closed set of equations.
The above equations were derived for the Hubbard model in infinite di-

mensions. In the same way it is possible to write down the closed set of
DMFT equations for many other models of strongly correlated electron sys-
tems, i.e. periodic Anderson model, Kondo lattice model...

14



Chapter 3

Extended dynamical mean-field
theory

In the correlated electron systems, both the local and non-local interactions
are important in determining the nature of the ground state and low-lying
excitations. While the local quantum fluctuations of the lattice problem are
completely taken into account within the DMFT, the non-local fluctuations
like the RKKY interaction are mostly lost. The first are responsible for the
phenomena known as the Kondo effect, that tends to quench local moments
while the latter promote magnetic ordering. What happens when the two
processes are about equally important is an intriguing question that remains
poorly understood. In this section, we will develop a method that copes with
that particular problem in the case, when the wave number dependence of
the self-energy is not essential to describe the physical properties of system.

The DMFT reduces a correlated lattice problem to a self-consistent An-
derson impurity problem, namely a quantum impurity coupled to a self-
consistent fermionic bath. The interaction between the impurity degrees of
freedom reflects the on-site interactions of the lattice problem; in this way
local quantum fluctuations are retained. The self-consistent fermionic bath
of the impurity problem reflects the influence, at the one-particle level, of the
rest of the lattice on the selected site. All the inter-site correlations of the
lattice problem, on the other hand, are neglected. In this sense, non-local
quantum fluctuations are completely lost.

In the Extended dynamical mean-field theory (EDMFT) [6, 7, 8, 22] the
inter-site quantum fluctuations are treated on an equal footing with local
ones. The correlated lattice problem is reduced to a novel effective impurity
problem, which corresponds to Anderson impurity model with an additional
self-consistent bosonic baths. These bosonic baths reflect the influence, at
the two-particle level, of the rest of the lattice on the impurity site (i.e. the
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CHAPTER 3. EXTENDED DYNAMICAL MEAN-FIELD THEORY

fluctuating magnetic fields induced by the inter-site spin-exchange interac-
tion). Through self-consistency, they keep track of the inter-site quantum
fluctuations.

Let us focus on a specific model, namely the extended Hubbard model,
that becomes equivalent to the t-J model in the limit of infinite local Coulomb
interaction

H = −
∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ +
1

2

∑

ij

Jij ~Si · ~Sj − µ
∑

i

ni. (3.1)

It is straightforward to extend the theory to other non-local interactions like
non-local Coulomb repulsion, but since we are mainly interested in the effect
of magnetic fluctuations we will neglect other terms in the Hamiltonian.

In standard DMFT, the hopping amplitude is taken to be of order 1/
√
d

while the inter-site interaction is scaled as 1/d, since the latter comes from
the second order perturbation process proportional to t2/U . In that case,
the Hartree approximation for the inter-site interaction becomes exact and
the nonlocal terms can be treated on the mean field level, i.e.,

Jij ~Si~Sj → 2JijS
z
i < Szj > . (3.2)

In the paramagnetic phase the latter term is exactly zero showing the equiv-
alence between the t-J model and the infinite-U Hubbard model in the stan-
dard DMFT scaling of d → ∞ limit. However, the ordered phase brings up
an interesting feature, commonly known as string potential [23, 24]. Close
to half-filling, the system can be described with the holes moving in the Nèel
background. Problem of a single hole introduced in the Nèel state can be
solved exactly in the d→∞ limit. In that case the local Green’s function is
composed of delta peaks, corresponding to the bound state of a particle in a
linear or string potential. This potential is generated if the hole moves away
from the initial state by m steps, destroying pairs of antiferomagnetic bonds
along its path, thus enhancing the energy roughly by mJ/2. In the case
of finite doping and finite temperature the delta peaks broaden and slightly
shift, but they are still very pronounced for doping as large as 30%.

The nonphysical multipeak structure in the local spectral function can be
attributed to the absence of the quantum magnetic fluctuations in this ap-
proach. Only the static (Hartree) part of the inter-site interaction is retained,
while the flipping part, that would remove traces of a hole, is ignored.

In the EDMFT, an important part of nonlocal quantum fluctuations is
retained. This is achieved by scaling the inter-site interaction term J in the
same way as hopping term t, to the order 1/

√
d, therefore both terms remain

equally important in the limit of large d. The effective impurity problem thus
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3.1. THE EDMFT EFFECTIVE ACTION

obtained is also coupled to the frequency dependent Weiss field induced by
the inter-site interaction. The two-particle nature of the nonlocal interaction
dictates the bosonic nature of the corresponding effective bath. As a result,
the effective single-site problem can be thought of as an impurity coupled not
only to a self-consistent fermionic bath but also to a self-consistent bosonic
bath.

3.1 The EDMFT effective action

For simplicity, let us assume there is no long-rage order (i.e. The system
is in the paramagnetic state). Let us start the derivation of the EDMFT
equations with the general action corresponding to the Hamiltonian (3.1)

S =

∫ β

0

dτ

[∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ)−

∑

ij,σ

tijc
†
iσ(τ)cjσ(τ) +

1

2

∑

ij

Jij ~Si(τ)~Sj(τ) +
∑

i

Uni↑(τ)ni↓(τ)

]
. (3.3)

The action can again be divided into three parts: the on-site part is just the
same like in the previous chapter Eq. (2.4), the inter-site part is superimposed
with the magnetic interaction term

∆S =

∫ β

0

dτ

[∑

i,σ

−tioc†iσ(τ)coσ(τ)− toic†oσ(τ)ciσ(τ)+

1

2
(Jio + Joi) ~Si(τ) · ~So(τ)

]
, (3.4)

while the cavity part equals to the original action (3.3) with site o excluded
from all summations. The partition function can again be expanded in the
series like in Eq. (2.7). The first term linear in ∆S

∫ β

0

〈∆S(τ)〉(0) (3.5)

vanishes, since the average of each spin 〈~Si(τ)〉 = 0 is zero by the assumption
of no long range order in the system. If the symmetry of the phase is broken
like in the feromagnets or antiferomagets, the spin operator has to be replaced
with its deviation from the average value in original Hamiltonian (3.1). The
second term in the series expansion then reads
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1

2!

∫ β

0

dτ1

∫ β

0

dτ2〈Tτ∆S(τ1)∆S(τ2)〉(0) =

1

2!

∫ β

0

dτ1

∫ β

0

dτ2

〈
Tτ

[∑

i,σ

tioc
†
iσ(τ1)coσ(τ1) + toic

†
oσ(τ1)ciσ(τ1)−

∑

i

Joi ~So(τ1) · ~Si(τ1)

]
×

[∑

i,σ

tioc
†
iσ(τ2)coσ(τ2) + toic

†
oσ(τ2)ciσ(τ2)−

∑

i

Jio ~Si(τ2) · ~So(τ2)

]〉(0)

. (3.6)

It is crucial to observe that there is no interference between the kinetic and

the spin term since the average of the correlation function
〈
ciσ(τ1)~Sj(τ2)

〉(0)

vanishes. The leading order term in the effective action thus reads

Seff = −
∫ β

0

dτ1

∫ β

0

dτ2 c
†
oσ(τ1)

∑

ij

tiotoj

〈
Tτciσ(τ1)c†jσ(τ2)

〉(0)

coσ(τ2)−
∫ β

0

dτ1

∫ β

0

dτ2
~So(τ1)

1

2

∑

ij

JioJoj

〈
Tτ ~Si(τ1)~Sj(τ2)

〉(0)
~So(τ2) + S0. (3.7)

Within EDMFT both terms are equally important and are of order 1 in the
1/d expansion. The two-point Green’s function and the susceptibility scale
as 1/d|i−j|/2 since t and J fall of as 1/

√
d. Furthermore i and j are neighbors

of site o and are thus at least 2 lattice sites apart (in Manhattan distance)
giving 1/d contribution. The prefactor t2 or J2 is proportional to 1/d, while
the double sum gives d2 and the net results is therefore of order 1.

Further it follows from the Linked Cluster Theorem that only connected
n-point correlation functions appear in higher order terms of the effective
action. Since they have the usual dependence on 1/d, all but the first term
vanishes in the limit d → ∞. For instance, next order term would involve

3-point connected correlation function χijk ∼
〈
Szi S

z
jS

z
k

〉
or Cijk ∼

〈
Szi c

†
jck

〉

that scale like 1/d|i−j|/2d|i−k|/2. When all three variables i, j and k are dif-
ferent, correlation function is of order 1/d2 since all three sites are neighbors
of o. The prefactor J3 or Jt2 is proportional to 1/d3/2 while sums give d3.
The term is thus of order 1/

√
d. If i = j but distinct from k the correlation

function is of order 1/d while sums give d2 and the net result is again of order
1/
√
d. Higher order terms drop even faster than 1/

√
d. Thus, in the limit of
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large d all but the first term (3.7) can be neglected and the effective action
becomes

Seff =

∫ β

0

U no↑(τ)no↓(τ)−
∫ β

0

dτ1

∫ β

0

dτ2 c
†
oσ(τ1)G−1

0 (τ1 − τ2)coσ(τ2)−

1

2

∫ β

0

dτ1

∫ β

0

dτ2
~S0(τ1)χ−1

0
(τ1 − τ2)~S0(τ2) (3.8)

where

G−1
0 (τ1 − τ2) = −(

∂

∂τ1
− µ)δτ1τ2 +

∑

ij

tiotoj

〈
Tτ ciσ(τ1)c†jσ(τ2)

〉(0)

χ−1

0
(τ1 − τ2) =

∑

ij

JioJoj

〈
Tτ ~Si(τ1)~Sj(τ2)

〉(0)

. (3.9)

The Weiss fields are thus determined by the cavity Green’s function G
(0)
ij and

cavity susceptibility χ
(0)
ij

G−1
0 (ıω) = ıω + µ−

∑

ij

tiotojG
(0)
ij (ıω)

χ−1
0 (ıω) =

∑

ij

JioJoj χ
(0)
ij (ıω) (3.10)

The absence of interference between the kinetic and spin term in the Eq. (3.7)
also leads to separate equations for both cavity quantities

G
(0)
ij = Gij −

GioGoj

Goo

χ
(0)
ij = χij −

χioχoj
χoo

. (3.11)

Equations (3.8), (3.10), and (3.11) form a closed system of functional equa-
tions. The main difficulty lies in the solution of Seff therefore we would like
to find alternative Hamiltonian representation of the above effective action.
Since Seff includes retardation effects through frequency dependent Weiss
fields, it is necessary to introduce auxiliary degrees of freedom describing the
baths. The one-particle character of the Weiss field G−1

0 can be represented
with the fermionic bath while the two particle field χ−1

0 has a bosonic nature
and dictates bosonic bath.
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3.2 The impurity model

One of the possible choices to represent the action (3.8) in a Hamiltonian
formulation is

H =
∑

kσ

εkc
†
kσckσ + V

∑

kσ

(c†kσcoσ + c†oσckσ)−
∑

σ

µ c†oσcoσ + Uno↑n0↓ +

∑

q

wq~Φ
†
q
~Φq + g

∑

q

~So · (~Φq + ~Φ†−q), (3.12)

where ~Φq corresponds to a vector-bosonic bath with the following commuta-

tion relations [Φα
q ,Φ

β†
q′ ] = δqq′δαβ. The corresponding action

S = S0 +

∫ β

0

dτ
∑

kσ

[
c†kσ(τ)(

∂

∂τ
+ εk)ckσ + V c†kσ(τ)coσ(τ) + V c†oσ(τ)ckσ(τ)

]
+

∫ β

0

dτ
∑

q

[
~Φ†q(τ)(

∂

∂τ
+ wq)~Φq(τ) + g ~Φq(τ) · ~So(τ) + g ~So(τ) · ~Φ†−q(τ)

]
(3.13)

is quadratic in ckσ and ~Φq, therefore both baths can be eliminated leading to

S = S0 −
∫ β

0

dτ1

∫ β

0

dτ2

∑

σ

c†oσ(τ1)(
∑

k

V 2 δτ1τ2
∂
∂τ

+ εk
)coσ(τ2)−

∫ β

0

dτ1

∫ β

0

dτ2
~So(τ1)(

∑

q

g2 δτ1τ2
∂
∂τ

+ wq
)~So(τ2). (3.14)

This action is identical to effective action (3.8) provided that the following
relations hold

G−1
0 (τ1 − τ2) = −(

∂

∂τ1
− µ)δτ1τ2 +

∑

k

V 2 δτ1τ2
∂
∂τ

+ εk

χ−1
0 (τ1 − τ2) =

∑

q

g2

(
δτ1τ2
∂
∂τ

+ wq
+

δτ1τ2
− ∂
∂τ

+ wq

)
(3.15)

or equivalently

G−1
0 (ıω) = ıω + µ−

∑

k

V 2Gk(ıω)

χ−1
0 (ıω) = −

∑

q

g2GΦq(ıω). (3.16)

The density of states of the fermionic and bosonic baths, coupled to the
impurity, is just proportional to the imaginary part of the retarded Weiss
fields G−1

0 (ω+ ıδ) and χ−1
0 (ω+ ıδ), respectively. They are not known a priory

but must be found by solving the self-consistent problem.
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3.3 Still local theory?

Within the EDMFT, the lattice problem (3.1) is mapped onto an effective
impurity problem (3.12) with the self-consistency condition (3.16). Further-
more, the lattice Green’s function is determined by the on-site self-energy
alone. At the same time, the spin susceptibility is determined by the local
on-site effective cumulant alone, or equivalently, the on-site part of the ver-
tex function irreducible in terms of both the particle hole bubble and the
single Jij line. This is a consequence of the limit d → ∞ and EDMFT
scaling. This important statement will be shown now explicitly within the
perturbation theory in the on-site interaction U and magnetic interaction J .

Σ ij

Σ ij

i j
ij jiJ   t

i j t ij
3α

α

ijijM J J ji

ijijM t t ji

i j

ji

α

α

Figure 3.1: left: Example of diagrams contributing to the self-energy in second and third
order. They are proportional to 1/

√
d and 1/d respectively. right: First two non-local

diagrams contributing to the irreducible spin cumulant. They are also of the order 1/
√
d.

Consider first the self-energy Σ<ij>. The Hartree contribution from J<ij>
vanishes since 〈Si〉 = 0, while Fock and high-order contributions can be
written in a skeleton expansion. As illustrated in Fig. 3.1, any skeleton
expansion diagram for the self-energy contains at least an inter-site interac-
tion path (dotted line) and a fermion propagator from site i to site j (full
line). Both are at least of order 1/

√
d, therefore Σ<ij> falls off at least as

1/d. More generally, Σij ∼ 1/d|i−j|, where |i − j| is the the distance be-
tween sites in Manhattan metric. This implies that for any generic wave
vector q the non-local self-energy is at least of order 1/

√
d and therefore in

the large d limit Σ(q, ω) is momentum independent and equal to the on-site
part Σii(ω). Similarly, any non-local diagram for irreducible spin cumulant
(i.e. diagram for nonlocal spin susceptibility irreducible in terms of cutting
single intersite interaction line J) contains at least two inter-site lines and
therefore also falls of as 1/d|i−j|. Following the same lines of argument, one
can show that irreducible spin cumulant is also q independent in the large d
limit M(q, ω) = Mii(ω). The lattice Green’s function and spin susceptibility
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therefore read

Gk(ıω) =
1

ıω + µ− εk − Σ(ıω)

χq(ıω) =
1

M−1(ıω) + Jq
. (3.17)

Now, we are ready to determine relationship between the fermionic (bosonic)
Weiss field and local self-energy (irreducible spin cumulant). Fourier trans-
forming sums (3.10) and taking into account the form of the lattice Green’s
function as well as the spin susceptibility (3.17) we get (see Appendix A)

∑

ij

tiotoj

(
Gij −

GioGoj

Goo

)
= ıω + µ− Σ−G−1

oo

∑

ij

JioJojχ
(0)
ij = M−1 − χ−1

oo . (3.18)

Weiss fields therefore reduce to

G−1
0 = Σ +G−1

oo

χ−1
0 = M−1 − χ−1

oo . (3.19)

These are the basic equations of the EDMFT and together with the Eq. (3.17)
and solution of the impurity problem (3.12) form a closed set of equations.

Weiss field G−1
0 (τ − τ ′) plays a role of an effective field and is equal to the

amplitude for a fermion to be created on an isolated site at time τ (coming
form the external fermionic bath) and being destroyed at time τ ′ (going back
to the bath). On the other hand, χ−1

0 (τ − τ ′) is equal to the amplitude for
the local spin to be flipped at time τ (emitting a boson) and flipped back
again at time τ ′ (absorbing a boson). Weiss fields are just auxiliary quantities
that can be eliminated from all the equations. Instead, we can also eliminate
lattice self-energy and irreducible spin cumulant and keep Weiss fields. They
can be calculated at the end from the Eq. (3.19). Let us insert the form of
the self-energy and cumulant in Eq. (3.17)

Gk =
1

ıω + µ− εk − G−1
0 +G−1

oo

χq =
1

χ−1
oo + χ−1

0 + Jq

(3.20)

Summing over all q we finally get

Goo =
∑

k

1

ıω + µ− εk − G−1
0 +G−1

oo

(3.21)
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χoo =
∑

q

1

χ−1
oo + χ−1

0 + Jq

. (3.22)

Once the local Green’s function Goo and the local susceptibility χoo is ob-
tained from solution of the impurity problem (3.12), Weiss fields can be
determined from the above equations. These Weiss fields then uniquely de-
termine the solution of the impurity problem, particularly local susceptibility
and local Green’s function

Goo = Gimpurity(G−1
0 , χ−1

0 )

χoo = χimpurity(G−1
0 , χ−1

0 ). (3.23)

The equations indeed close. In practice, the main difficulty lies in the solu-
tion of the impurity problem (3.12). Even withouth bosonic bath, the Ander-
son impurity model is a difficult quantum many-body problem. The Bethe
ansatz solution can not be directly used since it does not provide dynam-
ical quantities. Numerical renormalization group suffers from convergence
problems, while other approaches are less reliable and limited to certain set
of parameters or temperatures. When bosons are added to the model, the
problem becomes even more intractable due to enlarged Hilbert space. In
the next section a diagrammatic method will be used to approximately solve
the impurity problem (3.12).

The generalization of the method to a state with long-range commen-
surate spatial ordering is straightforward. It requires replacement of spin
operators in the original Hamiltonian with their deviation from the average
value before taking the limit of large dimensions. This ensures that the di-
vergent Hartree term proportinal to zJ is absent. Since z is large but finite
for any physical system, and the Hartree term is local, it can be added back
and put into the local part of the action S0. It plays the role of a staggered
magnetic field and has the same form in the impurity model as well as in the
original lattice model.

In the context of the long range Coulomb interaction, the EDMFT equa-
tions were independently derived by two groups H. Kajuter and G. Kotliar
[8] and also by Q. Si and J.L. Smith [6]. Q. Si et al. extended the the-
ory to spin models in the form that was presented here. They also showed
that the theory is conserving despite the fact that self-energy is local, but
the two particle vertex function is momentum dependent and therefore the
true Luttinger-Ward functional does not exist. It does exist before taking
the infinite d limit, the momentum dependent diagrams are then of leading
order for the two particle vertex function while they are subleading in the
context of self-energy. In spite of this, the approach is conserving since it
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obeys alternative set of conserving criteria, originally proposed by Baym and
Kadanoff [25].
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Chapter 4

Approximate solution of
EDMFT

As explained in the previous section, lattice models of correlated fermions
can be mapped, in the limit of large coordination number, onto a single im-
purity model which has to satisfy a self-consistency condition. This condition
specifies, for a given lattice, the relation between the Weiss functions (enter-
ing the impurity model effective action) and the local Green’s function and
local susceptibility. In this approximation, the lattice is entirely described
with its density of states, since this is the only lattice quantity that enters
the self-consistency condition.

In practice, this coupled problem is solved in the iterative manner: the
local Green’s function and local susceptibility are obtained by solving the
impurity problem given particular Weiss fields (in the first step a guess for the
Weiss fields is used). Then the calculated Green’s function and susceptibility
are used as an input into the self-consistency condition to produce new Weiss
functions. The process is iterated until a converged solution is reached.

The most difficult step in the iterative procedure is the repeated solution
of the impurity model, for an essentially arbitrary fermionic and bosonic
baths. Even though spatial degrees of freedom have been eliminated, the
impurity model remains a true many-body problem. In contrast to the so-
lution of the impurity problem, the implementation of the self-consistency
condition is relatively straightforward. Even though no rigorous proof exists
concerning the convergence of the iterative process, practice has shown that
it is usually not difficult to reach self-consistent solution. Convergence is
usually attained after a few iterations.

In this chapter we will show how to build a conserving approximation
for the impurity problem (3.12) and how to calculate local quantities (local
susceptibility and local Green’s function) within a particular approximation.
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4.1 Susceptibility

Local susceptibility can be defined as a derivative of the magnetization at the
chosen site o with respect to the applied magnetic field at that particular site
∂mo/∂ho. In the original Hubbard model (3.1), the magnetic field couples
through the term hoS

z
o . This term is local and changes only the on-site

action S0 which is the same for the lattice as well as for the impurity model.
Therefore, the impurity model is also supplemented by the term hoS

z
o . The

applied magnetic field does not couple to the fermionic bath but only to the
impurity spin. Since there is no interference between magnetic and hopping
term in (3.8), the fermionic bath is not altered in linear order with the
applied magnetic field. On the other hand, bosonic bath is changed through
the self-consistency condition in linear order and therefore the bosonic non-
interacting part (wq) of the impurity Hamiltonian (3.12) is changed. The
average magnetization at the impurity site is

〈Szo (t)〉 = Tr(ρ0S
z
o)− ı

∫ t

−∞
Tr(ρ0 [Szo (t),∆H(t′)]), (4.1)

where ∆H = hoS
z
o and ρ0 = exp(−βH)/Z with H being impurity Hamil-

tonian (3.12) without coupling to the magnetic field. Even though the first
term is zero, its derivative with respect to the applied magnetic field can be
nonzero, since parameters of the Hamiltonian (wq) are altered, when mag-
netic field is applied. The magnetic susceptibility is thus superimposed with
the term β 〈∂H/∂ho Szo 〉 which involves

〈
Φ†qΦq S

z
o

〉
. This average is zero in the

paramagnetic phase and therefore the susceptibility is not changed through
the disturbance of the bosonic bath and takes its usual form

χαβoo (τ − τ ′) =
〈
Sαo (τ)Sβo (τ ′)

〉
. (4.2)

Note that in the molecular mean-field approximation the additional term
does not vanish and the susceptibility has to be calculated from the following
equation

χij = β
[〈
SzjS

z
i

〉
−
〈
Szj
〉
〈Szi 〉

]
+ β

[〈
∂H

∂hj
Szi

〉
−
〈
∂H

∂hj

〉
〈Szi 〉

]
(4.3)

The local magnetic field, applied at a choosen site, polarizes neighbors of the
selected site. These polarized neighbors then also affect the magnetization
at the selected site and therefore the local susceptibility is not just 1/4β
but contains also the nonlocal part, proportional to the derivative of the
Hamiltonian with respect to the applied field

∂H/∂hj =
∑

kl

Jkl
∂ 〈Szk〉
∂hj

Szl = −
∑

kl

Jklχkj S
z
l . (4.4)
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In the absence of spontaneous magnetization, the intersite susceptibility in
the molecular mean-field approximation thus reads

χij = β
〈
Szi S

z
j

〉
− β

∑

kl

Jklχkj 〈Szl Szi 〉 =
1

4
β(δij −

∑

k

Jikχkj) (4.5)

or equivalently χq = 1/(4T + Jq). The second term in Eq. (4.5) describes
the influence of the polarized media to the selected site. Note that it is
time independent (i.e. static) since all quantum fluctuations are absent in
the molecular mean-field approximation. Within EDMFT the local quan-
tum fluctuations are fully taken into account and are mediated through the
bosonic bath that is coupled to the local impurity spin.

4.2 The auxiliary-particle representation

The common feature of any strongly correlated electronic system is a strong
Coulomb repulsion U between electrons at the same lattice site. For simplic-
ity, U is usually taken to be larger than any other scale in the system. In
many physical systems of interest, this is not justified and one needs to work
with large but finite Coulomb repulsion U . We will address that issue in
chapter 6. Here, we will focus on the t-J model, which becomes equivalent to
the model described by the Hamiltonian (3.1) only in the limit of infinite U .
Any perturbation in the interaction strength U is not sensible in this case.
Rather an alternative approach is needed, where large U term can be exactly
taken into account. An elegant way is the method of auxiliary particles,
where additional degrees of freedom are introduced with pseudo–bosons and
pseudo–fermions [26]. Any impurity state is represented with one auxiliary
particle - either boson or fermion. The powerful machinery of quantum field
theory can be used to solve the problem, provided that the projection onto
the physical subspace can be performed in a satisfactory way.

For a single impurity problem of spin 1/2, two pseudo–bosons (i.e. empty
and doubly occupied site) and two pseudo–fermions (singly occupied site) are
needed

|0〉 = b† |vac〉
|σ〉 = f †σ |vac〉
|2〉 = a† |vac〉 . (4.6)

The physical electron operator is expressed by

c†oσ |0〉 =
(
f †σb + σ af−σ

)
|vac〉 (4.7)
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and the number operator becomes

Q ≡ nb + na + nf↑ + nf↓ = 1. (4.8)

The problem is solved within the grand canonical ensemble where Q can take
any value, and the projection onto Q = 1 subspace is performed at the end.
It is important to note that the number operator is time independent (i.e. it
commutes with the Hamiltonian) and can take only integer values.

The coupling between the local degrees of freedom and bosonic bath is
particularly simple since the impurity spin, in the physical Q = 1 subspace,
is equal to the pseudo–fermion spin

So |Q = 1〉 = Sf |Q = 1〉 . (4.9)

In terms of auxiliary particles the Hamiltonian (3.12) takes the form

H =
∑

kσ

εkc
†
kσckσ + V

∑

kσ

(
c†kσ b

†fσ + f †σ b ckσ + σc†kσf
†
−σ a + σa†f−σckσ

)
+

Una − µ(nf↑ + nf↓ + 2na) +
∑

q

wq~Φ
†
q
~Φq + g

∑

q

~Sf · (~Φq + ~Φ†−q) (4.10)

The local Coulomb interaction term is now represented with a ”heavy” boson
state and U − 2µ plays the role of the on-site energy for that particle. The
corresponding excited states are located at very high energies in the limit of
large U and can be ignored in that case. In the t − J model U is infinite,
therefore all terms that include ”heavy” boson can be omitted.

The projection onto the physical subspace can be performed exactly in a
diagrammatic approach, as shown first by Abrikosov [27]. The grand canon-
ical probability distribution function is defined by

%G = e−β(H+λQ)/ZG (4.11)

and the physical (Q = 1) expectation value of any operator A can be obtained
by the limit of infinite λ

〈A〉 = lim
λ→∞

〈QA〉G
〈Q〉G

. (4.12)

Within a conserving approximation, derived from a Luttinger-Ward func-
tional Φ, the diagrams contributing to the local magnetic susceptibility (4.2)
can be easily determined. For the system described by the Hamiltonian
(4.10) an exact relation between the grand canonical boson self-energy and
local susceptibility exists (see Appendix B)

χoo(ıω) = − 1

g2
ΣΦ(ıω). (4.13)
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This implies that only diagrams, obtained by cutting a single vector boson
line in the Luttinger-Ward functional, contribute to the the local spin sus-
ceptibility. In the same way one can derive the relation between the local
physical electron Green’s function and grand canonical conduction electron
self-energy

Goo(ıω) =
1

V 2
Σc(ıω) (4.14)

4.3 The approximation scheme

The choice of diagrams for a certain approximation should be dictated by the
dominant physical processes in the system. At the same time, the approxima-
tion should obey sum-rules and conservation laws. The simplest way to build
such approximation is to define corresponding Luttinger-Ward functional Φ
and derive other quantities (self-energies and irreducible vertices) from it,
instead of choosing diagrams for each quantity separately. This ensures that
the approximation is conserving.

Gf(iω) = 1
iω - λ + µ - Σf(iω)

Gb(iω) = 1
iω - λ - Σb(iω)

Gc(iω)  = Σk
1

 iω - εk

GΦα(iω) = Σq
2 wq

 (iω)2 - (wq)
2

Vfs

cs

b

V fs

cs

b

1-2gσss’
α

fs’fs

Φα

Figure 4.1: Fully renormalized Green’s functions and bare vertices corresponding to
the Hamiltonian (4.10)

The Luttinger-Ward functional Φ consists of all vacuum skeleton dia-
grams built out of fully renormalized Green’s functions (Gf , Gb, Gc, GΦ)
and bare vertices V and g (see Fig. 4.1). The self-energies (Σf , Σb, Σc, ΣΦ)
are obtained by taking the functional derivative of Φ with respect to the
corresponding Green’s function (cutting the Green’s function line in each
diagram in all possible ways).

The Luttinger-Ward functional Φ may be build in powers of coupling
constants V and g, since both can be considered small. In additional, we
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Φ = +

I

+1
2

II

+

III

1
2

+
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1
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+

V

1
2

+

VI

1
2

+

VII

+

VIII

+
IX

1
2 + . . .

X

1
6

Figure 4.2: A few lowest order diagrams contributing to the Luttinger-Ward functional
for the EDMFT impurity problem (4.10).

will limit our analysis to the simplest approximation that captures Kondo as
well as mixed valence physics and recovers correct Kondo scale in the usual
Anderson model. In the limit U → ∞ one single diagram is enough (first
diagram in Fig. 4.2) to get reliable results for temperatures above ≈ 0.2TK.
This method has been extensively tested in the case of DMFT [28] and it
was shown to be reliable in the whole parameter range except for T � TK,
where TK can be determined as the width of the quasiparticle peak in the
local spectral function. It was also stressed by many authors, that NCA
breaks down at that point, since it slightly underestimates the value of the
self-energy close to the chemical potential, which is small in the Fermi liquid
case and approaches zero as T 2. Hence, at that point NCA produces non-
physical results (negative self-energy and spectral function). In the single
impurity problem, NCA also gives a few percent too high Abrikosov-Suhl
resonance, but in that case the limitation is not so serious, since imaginary
part of the impurity self-energy goes to a constant (Γ/ sin2(πnd/2)), rather
than to zero at zero temperature and few percent smaller self-energy results
in a few percent higher Kondo peak.

Now we need to add diagrams that involve bosons from a vector bosonic
bath. For that purpose, one needs to consider the diagrams of bare pertur-
bation theory instead of only skeleton ones. Then one needs to add bosons
in all possible ways between various pseudo–fermions in any diagram. A
conserving approximation is then constructed by replacing the bare propa-
gators with fully dressed ones and by keeping only the skeleton diagrams.
The number of possible diagrams blows up very rapidly since there is no re-
striction on the way how those bosons can be connected to fermions or how
they can cross. However, the vertex g can be considered as a small quantity
and leading order diagrams, at least at sufficiently high temperatures, will
involve only small number of these vertices.

There are still infinite number of skeleton diagrams involving a single
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boson line, however, in the symmetry-unbroken phase only a single diagram
(diagram number II in Fig. 4.2) gives a nonzero contribution. All the rest
involve a fermionic loop composed of pseudo–fermion and conduction electron
propagator and one outgoing Φz boson line. The lowest order diagram of that
type is the diagram number III in Fig. 4.2. Consider the upper-left fermionic
loop in that diagram. The whole loop has a definite spin (it is not changed
inside the loop), therefore the boson from the bath cannot flip the spin.
Thus only the z component of the vector bosons can be exchanged Φz, which
involves the vertex g (−1)s. Since both values of spin are equally probable,
the net contribution is zero. From the same reason also the diagrams VII and
VIII do not contribute in the paramegnetic state. Thus only limited number
of skeleton diagrams involving two vector bosons survive. First few ot them
are diagrams number IV, V and VI in Fig. 4.2.

4.4 Non-crossing approximation

Φ = + 1
2

Σf =

+

Σb =

Goo =

χoo =

Figure 4.3: The two lowest order contributions to the Luttinger-Ward functional and
corresponding self-energies. We will call the approximation ”Non-crossing approximation”
(NCA) since only diagrams with no line-crossings are taken into accout.

It is natural to start the analysis of the model in the lowest possible order,
including just the first two diagrams in the Fig. 4.2 (see Fig. 4.3).

To consider the magnitude of the coupling vertices V and g, we need
to examine the smallness of the density of local conduction states near the
chemical potential multiplied by V 2 as well as the density of bosonic states
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multiplied by g2

Ac(ε) = V 2
∑

k

δ(ε− εk). (4.15)

DΦ(ε) = g2
∑

q

[δ(ε− wq)− δ(ε+ wq)] (4.16)

-1 -0.5 0 0.5 1 1.5

ω/t*

0

0.05

0.1

0.15
δ=0.01  DΦ(ε)n(ε)
δ=0.18  DΦ(ε)n(ε)
δ=0.01  Ac(ε)f(-ε)/2
δ=0.18  Ac(ε)f(-ε)/2

-4 -3 -2 -1 0 1
-0.1

0

0.1

0.2

δ=0.01  Ac(ε)
δ=0.01  DΦ(ε)
δ=0.18  Ac(ε)
δ=0.18  DΦ(ε)

T = 0.05  J/t = 0.3

Figure 4.4: The main part shows the unoccupied part of the fermionic bath as well as
the occupied part of the bosonic bath density of states corresponding to the NCA solution
of the t-J model in the EDMFT. The inset shows the full fermionic and bosonic bath
density of states.

Both vertices g and V are strong functions of doping. The solution shows,
what could be also guessed by the physical intuition, that g dominates in
the underdoped regime while V is the only important bare vertex in the
overdoped regime (see Fig. 4.4). The reason is that V comes from the kinetic
energy term which is obviously small near half-filling due to small amount
of holes in the system but dominates in the overdoped regime. On the other
hand, g originates from the intersite magnetic interaction therefore looses
its strength with doping. The solution of the NCA equations also shows
that g can be considered to be small for all doping concentrations and that
maximum value of V (in the overdoped regime) is larger than maximum
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4.4. NON-CROSSING APPROXIMATION

value of g (in the underdoped regime) as long as J is smaller than t, which
is usually taken to be around J/t = 0.3 for the t-J model.

Since NCA neglects all crossing diagrams, it is most reliable only when
one of the vertices is much more important than the other. This is true for
small doping δ . 0.1 as well as for large doping δ & 0.2. Unfortunately, the
NCA solution is less reliable in the optimally doped regime where the Kondo
like interaction, or the kinetic part is equally important than the magnetic
intersite interaction. The crossing terms between both processes (for example
the diagram number V or VI in Fig. 4.2) should also be considered in this
case. However, for high enough temperature vertex corrections can still be
neglected even in this region and NCA should again be applicable.

0 0.1 0.2 0.3 0.4 0.5

T/t*

0.018

0.02

0.022

0.024

nΦ

δ=0.02
δ=0.04
δ=0.06
δ=0.08
δ=0.1
δ=0.12
δ=0.14
δ=0.16
δ=0.18
δ=0.2
δ=0.22
δ=0.24

J/t = 0.3

Figure 4.5: The occupation of the bosonic bath as defined in Eq. 4.17.

As shown in Fig. 4.4, the second vertex g, that couples the impurity spin
with the bosonic bath, can be taken to be small for any doping as long as
J/t is small quantity (0.3 in our case). The bosonic density of states never
exceeds 0.1 and is nonzero only in a very narrow frequency range (≈ √zJ)
therefore the occupation of the bosonic bath, defined as

nΦ =

∫
n(ε)DΦ(ε)dε (4.17)

is always very small, never much above 2% (see Fig. 4.5).
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For these reasons, we will mainly focus on the solution of the simple
NCA equations (Fig. 4.3), that give qualitatively and also quantitatively
reliable results at sufficiently high temperatures. This will be shown in the
next chapter with comparison to the exact diagonalization results of the two
dimensional t-J model.

After analytic continuation to real frequencies and projection onto the
physical subspace, the NCA equations (see Appendix C) for paramagnetic
phase explicitly read

Σf (ω + ıδ) =

∫
f(−ε)Ac(ε)Gb(ω − ε+ ıδ)dε+

3

4

∫
n(ε)DΦ(ε)Gf(ε+ ω + ıδ)dε (4.18)

Σb(ω + ıδ) = 2

∫
f(ε)Ac(ε)Gf(ω + ε+ ıδ)dε (4.19)

ImGoo(ω + ıδ) = − π

f(−ω)

∫
e−βεAf (ε+ ω)Ab(ε)dε (4.20)

Imχoo(ω + ıδ) =
π

2 n(ω)

∫
e−βεAf (ε− ω)Af(ε)dε. (4.21)

The t-J lattice problem is then entirely determined in combination with the
following EDMFT equations

Ac =
1

π
ImG−1

0 (4.22)

DΦ =
1

π
Imχ−1

0 (4.23)

Goo =
∑

k

1

ω + µ− εk − G−1
0 +G−1

oo

(4.24)

χoo =
∑

q

1

χ−1
oo + χ−1

0 + Jq

. (4.25)

Another possibility to test the approximation is to compare it with the
high temperature expansion results. For simplicity, we will focus only on
the zero doping case of the t-J model. For high enough temperatures, the
average value of the magnetization can be calculated with a straightforward
expansion in powers of 1/T

〈Szi 〉 =
1

Z

{
−βTr

(
e−βH0∆HSzi

)
+
β2

2!
Tr([∆H,H0]Szi )−
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Figure 4.6: The local spin susceptibility calculated with the NCA and EDMFT compared
with the high-temperature expansion.

β3

3!

(
2Tr(H0 [∆H,H0]Szi ) + Tr([∆H,H0]H0S

z
i )
)

+ . . .

}
(4.26)

Z =

{
Tr
(
e−βH0

)
+
β2

2!
Tr([∆H,H0])−

β3

3!

(
2Tr(H0 [∆H,H0]) + Tr([∆H,H0]H0)

)
+ . . .

}
, (4.27)

where ∆H =
∑

i hiS
z
i . Keeping only the terms that survive d → ∞ one

obtains for the local susceptibility

χoo =
1

4T
− zJ2

96T 3
+

(zJ2)2

1920T 5

D4

z2
+ . . . , (4.28)

where D4 is fourth moment of the lattice non-interacting density of states∫
ε4D(ε)dε. As can be seen from the Fig. 4.6 the overall agreement between

above expression and NCA solution is very good. Note however that the
discrepancy at T = 0.1t∗ comes from the fact that formula 4.28 is truncated
at the third order and the error is of order O (1/T 7). Finally, it should be
mentioned that for any finite dimensional system other terms, which are not
of order zJ2, appear in the expansion (4.28) as well. The lowest order term
that vanishes in the d→∞ limit is equal to zJ3/(384T 4).
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4.5 Vertex corrections

At low enough temperature, one may expect that the vertex correction di-
verge and can not be ignored anymore. As will be shown later, NCA always
breaks down at a certain low temperature. The causality problem occurs be-
cause NCA slightly underestimates the value of the self-energy at the chemi-
cal potential, which rapidly approaches zero with lowering temperature if the
system is Fermi liquid. This also happens at large doping in EDMFT, when
J becomes unimportant and the t − J model becomes similar to U = ∞
Hubbard model. At small doping, on the other hand, self energy is relatively
large near the chemical potential even at low temperatures. However, the
imaginary part of the inverse of the irreducible effective spin cumulant M−1

(defined in Eq. 3.19) goes to zero at zero temperature and NCA again under-
estimates its value. This comes from the fact that the local spin susceptibility,
calculated with NCA, is few percent too high. Again, this problem is not so
serious, if the irreducible cumulant does not go to zero at any point except
zero, but at small doping and small temperatures it eventually becomes zero
at nonzero frequency.

= +

Σf  = 

χoo  = 

Figure 4.7: The dressed interaction between localized pseudo–fermions and vector
bosonic bath. The corresponding cotributions to the self-energies are also shown.

The causality problem can be avoided by including the proper vertex
corrections. If they diverge, an infinite resummation of skeleton diagrams is
needed. As shown in Fig. 4.7, the interaction between the pseudo–fermion
and bosons from the bath can be dressed properly. It is easy to check that
this approximation is conserving and adds an infinite number of diagrams to
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the Luttinger-Ward functional Φ. Among first few, the diagrams number IV
and IX drawn in Fig. 4.2 are included, while number X is still missing. It
is also important that the approximation counts each topologically different
diagram only once, thus no double counting is present.

The drawback of the approximation is that the Bethe-Salpeter equation
is highly nonlinear in the vertex (i.e. cubic) therefore it can not be simply
transformed into the system of linear equations. The problem might be
circumvented by linearizing the equation in iterative process and replacing
the unknown vertex by the old one (vertex from the previous step) at the
two locations on the right hand site of the Bethe-Salpeter equation, thus
changing the kernel.

For completeness, let us write the self-consistent equations explicitly.
The Bethe-Salpeter equation for the vertex function with incoming pseudo–
fermion frequency ıω′ and outgoing ıω reads

B(ıω, ıω′) = 1− 1

4

∫
dξ
{
DΦ(ξ)n(ξ)B(ıω, ıω + ξ)B(ıω + ξ, ıω′ + ξ)×

B(ıω′ + ξ, ıω′)Gf(ıω + ξ)Gf(ıω
′ + ξ)

}
. (4.29)

The pseudo–fermion self-energy contribution is

Σf (ıω) =
3

2

∫
dξDΦ(ξ)n(ξ)Gf(ıω + ξ)B(ıω + ξ, ıω). (4.30)

And finally, the local magnetic susceptibility involves all four vertices, either
retarded or advanced in any of the two vertex frequencies

Imχzzoo(ω + ıδ) =
1

2

∫
dξ

2πı
e−βξ

{
Gf(ξ + ıω)

[
Gf(ξ + ıδ)B(ξ + ıω, ξ + ıδ)−

Gf (ξ − ıδ)B(ξ + ıω, ξ − ıδ)
]
+

Gf(ξ − ıω)
[
Gf (ξ + ıδ)B(ξ + ıδ, ξ − ıω)−

Gf (ξ − ıδ)B(ξ − ıδ, ξ − ıω)
]}
. (4.31)

The solution of these coupled nonlinear integral equations hasn’t been
yet obtained numerically but we expect the approximation to improve the
results at sufficiently low temperatures and small doping, where NCA breaks
down due to the somewhat higher local magnetic susceptibility.
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Chapter 5

EDMFT results

5.1 Quantum critical point and MFLT

Strongly correlated electron systems like heavy fermions or high-Tc supercon-
ductors have very rich phase diagram with many different low temperature
phases. In heavy fermion materials [29], a low temperature ordered phase
exists whose transition temperature goes to zero upon doping or applying
external pressure. The point, where the transition temperature is zero (i.e.
the end point of the ordered state), is called the quantum critical point
[30, 31, 32, 33]. The behavior of the system close to the quantum critical
point is very different from the behavior in the vicinity of the classical phase
transition.

The immediate vicinity of the phase transition is characterized by van-
ishing characteristic energy scale ωc, which is proportional to the inverse of
the characteristic time scale ωc = 1/τ . Due to the critical slowing down, the
time scale diverges as τ ∼ ξκ. The correlation length itself diverges with the
characteristic exponent µ ξ = |T − Tc|−ν, therefore the energy scale goes to
zero as ωc = |T − Tc|νκ.

In the vicinity of the classical phase transition, the characteristic energy
scale gets much smaller than the critical temperature ωc � Tc 6= 0. Since
the temperature is high compared to the characteristic energy scale, the
transition is governed by the classical statistical physics (i.e. the thermal
occupation of bosonic modes is large and hence classical). Statistics plays the
major role and dynamics can be adequately described just by time-dependent
Landau-Ginzburg type of equations.

In the vicinity of the quantum critical point, the characteristic energy
scale is larger than temperature therefore quantum mechanical nature of the
dynamical fluctuations becomes important, more important than statistics.
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At the quantum critical point, the dynamics must be determined from the
quantum-mechanical equations of motion. The general scaling behavior near
a T = 0 transition can be discussed with the formalism of dynamical scaling
[34, 35, 36]. The correlation length is diverging when doping is approaching
critical doping as ξ ∼ |δ − δc|−ν. The critical slowing down is characterized
by the diverging time scale ξτ = τ = ξκ. In quantum statistical calcula-
tions the time-wise direction becomes like an additional dimension, so that
ξτ plays the role of a correlation length in this direction. Therefore, the ef-
fective dimension of the problem is larger than space dimension and is d+κ.
The critical exponent κ is usually larger than one, so that even in the two
dimensional case the effective dimension is larger than three.

If the effective dimension is above upper critical dimension, the space
fluctuations can be ignored and the mean-field description of the long-range
fluctuations is sufficient. In this case, the momentum dependence of the
self-energy is not crucial, rather the frequency dependence plays essential
role [37]. The local theory that correctly describes quantum (i.e. temporal)
fluctuations and freezes spatial fluctuations should be applicable here. The
EDMFT takes a full account of both local quantum fluctuations present in
most generic models of strong electronic correlations, namely, the Kondo
type fluctuations as well as short range magnetic fluctuations. It should be
noted, that the proximity to the quantum critical point is characterized by
the anomalous T dependence in the physical quantities in the whole region
above the ordered state up to some high-energy cut-off (for example J or
t) and also for doping larger than critical doping and temperature larger
than some characteristic temperature, below which the quantum fluctuations
prevail and the system becomes Fermi liquid.

Although the question concerning the origin of the behavior of high tem-
perature superconductors is not settled yet, there are some indications that
much of their behavior might be governed by the proximity to a quantum crit-
ical point [37] located at the optimum doping and T = 0. It is not yet known
whether this point is the end point of a continuous transition line because
underdoped samples do not show any broken symmetry (either translational
or spin rotational) below a certain critical temperature. However, a sharp
change in transport and thermodynamic properties is indeed observed in that
region below a certain continuous line in δ − T diagram. This state has a
d-wave pseudogap in the density of states and is called the pseudogap state.

This line of reasoning led to a phenomenological marginal Fermi liquid
theory (MFLT)[10, 38] describing normal state properties of cuprates for
temperatures above the d-wave pseudogap state in the underdoped samples,
in the whole temperature range in the optimally doped samples and for tem-
peratures above Fermi liquid state in slightly overdoped samples. Since the
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spatial correlations play no role in determining the frequency dependence of
the self-energy the k dependence can be neglected or equivalently the effec-
tive dimension of the problem is infinite (1/κ = 0). The self-energy in MFLT
was postulated to be

Σ(k, ω) = g2

(
ω ln(

x

ωc
)− ıπ

2
x

)
(5.1)

valid for x� ωc and vF |(q − kF )| � ωc and where x is max(T, |ω|), ωc is an
upper cut-off and g is a constant.

The major point in MFLT theory is that the dynamically generated low
energy excitations of a many body states are such that single particle scat-
tering rate is proportional to x rather than to x2 as in Landau Fermi liquids.
As a consequence, the quasi-particle renormalization amplitude Z scales to
zero at zero temperature and zero frequency

Z =

(
1− λ ln(

x

ωc
)

)−1

. (5.2)

Hence, there are no well defined quasi-particles and the single particle occu-
pation number has no discontinuity at the Fermi surface, but its derivative
does. So the Fermi surface remains a well-defined concept both in energy
and momentum space. It can also be shown that the above choice for the
self-energy (5.1) leads to a finite compressibility. Note however, that com-
pressibility for two dimensional models of strong electron correlations (Hub-
bard, t-J) diverges at low temperature close to the Mott-Hubbard transition
[39].

Many normal state properties of cuprates can be very well explained
with the phenomenological MFLT, especially linear resistivity and spectral
properties at optimum doping [37].

As we will show in the next section, many results of EDMFT are indeed
consistent with the MFLT scenario. However, our present method for solving
impurity problem (NCA) is most limited in the optimally doped regime,
where Kondo physics and magnetic interaction are about equally important.
In this region, one Feynman bubble for each process is naturally not enough
and one needs to include vertex corrections of type presented in Fig. 4.2. On
the other hand, MFLT most successfully describes samples in the optimally
doped region what makes the comparison somewhat harder.

5.2 Spectral Functions

In the following sections, we will present numerical results of the EDMFT
applied to the t-J model. The corresponding impurity problem is solved with
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the NCA method discussed in Section 4 and Appendix C. In order to obtain
a meaningful limit for fermion models of large dimensions the lattice density
of states must be bounded. In the hypercubic lattices, the short wavelength
cut-off associated with the kinetic or intersite interaction term is ε = zt or
ε = zJ respectively, where z is the coordination number (i.e. the number of
nearest neighbors). In the case of infinite z and DMFT scaling t = t∗/

√
z

the density of states is unbounded since the tails extend up to
√
zt∗. This

leads to the infinite antiferomagnetic transition temperature, which is also
proportional to the coordination number Tc ∝ zJ and therefore scales as
Tc ∝

√
zJ∗. It is therefore essential to work with a physical density of

states which is always bounded. In order to compare our results with the
exact diagonalization results of the two dimensional t-J model we will use
2D density of states.

The t-J model is characterized by near-neighbor hopping t = t∗/
√
z and

intersite magnetic interaction J = J∗/
√
z. We choose t∗ = 1 to establish the

unit of energy and if not otherwise mentioned J/t = J ∗/t∗ is chosen to be 0.3.
The coordination number z is 4 in the two dimensional square lattice and
therefore t = 1/2 and J = 0.15 in above chosen units. We will work within
the paramagnetic metallic state of the model since the long range order in
two dimensions is possible only at zero temperature. It is important that
quantum fluctuations contained in EDMFT destroy long range order at any
nonzero temperature for one or two dimensional systems so that EDMFT
satisfies Mermin-Wagner theorem. The reason is that the density of states
has a finite jump at the short wavelength cut-off and therefore the real part
of the Hilbert transform diverges at that point, or equivalently the phase
space is too small to allow solution of Eq. (3.22). Close to the ordering wave
vector Q this equation takes the form

χoo(ω = 0) =
2

zJ

∫
q̃d−1dq̃

1/ξ̃2 + q̃2
, (5.3)

where q̃ = q−Q and

ξ̃2 =
1

2
zJ χ(Q, ω = 0). (5.4)

The dynamic correlation length ξ̃ is diverging close to the phase transition
therefore the right hand side of the Eq. (5.3) also diverges for d ≤ 2. Since
the local susceptibility χoo does not diverge at any nonzero temperature the
EDMFT does not allow long range order in one or two dimensions at any
nonzero temperature.

The EDMFT includes dynamical nonlocal quantum magnetic fluctuations
beyond the Hartree level. These nonlocal fluctuations suppress long-range
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order found in the DMFT solution with mean field treatment of magnetic in-
teraction [24]. In addition, nonlocal fluctuations destroy Fermi liquid metallic
state at small doping and open a pseudogap, which is characterized by enor-
mous reduction of the density of states at the Fermi level and around it.
This gap is remnant of the Mott gap at half filling and develops due to the
short range antiferomagnetic correlations present in the underdoped phase.
The associated energy scale is of order J therefore the gap is clearly seen
at temperatures reached with our present NCA method T ∼ J/5. The so-
called large pseudogap was found numerically in the t-J model [9, 40, 41] and
also experimentally in the normal state of cuprate superconductor (LSCO)
[42, 43].
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Figure 5.1: The local spectral function plotted versus frequency for T=0.03 and J=0.15
for various doping concentrations δ. The chemical potential is located at ω = 0 marked
with a dotted vertical line. The inset magnify the structure at ω = 0 for the smallest
doping shown.

At half-filling (δ = 0) t-J model is antiferomagnetic Mott insulator with
infinitely large Mott gap. However, the transition to the ordered state occurs
only at T = 0 in the 2D system in accordance with the Mermin-Wagner
theorem. The Mott insulating gap is slowly destroyed with adding holes to
the system as shown in Fig. 5.1 but a remnant of the gap persists up to
the overdoped regime. The effect of doping is that the chemical potential
gradually cuts deeper and deeper into the Hubbard band, forming a hole-
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like Fermi surface centered around (π, π) at the top of the lower-Hubbard
band. The spectral weight is transferred from the incoherent Hubbard band
to the quasiparticle peak which is substantially increased with doping. This
quasiparticle peak, corresponding to the dressed holes in the paramagnet
with short but strong antiferomagnetic correlations, is located approximately
J below the chemical potential at zero doping and is slowly approaching the
chemical potential with increasing doping. The small shoulder above the
chemical potential, seen in the local density of states, is also enlarged and
finally merges with the quasiparticle peak in the overdoped regime (δ ∼ 0.2).
As we will show below, the Fermi liquid state is developed for doping above
δ ∼ 0.24 when corresponding Kondo temperature exceeds the strength of the
magnetic interaction J .
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Figure 5.2: The local spectral function for four different J/t = 0, 0.1, 0.2 and 0.3 The
evolution of pseudogap and destruction of Fermi liquid quasi-particle peak seen at J = 0
is clearly visible. Vertical lines mark chemical potentials for various J/t. The inset shows
the same spectral functions at constant chemical potential set to zero.

The local density of states confirms the destruction of the Fermi liquid
quasiparticle peak by short-range antiferomagnetic correlations. With in-
creasing J , the pseudogap is increased and the spectral weight of the Fermi
liquid quasiparticle seen at J = 0 is transferred deeper and deeper below
the chemical potential into the so called Hubbard sideband of width approx-
imately ∼ J . The correlation length for J/t = 0.3 is only about 4 lattice
spacings (see Fig. 5.3) confirming the short-range nature of the fluctuations

44



5.2. SPECTRAL FUNCTIONS

that prevent the formation of many-body singlet state of Fermi liquid na-
ture. Because of strong antiferomagnetic correlations that introduce pseudo-
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Figure 5.3: The inverse of dynamic correlation length for the t-J model calculated
within EDMFT+ NCA as a function of temperature for various doping concentrations.

The correlation length is calculated from the magnetic susceptibility as ξ =
√

1
2zJχ(π,π)(0)

(see Eq. 5.4).

gap into paramagnetic metal, there is no adiabatic continuity between the
noninteracting and interacting eigenstates and the system is not Fermi liquid.

If J = 0, the model is called t-model and is equivalent to the infinite U
Hubbard model. The latter can be mapped onto the usual Anderson impu-
rity model in the limit of large dimensions and therefore the metallic state
without broken symmetry is always Fermi liquid [5] below the characteristic
temperature ε∗, which is just the Kondo temperature of the corresponding
Anderson impurity model. As we know from the Kondo physics, a narrow
quasiparticle resonance appears at the Fermi energy in the single-particle
spectrum for temperature around and below ε∗(see Fig. 5.2). This charac-
teristic temperature is monotonically decreasing with decreasing doping and
eventually, at half filling, becomes zero since charge excitations are not al-
lowed anymore. At temperatures much larger than ε∗, the electrons behave
as nearly independent localized spins and the local spin response has Curie-
like behavior. As the temperature is lowered below the small energy scale
ε∗, the electrons start to couple strongly and the Fermi liquid metallic state
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emerges. The physics of the t-model gets complicated by various phases
with broken symmetry and long-range order. Indeed, as Nagaoka showed in
a milestone paper [44], a single hole in the infinite-U Hubbard model on any
finite bipartite cluster with periodic boundary conditions, for any dimension
d ≥ 2 has a fully polarized ferromagnetic ground state, i.e., the ground state
has maximum spin S. Numerical calculations support the idea that ferro-
magnetic ground-state survives even at finite hole densities but small enough
doping [45].
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Figure 5.4: The pseudo–fermion spectral function as a function of frequency for four
different values of J . The inset shows the blowup of the peak in the case of J = 0.

The pseudo–fermion spectral function shown in Fig. 5.4 illustrates how
intersite interaction J changes the localized nature of electrons. The tem-
perature in Fig. 5.4 is somewhat higher than the small energy scale ε∗ below
which the Fermi liquid regime applies for J = 0, therefore the system is cari-
catured as a collection of weakly coupled magnetic moments. Thus, the local
pseudo–fermion spectral function is extremely sharply peaked. In our calcu-
lations, the frequency scale is chosen such that the pseudo–particle spectral
functions are peaked at zero frequency when the temperature goes to zero.
At T = 0 and J = 0, they diverge for ω < ε∗ with a characteristic exponent
αf or αb, which is a function of doping only and is a signal of formation of the
Fermi liquid singlet ground state. However, if the temperature is above ε∗,
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the pseudo–fermion spectral function is still very sharply peaked, signaling
the localized nature of magnetic moments, but the peak is shifted to positive
frequency for a small amount ∼ T (because of the orthogonality catastrophe
it has to be above zero).
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Figure 5.5: Pseudo–boson spectral function as a function of frequency for four different
values of J . The inset shows the same spectral-functions on a larger scale so that the
Hubbard band is clearly visible.

As shown in Fig. 5.4, the nonzero J enables fermions to exchange energy
and therefore the pseudo–fermion spectral function is substantially broad-
ened. The width of the peak becomes approximately J and the small en-
ergy scale, that was manifested in the local spectral function Aoo as a sharp
quasi-particle resonance at the chemical potential (Abrikosov-Suhl peak),
disappears. The Fermi liquid state is thus destroyed. However, if the charac-
teristic temperature ε∗ is larger than J , the shape of the peak in the pseudo–
fermion spectral function is determined by ε∗ and not by J , therefore the
latter is irrelevant. As we will show later, this is the case for the overdoped
t-J model (δ > 24%), where Fermi liquid metalic state is recovered.

The pseudo–boson spectral function is shown in Fig. 5.5 for the same pa-
rameters as pseudo–fermion spectral function in Fig. 5.4. In the case of J = 0
and for temperature smaller than the characteristic Fermi liquid temperature
ε∗, a very sharp peak develops at zero frequency in the the pseudo–boson
spectral function. However, if the temperature is larger than ε∗ (like in the
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Fig. 5.5) only the broad Hubbard band remains.
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Figure 5.6: Pseudo–fermion spectral function plotted vs frequency for various doping
concentrations. The relevant energy scale is of order J in the whole doping range.

When J is turned on, a pseudogap develops around zero frequency and
a broad quasiparticle peak emerges above it. Thus, the hole excitations are
gapped around the threshold frequency causing pseudogap also in the lo-
cal physical spectral function Aoo. This is because Aoo is a convolution of
pseudo–boson (sometimes called holon) and pseudo–fermion (spinon) spec-
tral function (see Eq. 4.20). The size of the pseudogap as well as the width
of the quasiparticle peak is approximately J . This peak corresponds to a
dressed hole moving in the paramagnetic medium and is also reflected in
the quasiparticle peak of the local physical spectral function Aoo that occurs
below the chemical potential.

We can see from Fig. 5.6 that the pseudo–fermion spectral function is
only weakly doping dependent and the width of the peak is approximately
J for essentially all doping concentrations shown. This comes from the fact
that the relevant energy scale in the underdoped case is J and is not strongly
doping dependent, while it changes to ε∗ in the overdoped case. As we will
show later on (see Fig. 5.8), Kondo temperature (ε∗) is just around J for
the largest doping (δ = 0.24) shown in Fig. 5.6 and therefore the relevant
energy scale is almost a constant in this range of doping concentrations. Note
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however, that the temperature dependence of the spectral function is very
strong for any doping.
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Figure 5.7: Pseudo–boson spectral function plotted vs frequency for various doping
concentrations. The pseudogap, dominating close to the Mott-Hubbard transition, grad-
ually evolves to a sharp peak signaling the development of the Fermi liquid state in the
overdoped regime.

The pseudo–boson spectral function, on the other hand, is strongly doping
dependent (see Fig. 5.7). The pseudogap seen at small doping is slowly
disappearing and the spectral weight is transferred from the Hubbard band
to the quasiparticle peak. For the largest doping shown, the characteristic
Fermi liquid temperature or Kondo temperature is already larger than J and
therefore the peak in the pseudo–boson spectral function is proportional to
Ab ∼ ω−αb between ω ∼ TK and ω ∼ T .

For sufficiently large doping, t-J model is expected to be Fermi liquid
since the strength of the magnetic intersite interaction must become small
when the number of electrons per-site is small. The question is, where is
the crossover between Fermi and non Fermi liquid state. We argue, that the
Fermi liquid metallic state is stable when corresponding Kondo temperature
exceeds the strength of the magnetic interaction J . For J/t = 0.3, this
happens around δ ∼ 0.24 close to the so called mixed-valence regime of the
Anderson impurity model.

Because the role of J becomes unimportant in the overdoped regime
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the EDMFT impurity model (3.12) gets close to the Anderson impurity
model (2.15) arising in the DMFT study of the infinite U Hubbard model.
At this point, the Anderson impurity model already enters the so-called
mixed-valence regime where charge fluctuations become important and the
Abrikosov-Suhl resonance merges with the incoherent Hubbard band. The
energy of the local level Ed of the impurity model, which has opposite sign
but the same magnitude than the chemical potential µ of the lattice model,
approaches the Fermi level. The distance between the Ed and µ gets small
compared to the width of the Hubbard band. In this crossover region be-
tween Fermi and non-Fermi liquid, the doping of the system is already close
to 30% so that the occupation of the impurity level of the Anderson model
is around 70% therefore the impurity system cannot be mapped onto the
usual Kondo impurity model anymore. The strong Kondo limit with small
energy scale TK is thus never observed in the t-J model. To show that, we
need to find the correct expression for the Kondo temperature which for the
infinite-U Anderson impurity model takes the form

TK =
√
DΓ exp

(
πEd
2Γ

)
, (5.5)

where D is high energy band cut-off, Ed is the energy of the local impurity
orbit and Γ = πV 2N (0) denotes the effective hybridization or the broadening
of the local level. For the case of the t-J model, the high-energy cut-off is
just the width of the lattice density of states t∗ and the energy of the local
orbit is the chemical potential Ed = −µ. This can be most easily seen from
the mapping of the lattice effective action (3.8) onto the impurity problem
(3.12). The chemical potential µ is positive at low doping, and hence the
energy of the local orbit Ed negative. The effective hybridization Γ may be
expressed in terms of the improper impurity self-energy Λ as

Γ = −Im Λ(0), (5.6)

where Λ is the exact self-energy of the noninteracting impurity problem (i.e.
without Coulomb interaction U and magnetic interaction J). The latter can
be expressed by the fermionic Weiss field G−1

0 as

Λ(ω) = ω + µ− G−1
0 (ω) (5.7)

since the density of states of the auxiliary conduction band is

Ac(ω) = − 1

π
Im Λ(ω). (5.8)
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Finally, the Kondo temperature becomes

TK =
√
t∗ Γ exp

(
−πµ

2Γ

)
, (5.9)

where the effective hybridization is

Γ = −Im Λ(0) = πAc(0) = ImG−1
0 (0). (5.10)

There are two difficulties in using the above formula. One is that the parame-
ters like Γ and µ are changing with temperature because they are determined
self-consistently and therefore the Kondo temperature itself is not a constant
for a fixed t, J and δ. We may however expect that when the temperature
is below the smallest energy scale in the system those parameters do not
change anymore. The second problem is that conduction electron band is
described just by two numbers in the above formula: the band cut-off D
and the effective value of the density of states at the chemical potential Γ.
This is quite accurate approximation in the usual impurity problem where
the improper self energy Λ is very slowly varying function of frequency close
to the chemical potential and can be replaced by a constant up to the band
cut-off. In the DMFT problem, however, this quantity is self-consistently
determined and is composed of incoherent and coherent part. The latter is
a strong function of frequency around the chemical potential which makes
the formula (5.9) less reliable. Nevertheless, it gives a good estimate of the
low-energy scale below which the many-body singlet ground state might be
formed. We stress, however, that this scale was found only in the overdoped
regime and that it does not have any physical meaning in the underdoped or
optimally doped regime.

Fig. 5.8 shows that the effective hybridization Γ is monotonically increas-
ing with increasing doping. This is due to the increase of the value of the local
spectral function at the chemical potential. On the other hand, the chemical
potential is always decreasing with doping and therefore Kondo temperature
is monotonically increasing function of doping. More importantly, Kondo
temperature exceeds J just above δ ∼ 0.2 therefore we expect that the Fermi
liquid ground state is formed in the overdoped regime. In order to show
that, we will compare the value of the local physical spectral function at the
chemical potential Aoo(ω = 0) with the prediction of the Friedel sum rule.
As shown in Appendix D, Aoo(ω = 0) is uniquely determined by the effec-
tive hybridization Γ and by the change in number of electrons due to the
introduction of the impurity

Aoo(0) =
sin2

(
π
2
(n− nc)

)

πΓ
, (5.11)
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Figure 5.8: The effective hybridization Γ and the Kondo temperature for the t-J model
in the EDMFT calculated at T/t∗ = 0.05.

where n = 1− δ and

nc = −2 Im

∫ 0

−∞

dξ

π
Goo(ξ)

∂Λ

∂ξ
. (5.12)

To prove this sum rule, we need to assume that the exact solution can be ob-
tained by perturbing the system of non-interacting electrons (i.e. the system
with U = 0 and J = 0) or equivalently, that the one-to-one correspondence
exists between the one-particle excitation of the interacting problem and
those of the non-interacting problem.

Fig. 5.9 shows the value of the local spectral function at the chemical
potential Aoo(ω = 0) as a function of temperature. The value predicted by
the Friedel sum rule is indicated in the left by the line with two arrows. The
uncertainty comes from the fact that Γ and nc are changing with temperature
and are determined from the self-consistent solution. Therefore, the zero
temperature limit can not be obtained by our approach and must be found
by extrapolation. Nevertheless, it is clear from Fig. 5.9 that the Friedel sum
rule can be obeyed for doping δ & 0.23 while it is completely off in the
optimally doped regime, since the sum rule predicts increase of the Aoo(0)
with decreasing doping while the value actually decreases with doping.

It is also instructive to study the imaginary part of the self-energy at the
chemical potential vs temperature. If the low temperature phase of the sys-
tem has a Fermi liquid characteristics, the scattering rate near the Fermi en-
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Figure 5.9: The value of the local spectral function at the chemical potential vs tem-
perature for various doping concentrations. The value predicted by the Friedel sum-rule
is marked on the right with the line with arrows.

ergy vanishes faster than the energy of the quasiparticles so that the lifetime
is large and the quasiparticles are well defined. Likewise, at the Fermi en-
ergy Im Σ varies with temperature as T 2. The breakdown of the Fermi liquid
theory occurs, when the scattering rate at the Fermi energy is proportional
to T and ω so that no well-defined quasiparticle exists. If the self-energy is
also momentum independent, then the metal is termed marginal Fermi liquid
[37].

In Fig. 5.10 we present results for the imaginary part of the self-energy
at the chemical potential vs temperature. For low doping (δ . 0.1) Im Σ
is a monotonically increasing function of doping and may be extrapolated
linearly to the origin. In the heavy overdoped regime, on the other hand,
the quadratic low temperature part is most likely. However, the simple NCA
method breaks down when the temperatures is much smaller than the char-
acteristic Fermi liquid scale ε∗, therefore the parabolic part cannot be ob-
tained in this simplified approach. Optimally doped regime is characterized
by very large scattering rate in the whole temperature range. Despite the
fact that the downturn of Im Σ at the lowest temperature reached is not
very pronounced, we believe that Im Σ vanishes linearly with temperature
but with very large prefactor. We note however, that our present method
for solving impurity problem (NCA) is most limited in the optimally doped
regime, where Kondo physics and magnetic interaction are about equally im-
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Figure 5.10: The imaginary part of the self-energy at the chemical potential plotted vs
temperature for various doping concentrations.

portant. Since we have described each process with a bubble and we have not
yet included crossing diagrams (i.e. vertex corrections of type presented in
Fig. 4.2), the approximation might be less reliable at very low temperatures
and optimum doping.

Another quantity that distinguishes Fermi liquids from non Fermi liquids
is the quasiparticle renormalization amplitude Z defined by

Z =

(
1− ∂Re Σ

∂ω

)−1

ω=0

. (5.13)

It measures the overlap of the ground state wave function of the system of
interacting N ± 1 electrons with the wave function of N interacting particles
and a bare electron. The Landau Fermi liquids are characterized by finite
renormalization amplitude at T = 0 while in the marginal Fermi liquid case,
Z scales to zero logarithmically with temperature (see Eq. (5.2)).

Fig. 5.11 displays the variation of Z with temperature and clearly shows
that even though Z is relatively large for temperature T ∼ J it scales to
zero at T = 0 and small or moderate doping. For the largest doping shown
δ = 0.24, renormalization factor does not vanish and approaches the value
Z ∼ 0.12. In this case, the system is Fermi liquid and the characteristic
energy scale ε∗ is determined from the cut-off energy t∗ and renormalization
amplitude Z by ε∗ ∼ Z t∗ = 0.12t∗ = 0.8J . This is consistent with the upper
observation that the Kondo temperature is of order J for doping δ ∼ 0.24.
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Figure 5.11: Quasiparticle renormalization amplitude Z plotted vs temperature for
various doping concentrations. Nonzero Z at T = 0 is obtained only in the overdoped
regime signaling the formation of the Fermi liquid state below the temperature Zt∗.

Finally, in Figs. 5.12 and 5.13 we would like to give an impression of the
variation of the one particle spectra with temperature for an underdoped
and overdoped system, respectively. At very high temperatures (T & J) and
small doping, only a broad incoherent Hubbard band is observed, with the
chemical potential located at the top edge of the band. For temperatures
lower than J , spectral weight is transferred from the region above the chem-
ical potential to the broad quasiparticle peak located below µ. The density
of states at the chemical potential is reduced with temperature and a pseu-
dogap opens. A coherent peak above the chemical potential, corresponding
to a Fermi liquid quasiparticle, does not appear in the system at low and
optimum doping.

The spectral function of overdoped system, on the other hand, shows a
typical Fermi liquid characteristics. The coherent part of spectra appears
above the chemical potential, the peak is narrowed and increased with low-
ering the temperature. The incoherent Hubbard band is almost merged with
the quasiparticle peak therefore the spectra shown in Fig. 5.13 resembles
mixed-valence spectra of Anderson impurity model with Kondo temperature
of order J .
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Figure 5.12: Local spectral function for doping δ = 0.04 and various temperatures. In
the main part, the chemical potential is marked with vertical lines with arrows. The inset
shows the same spectra at fixed chemical potential located at zero frequency.

5.3 Fermi surface

An additional result from microscopic theory is the so-called Luttinger the-
orem, which states that the volume enclosed by the Fermi surface does not
change due to interactions [46, 47, 48]. Luttinger’s original proof in 1960 was
based on the perturbation theory [46]. The mathematics behind the theorem
is that with the assumption of Fermi liquid theory, the number of poles in
the interacting Green’s function below the chemical potential is the same as
that for the non-interacting Green’s function. Recall that latter is just the
number of particles in the system (see Appendix D). Recently, the theorem
was proven also by nonperturbative method for the case of Kondo lattice
model [49] in arbitrary dimension. The latter approach can be extended
to other lattice models, including the Hubbard an t-J model. However, it
should be stressed that Luttinger theorem can be proven with the latter
nonperturbative method only if a system is a Fermi liquid. The perturbative
[50] and nonperturbative [51] proofs for the Luttinger theorem were given
also for the one dimensional counterpart of the Fermi liquid, namely the
Tomonaga-Luttinger-liquid.

However, strongly correlated systems with no definite quasiparticles do
not need to satisfy the Luttinger theorem. Indeed, it is an exiting open ques-
tion wheather the volume of the Fermi surface is consistent with the Luttinger
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Figure 5.13: Local spectral function for doping δ = 0.24 and various temperatures. In
the main part, the chemical potential is marked with vertical lines with arrows. The
inset shows the same spectra at fixed chemical potential located at zero frequency.

theorem in the non-Fermi liquid phases of these models or not. Using exact-
diagonalization techniques Stephan et al. [53] argued that t-J model satisfies
Luttinger theorem for dopings above ∼ 10%. They performed calculations on
clusters of 16 to 20 lattice sites with 2 or more holes introduced in the system.
On the other hand, several groups have recently reported a breakdown of the
theorem in Hubbard or t-J model [54, 55, 52, 56, 57, 58, 59, 60, 61, 62, 63]. In
the paper of Putikka et al. [54] the high temperature series for the moment
distribution function nk of the 2D t-J model was calculated to twelfth order
in the inverse temperature and then extrapolated to T = 0.2J , which is also
the temperature we can reach with the EDMFT and NCA. They concentrate
on particular doping of 20% and found a slightly larger Fermi surface than
predicted by the Luttinger theorem. As shown in Fig. 5.15, our calculation
supports the result of Putikka et al., however this doping is already very
close to the Fermi liquid region therefore the volume of the Fermi surface
could be only slightly larger. Schmalian et al. calculated Fermi surface for
the Hubbard model using fluctuation exchange approximation and also got
larger volume of the Fermi surface than Luttinger theorem predicts. The
discrepancy was larger for smaller doping and become negligible just around
20%. Maier et al. [55] also obtained Fermi surface for the Hubbard model us-
ing dynamical cluster approximation and found the crossover from the Fermi
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Figure 5.14: The lower bound for the Fermi surface volume as estimated from the single
particle spectral functions obtained with the quantum Monte Carlo on 8× 8 lattice. The
dashed line gives the value predicted by the Luttinger theorem (from Ref. [52]).

liquid to non Fermi liquid state again around 20% with larger Fermi sur-
face below this doping. Eder et al. [52] used quantum Monte Carlo method
to study Hubbard model on 8 × 8 square lattice. They found surprisingly
similar results than we obtained with EDMFT. In contrast to the results of
Maier et al. or Schmalian et al., they concluded that the volume of the Fermi
surface monotonically drops from 1 (i.e. occupying the whole Brillouin zone)
at zero doping to the non-interacting value at 20% doping. In Fig. 5.14, we
reproduce their result for the lower bound of the volume of the Fermi sur-
face. They however stressed, that the actual volume can be larger (but not
smaller) than shown in the figure.

Many different criteria were used by various authors to determine Fermi
surface. The problem is that the zero temperature limit is usually inacces-
sible with numerical methods or the size of the system is too small for the
thermodynamic limit to be reached. As we have already discussed before, our
NCA method is limited to temperatures above T & 0.03t∗ and zero tempera-
ture is inaccessible. However, we believe that EDMFT is not limited in that
sense. If an improved method for solving the impurity problem (3.12) is used,
T = 0 could be reached. Nevertheless, the temperature T = 0.03t∗ = 0.2J is
already quite small and we might expect that T = 0 limit can be smoothly
approached if an appropriate criteria for the estimation of the Fermi sur-
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Figure 5.15: Effective chemical potential vs doping for J/t = 0.3. The doted line marks
the non-interacting chemical potential at zero temperature, which should coincide with
the effective chemical potential according to the Luttinger theorem.

face is chosen. For comparison, we mention the lowest temperature reached
by some other methods that also estimated the Fermi surface: Maier et al.
T = 0.066t∗, Putikka et al. T = 0.04t∗, Eder et al. T = 0.05t∗.

In the case of the local theory, the effective chemical potential µ̄ can be
defined, which determines the position of the Fermi surface

µ̄ = µ− Re Σ(ω = 0). (5.14)

The spectral function diverges at the Fermi surface defined by εk = µ̄ since
the Green’s function at the chemical potential is

Gk(ω = 0) =
1

µ̄− εk − ı Im Σ(0)
. (5.15)

The Luttinger theorem then states that µ̄ is equal to the noninteracting
chemical potential µ0 corresponding to the same filling. In the case of fully
filled band (n = 2) and half-filled (n = 1), µ0 is equal to zt and 0, respectively.

Fig. 5.15 shows the effective chemical potential µ̄ versus doping as ob-
tained by our method. The most important conclusion is that the Luttinger
theorem is not satisfied for doping below 20%. The deviation from the Lut-
tinger volume is quite pronounced at low doping and seems to support a
simple rigid picture of doping the Mott insulator as proposed already by Hub-
bard: at half filling, the chemical potential is between the Hubbard bands

59



CHAPTER 5. EDMFT RESULTS

and the effect of doping is that the chemical potential gradually cuts into the
top of the lower Hubbard band. The Fermi surface is hole-like and centered
around (π, π) for underdoped and optimally doped case, while it is electron-
like for the overdoped case. The same conclusion have been reached by a
quantum Monte Carlo simulation for the Hubbard model by Eder et al. [52]
as shown in the Fig. 5.14. The results of Putikka et al. [54] are also in agree-
ment with our findings. However, it should be noted that all the calculations
were performed for the paramagnetic phase with no broken symmetry. Thus,
the true antiferomagnetic state with long range order was not allowed at any
finite temperature, which is true only for strictly two dimensional systems
without any inter-layer couplings.

It should be noted, that the change of the Fermi surface from hole-like to
electron-like is closely related to the change in the sign of the Hall coefficient
from positive to negative occurring for doping slightly above the optimum
doping. We will turn to a closer examination of that issue in chapter 5.5.

Fig. 5.16 shows the spectral function at the chemical potential in upper
quadrant of the first Brillouin zone A(k, ω = 0) for doping concentrations
4%, 10%, 16% and 23%. The peak structure of the spectral function is
characterized by yellow region in the plot and the white line marks the non-
interacting Fermi surface. For the largest doping shown, the quasiparticle
peak is very narrow and coincides with the non-interacting electron-like Fermi
surface. This is due to the small scattering rate and long lifetime of the
quasiparticles in the Fermi liquid state. The yellow region in the Fig. 5.16
is substantially increased in the optimally doped system, especially around
(π, 0), because the quasiparticle peak becomes broader. This is due to the
large self-energy at the chemical potential or equivalently large scattering rate
and short lifetime of quasiparticles compared to their energy. This is also
closely related to the large pseudogap originating from the antiferomagnetic
correlations as pointed out by Ino et al. [64]. As doping further decreases,
the quasiparticle peak remains very broad and continues to move towards the
edge of the Brillouin zone (π, π). The transport properties are still governed
by hole-like excitations.

The spectral function A(k, ω) is shown also in Fig. 5.17 with frequency
on the vertical axes and wave vectors k on horizontal axes. The quasiparticle
peak is again very narrow for 23% doping and much more broad in optimally
or underdoped region. It should be noted that the quasiparticle band is very
flat around (π, 0) for optimally doped 16% system. The reason is that the
renormalization factor Z = (1 − ∂Σ′/∂ω)−1 is very small (it goes to zero at
zero temperature) and therefore the quasiparticle energy Ek vanishes faster
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Figure 5.16: Constant energy scan of the single particle spectral function A(k, ω = 0)
in the right upper quadrant of the first Brillouin zone for temperature T/t∗ = 0.03. The
left upper panel corresponds to 4% doping, the right upper to 10%, left lower to 15% and
right lower to 23% doping. The dark (light) represents regions with low (high) electron
concentration.

than quadratically. It is the solution of the equation

Ek + µ− εk − Σ′(Ek) = 0 (5.16)

and for small Ek can be expressed as

Ek = Z(εk − µ̄) + .., (5.17)

where µ̄ is the effective chemical potential. At optimum doping, the effective
chemical potential is close to zero and therefore the Fermi surface is around
(π, 0), where εk vanishes quadratically. Since Z goes to zero, the quadratic
part of Ek actually vanishes and the band becomes very flat.

Finally, let us compare our results to some recent experiments made on
cuprates [64, 42]. Using angle-resolved photoemission spectra, it was shown
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Figure 5.17: Angle-resolved single particle spectral function A(~k, ω) for various doping
concentrations with frequency on vertical axes and k on horizontal axis. The left upper
panel corresponds to 4% doping, the right upper to 10%, left lower to 15% and right lower
to 23% doping. Temperature is T/t∗ = 0.03. The legend is displayed below.

that the Fermi surface of LSCO is hole-like and centered at (π, π) in under-
doped δ = 0.1 and optimally doped δ = 0.15 samples, while it is electron-like
and centered at (0, 0) in heavy overdoped δ = 0.3 ones. The quasiparticle
peak, which is indeed very broad, crosses Fermi energy around (0.2π, π) for
15% doping. This is quite consistent with the Fig. 5.16. However, the exper-
iment also shows partial truncation of Fermi surface around (π/2, π/2), as
no quasiparticle peak was identified in going from (π, π) to (0, 0). This kind
of phenomena can not be explained within a local theory like ours, since it
comes from the k dependent self-energy. However, the hole-like part of the
Fermi surface around (π, 0) that mainly determines the physical properties,
is correctly described in EDMFT.

For heavily overdoped samples of LSCO (30%), the quasiparticle peak is
much more pronounced and consistent with the Fermi liquid picture. This
is naturally consistent with EDMFT result since the spin moments are com-
pletely quenched at T = 0 for such large doping.

For only slightly doped sample, the experimental picture is more com-
plicated because of commensurate and incommensurable orderings. The an-
tiferomagnetic state is reflected in the small pockets or ”Fermi arc” around
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Figure 5.18: Fermi surface of LSCO as determined from ARPES data for various doping
concentrations. (from Ref. [64]). Observed Fermi surface crossings are denoted by thick
error bars and the dotted curve is tentatively drawn so that the area enclosed by the Fermi
surface is consistent with the Luttinger theorem.

(π/2, π/2) sometimes observed, while the stripe phases yield one dimensional
Fermi surface consisting of vertical and horizontal lines. The commensurate
and incommensurate orderings are not considered in our present method and
therefore this part of experimental results cannot be explained within present
approach.

5.4 Thermodynamics

Within a local theory like DMFT, free-energy of the lattice system can be
expressed by the impurity free-energy and local electron self-energy alone [65].
The EDMFT includes also bosonic fields that mimic the nonlocal magnetic
interaction and participate to the free energy of the system [66]. In this
case, the thermodynamic potential can be written in terms of the impurity
free-energy, electron self-energy and spin susceptibility as

Ω/N = Ωimp +
1

β

∑

ıω,σ

{∑

k

ln(Gk(ıω))− ln(Goo(ıω))

}
eıω0+ −

1

2

1

β

∑

ıω,α

{∑

q

ln(χααq (ıω))− ln(χααoo (ıω))

}
eıω0+

. (5.18)

Here, Ωimp is the local free-energy contribution of the effective impurity prob-
lem. A detailed derivation of above formula is worked out in Appendix F.
Expressing the summation over momentum as an energy integration and
performing the analytic continuation to real frequencies, we obtain

Ω/N = Ωimp +
2

π
Im

∫
dωf(ω)

∫
dεD(ε) ln[Goo(ω)(ω + µ− Σ(ω)− ε)] +

3

2π
Im

∫
dω n(ω)

∫
dεD(ε) ln[χoo(ω)(χ−1

oo (ω) + χ−1
0 (ω)− J

t
ε)].(5.19)
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Although, in principle the knowledge of Ω provides everything one needs, it
is helpful to have an independent expression for the internal energy E as well.
In particular, the specific heat can be obtained by a single differentiation of
E(T ) instead of double differentiation of Ω(T ). The internal energy is quite
generally expressed by (see Appendix F)

E =
1

2

1

β

∑

k,σ,ıω

(εk + µ+ ıω)Gk(ıω)eıω0+

. (5.20)

In the case of local self-energy, the expression (5.20) can be further simplified
to avoid the momentum summation

E = − 2

π
Im

∫
dωf(ω)Goo(ω)[ω + µ− Σ(ω)/2]. (5.21)

The entropy per-site and doping is then determined from the derivatives
of the free-energy

S = − 1

N

(
∂Ω

∂T

)

µ

n = 1− δ = − 1

N

(
∂Ω

∂µ

)

T

. (5.22)

The doping can also be obtained directly from the local Green’s function as
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Figure 5.19: left: The derivative of the thermodynamic potential with respect to chem-
ical potential 1 + (∂Ω/∂µ)T/N is compared to the doping. The contributions from three
different parts of the thermodynamic potential: impurity, electron Green’s function (sec-
ond term in Eq. 5.18) and spin susceptibility part (last term in Eq. 5.18) are shown
separately. right: Entropy per site for optimally doped system. The three parts are again
shown separately.

n/2 = Goo(τ = 0−) (5.23)
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and have to give the same answer since the EDMFT as well as NCA are
conserving approximations. This is checked in Fig. 5.19 where the two curves
completely match.

Now we turn to the closer examination of some thermodynamic quantities
like the specific heat, entropy and chemical potential. A detailed comparison
will be presented between EDMFT+ NCA results and exact diagonalization
results that are taken from Ref. [9] and correspond to the 2D lattice with 20
sites. The agreement is quite remarkable considering the difference between
the two methods and their limitations: EDMFT ignores the wave number
dependence of the self-energy and spin cumulant being justified only in the
limit of large dimensions while exact diagonalization suffers from the finite
size effects. Since we did not find any small energy scale within the t-J model,
the small system may already capture the most important physics. On the
other hand, the apparent agreement between the two methods may indicate,
that the k dependence of the self-energy is not crucial for the explanation of
unusual properties of the two dimensional t-J model.
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Figure 5.20: The doping δ as a function of temperature for various chemical potentials
µ as obtained by EDMFT+ NCA.

The doping δ as a function of temperature is displayed in Fig. 5.20 for
various chemical potentials. The most important feature is that doping is
increasing with increasing temperature in the underdoped case and decreas-
ing with increasing temperature in the overdoped regime. The latter can be
understood in the Fermi liquid picture, where doping should vary as

δ = δ(T = 0)− (πkBT )2

6
N ′(µ̄) (5.24)
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where N ′(µ̄) is the bare lattice density of states at the effective chemical
potential. The quadratic behavior is likely to hold for the smallest chemical
potential shown (µ = 0.7 and µ = 0.8) which corresponds to overdoped case.
However, the NCA method does not work much below the corresponding
characteristic energy scale ε∗ and therefore the parabolic behavior is not
seen in the Fig. 5.20.

The second important feature shown in Fig. 5.20 is that the doping is al-
most temperature independent for fixed chemical potential around optimum
doping δ∗ ∼ 0.15 and µ ∼ 1. This is also the point where the slope of the
curves in the δ−T diagram is changed and can be related to the change of the
Fermi surface from hole-like to the electron-like. As shown in Fig. 5.15, the
effective chemical potential µ̄ indeed changes sign just around 17% doping.
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Figure 5.21: Chemical potential µ as a function of temperature for various doping
concentrations δ. Left panel shows EDMFT+ NCA results while the right panel

corresponds to the exact diagonalization results for the system with 20 sites (from
Ref. [9]).

Next, we compare the chemical potential at fixed doping as a function of
temperature with the exact diagonalization (ED) results. The left panel of
Fig. 5.21 shows the EDMFT+ NCA results while the right displays corre-
sponding ED results. Note that the flatness of the curves in the optimally
doped regime is common to both approaches as well as the positive and
negative slopes in the underdoped and overdoped regimes, respectively.

Finally, the doping as a function of chemical potential obtained by EDMFT+
NCA (ED) is shown in the left (right) panel of Fig. 5.22. In this case, the
optimum doping is characterized by the crossing of curves at different tem-
peratures and is again common to both approaches.

The compressibility is another quantity that can be easily deduced from
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Figure 5.22: Doping δ as a function of chemical potential µ for various temperatures.
Left panel again displays EDMFT+ NCA results while the right panel shows exact diag-
onalization results for the system with 20 sites (from Ref. [9]).

Fig. 5.22 as

κ = − 1

(1− δ)2

∂δ

∂µ
. (5.25)

It seems that within EDMFT compressibility is not diverging at least not
in the temperature range where NCA is applicable. However, the compress-
ibility should diverge close to the Mott-Hubbard transition at T = 0 in
two-dimensional t-J model as predicted by Imada et al. [39]. Since the ul-
timate zero temperature limit is not accessible within our NCA method, we
cannot completely exclude the possibility that this eventually might happen
in EDMFT, but it seems more likely that the wave number dependence of
the self-energy is important to explain this anomaly. We thus suspect that
this feature of the Mott-Hubbard transition is not captured within EDMFT.

Now we turn to the behavior of entropy as a function of doping (Fig. 5.23)
and temperature (Fig. 5.24) in the paramagnetic metallic state of the t-J
model. If spin symmetry is broken, the entropy coming from the spins is
reduced essentially to zero. Even without long range order, the growth of
short-ranged spin correlations progressively reduces the entropy with decreas-
ing temperature or decreasing doping. When holes are added to the Mott-
Hubbard insulator, an additional entropy due to charge degrees of freedom
is introduced. Thus, the entropy increases with doping due to both pro-
cesses: reduction of the magnetic order and introduction of charge carriers
(see Fig. (5.23)). This is true as long as magnetic correlations are impor-
tant, more important than Kondo physics. However, in the overdoped case
where Kondo (actually mixed valence) physics prevails, the entropy starts
to decrease with doping. This is due to monotonic increase of the Kondo
temperature with doping, below which the entropy is significantly reduced.
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Figure 5.23: Entropy per site S as a function of doping δ at various temperatures. Left
(right) panel displays EDMFT+NCA (ED) results. For comparison, the experimental

result [67] for LSCO is shown in the right panel for temperature T/t∗ ∼ 0.035
corresponding to ∼ 320K.
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Figure 5.24: Entropy S as a function of temperature at various doping concentrations
δ. Left (right) panel displays EDMFT+NCA (ED) results.

In order to better understand the role of magnetic exchange interaction
J on the entropy, this behavior should be contrasted with the t-model prop-
erties in the limit of large dimensions, which is always Fermi liquid if com-
mensurate and incommensurate ordering is ignored. As is known from the
DMFT study of infinite-U Hubbard model [5], the characteristic Kondo tem-
perature is monotonically increasing with doping and approaches zero close
to the Mott-Hubbard transition (effective mass is diverging). The entropy
of the t-model is essentially released above this characteristic Fermi liquid
temperature so that slightly doped Mott-insulator has entropy equal to ln 2
down to almost zero temperature. The effect of doping the t-model is that the
characteristic temperature, above which the entropy is activated, is increased
while the linear T dependence below this scale is preserved.
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On the contrary, the entropy of the undoped t-J model insulating phase
goes as T 2 with the characteristic scale J because the 2N states are split below
the temperature of order J (see Fig. 5.24). The effect of doping is that the
spin correlations are gradually reduced and the entropy is rapidly enhanced.
More importantly, the low temperature dependence changes from T 2 to T
with doping. However, the difference between the t-J model and t-model
disappears in the heavily overdoped phase where J becomes unimportant
and additional doping reduces entropy of both models.

The entropy thus increases with doping in the underdoped regime while
it decreases in the overdoped case. As shown in Fig. 5.23, a broad maximum
develops in-between, which slightly shifts with temperature. At the lowest
temperature shown T = 0.05, the maximum is just around ∼ 15% doping.
This maximum is also related to the flatness of the µ(T ) curves in Fig. 5.21
or the crossing point of δ(µ) curves in Fig. 5.22. Namely, from mixed deriva-
tives of F(T, δ), which is Legendre transform of the thermodynamic potential
Ω(T, µ), it follows (

∂S

∂δ

)

T

=

(
∂µ

∂T

)

δ

. (5.26)

The special point, where the derivatives (5.26) are zero, is sometimes called
marginal doping δ∗, being almost temperature independent. It is ultimately
related to the large degeneracy of low-lying many body states leading to the
marginal Fermi liquid properties.

Besides the correct qualitative features of entropy, it is also important
that its magnitude is close to the experimentally observed values in cuprates.
In Fig. 5.23, the results for LSCO [67] are compared with the t − J model
calculations.
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Figure 5.25: The specific heat cv as a function of temperature for various doping con-
centrations. Right panel corresponds to ED results for 20 sites system while the left one
shows EDMFT+NCA results.
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The specific heat as a function of temperature is displayed in Fig. 5.25.
The left panel again shows the EDMFT results while the right one is ob-
tained by the exact diagonalization. For small doping, both methods show
a maximum at T = 2/3J and possible quadratic low temperature part con-
sistent with the magnon excitations dominating in this regime [68]. The
maximum is suppressed with doping and gradually moves to lower tempera-
ture. This is because the short range magnetic correlations are destroyed at
lower temperature when the Mott insulator is doped. The maximum eventu-
ally disappears in the overdoped phase and the linear low temperature part
evolves, which is consistent with the Kondo temperature of order J . The
maximum of specific heat at small doping, as obtained by our method, is
much less pronounced than ED results suggest. This might be due to the
fact, that the correlation length gets large close to half-filling and exceeds
the size of the small system studied by ED method. The antiferomagnetic
correlations are then overestimated in latter approach. On the other hand,
the wave-vector independent self-energy might be in question here, since the
growth of the antiferomagnetic correlations might require substantial change
in the shape of the Fermi surface which can be described only by strongly
k-dependent self-energy.

5.5 Hall coefficient

In this section, we investigate the impact of magnetic field on the charge
transport properties of the t-J model within EDMFT. This issue was ad-
dressed by many authors [69, 70, 71] in the context of Hubbard model
and DMFT. While the DMFT still captures many properties of real three-
dimensional transition-metal oxides, it fails to describe cuprate superconduc-
tors equally well, mainly because it does not properly take into account mag-
netic correlations. This drawback of the method is circumvented in EDMFT
with including short range magnetic fluctuations. In addition, another non-
trivial simplification of both approaches is that the transport properties are
described solely by the single-particle spectrum [72, 73, 5]. This comes from
the fact that the self-energy is momentum independent and therefore the k
dependence of the dressed current vertex function Γα(k,k) can be ignored.
The non-local part of both quantities is of the same order in 1/d expansion
and therefore vanishes in the limit of large dimensions. This observation
was first made by Khurana [73] with the power counting argument. A more
detailed proof follows from the Ward identity

ΩΓ0
k+q,k(ω+Ω, ω)+∆(q) · Γk+q,k(ω+Ω, ω) = G−1

k+q(ω+Ω)−G−1
k (ω) (5.27)
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where Γ0 and Γ denote the density and current vertex functions respectively
and ∆α(q) = 2 sin(qα/2) on the hypercubic lattice. This identity follows
from the equation of continuity ∇ · J− ∂ρ/∂t and was first shown by Ward
[74].

Since EDMFT self-energy is independent of momentum, and the density
vertex is even in q, expanding Eq. (5.27) to first order in q, we get

Γk,k(ω + Ω, ω) = −∂εk

∂k
. (5.28)

Thus, the current vertex function is unrenormalized for q = 0 and only the
elementary particle-hole bubble contributes to optical conductivity in this
case. Note that the conclusion is false for any finite q because Eq. (5.27) can
not be simply decoupled into density and current part for q 6= 0.

Hence, the paramagnetic contribution to the optical conductivity for q =
0 can be expressed as

σxx(ıω) =
e2

ω

1

β

∑

kσ,ıω′

(vxk)2Gk(ıω′)Gk(ıω′ + ıω), (5.29)

where vxk = 2t sin kx is the bare vertex. Since the Green’s function depends on
k only through εk, the sum over momenta in 5.29 can be further simplified,
by expressing it as an energy integration

Re σxx(ω+ıδ) = 2πe2

∫
dεΦxx(ε)

∫
dω′

f(ω′)− f(ω′ + ω)

ω
A(ε, ω′)A(ε, ω′+ω)

(5.30)
where the corresponding density of states reads

Φxx(ε) =
∑

k

(vxk)2δ(ε− εk). (5.31)

Finally, the zero frequency conductivity takes a very simple form

σxx = 2πe2

∫
dεΦxx(ε)

∫
dω

(
−∂f
∂ω

)
A(ε, ω)2. (5.32)

Similarly, one can show that all vertex corrections of the conductivity tensor
vanish in the limit of large spatial dimensions [75, 76, 77], and therefore the
off-diagonal component σxy is given by

σxy =
4π2e3

3
H

∫
dεΦxy(ε)

∫
dω

(
−∂f
∂ω

)
A(ε, ω)3, (5.33)
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where another density of states is introduced, that can be expressed in terms
of the bare band structure by

Φxy(ε) =
∑

k

det(k)δ(ε− εk)

det(k) =

∣∣∣∣
εxkε

x
k εxyk

εykε
x
k εyyk

∣∣∣∣ εαk =
∂εk

∂kα
εαβk =

∂2εk

∂kα∂kβ
(5.34)

For two and infinite dimensional hypercubic lattices, both densities Φxx and
Φxy can be expressed by elementary functions given explicitly in Appendix
E.

Finally, the Hall coefficient is given by

RH =
σxy
σ2
xxH

, (5.35)

where we have assumed a symmetry between x and y direction (i.e. σxx = σyy
and σxy = σyx).

5.5.1 Low temperature limit

Most relevant low temperature limit is usually hard to reach by simple nu-
merical methods like NCA. It is therefore important to find simple expres-
sions relating various physical quantities like Hall number or conductivity
with more fundamental quantities like self-energy and band structure of the
system.

In a local theory, the momentum dependence of the lattice Green’s func-
tion comes only through εk therefore the spectral function is a simple Lorentz
curve with respect to band energy εk. Thus, the integral over this energy
variable (i.e. the momentum sum) can be performed exactly

A(ε, ω) = − 1

π

Σ′′(ω)

(ω + µ̄− ε)2 + (Σ′′(ω))2
(5.36)

∫
dεA(ε, ω) = 1 (5.37)

∫
dεA(ε, ω)2 =

1

2π |Σ′′(ω)| (5.38)

∫
dεA(ε, ω)3 =

3

8π2 |Σ′′(ω)|2
(5.39)

At low temperatures, the derivative of the Fermi function can be approx-
imated by a delta function in Eq. (5.32). In addition, the imaginary part
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of the self-energy at zero frequency is small, therefore the spectral function
A(ε, 0) is sharply peaked at the effective chemical potential ε = µ̄ and hence
the energy integral can be evaluated analytically. The conductivity at low
temperature is finally given by

σxx ≈ 2πe2

∫
dεΦxx(ε)A(ε, 0)2 ≈ e2 Φxx(µ̄)

|Σ′′(0)| . (5.40)

The effective chemical potential is only weakly temperature dependent there-
fore the resistance at constant doping is proportional to |Σ′′(0)|

ρ ≈ 1

e2

|Σ′′(0)|
Φxx(µ̄)

. (5.41)

In the case of Fermi liquid and Marginal Fermi liquid, this gives ρ ∝ T 2 and
ρ ∝ T , respectively.

Similarly, the off-diagonal component of the conductivity can be approx-
imated by

σxy ≈
4π2e3

3
H

∫
dεΦxy(ε)A(ε, 0)3 ≈ 1

2
e3H

Φxy(µ̄)

|Σ′′(0)|2 . (5.42)

Finally, the Hall number becomes

RH ≈
1

2e

Φxy(µ̄)

(Φxx(µ̄))2
. (5.43)

Hence, the Hall number does not depend on the imaginary part of the self-
energy but only on the effective chemical potential µ̄ and band structure of
the lattice. For the hypercubic lattices, Φxx(ε) is even and Φxy(ε) is odd
function of frequency ε. Furthermore, Φxy(ε) is negative for positive ε and
vice-versa. Since the effective chemical potential µ̄ is positive for doping
less than ∼ 17% and because e = −e0, the Hall number is positive in the
underdoped and optimally doped region. However, in the overdoped regime
Fermi surface becomes electron-like and µ̄ changes sign causing the Hall
number to become negative. For doping above ∼ 20%, µ̄ gets unrenormalized
and equals to the noninteracting value µ0, therefore the Hall number becomes
identical to the free fermion value R0

H .
We now consider the two dimensional square lattice, where all densities

D(ε), Φxx(ε) and Φxy(ε) are elementary functions (see Appendix E). Close
to the Mott-Hubbard transition, µ̄ approaches the upper edge of the lower
Hubbard band (see Fig. 5.15), where the expansion of Φxx and Φxy is possible
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and equals

Φε→4t
xx (ε) ≈ 1

2π
(4t− ε) (5.44)

Φε→4t
xy (ε) ≈ −2tΦε→4t

xx (ε). (5.45)

The Hall number can therefore be approximated by

Rδ→0
H ≈ −1

e

2πt

(4t− µ̄)
. (5.46)

It obviously diverges when doping goes to zero and if we assume, that the
effective chemical potential approaches the value 4t linearly, i.e., µ̄ = 4t(1−
Cδ), then

Rδ→0
H ≈ − π

2C

1

eδ
. (5.47)

It has been proven [78], that a single charge carrier introduced by doping
Mott-Hubbard insulator gives rise to RH = 1/(e0δ) under the following two
conditions: optical response needs to have a pseudogap (i.e. σxx(ω → 0)→ 0)
and quadratic dispersion for a mobile hole (i.e. εq→0 ∝ q2) is required.

These two conditions are certainly fulfilled in the case of EDMFT for the
t-J model, therefore we expect the constant C to be approximately given by
C ≈ π/2. As seen in Fig. 5.15, the µ̄(δ) curve is indeed very flat around
δ ∼ 0 consistent with the small C of order 1.

Finally, we can insert the effective chemical potential µ̄ ≈ 4t(1 − π/2 δ)
in Eq. (5.44) and simplify the expression for the conductivity (5.40) close to
the Mott-Hubbard transition and low temperature as

σδ→0 ≈ e2 t δ

|Σ′′(0)| . (5.48)

5.5.2 Numerical results

The behavior of Hall coefficient at intermediate temperatures and various
doping concentrations is shown in Figs. 5.26 and (5.27). We know from
previous section that Hall number should diverge as 1/δ close to the Mott-
Hubbard transition if the system has a gap in optical response. This impor-
tant nontrivial limit is indeed captured in the present method as can be seen
in Fig. 5.26.

It is remarkable that even the prefactor comes out correctly so that RH δ
approaches 1 when temperature and doping go to zero. By further doping the
system, the Hall number is decreasing with increasing doping for tempera-
tures less than ∼ J/2 and increasing above that temperature. It changes sign
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Figure 5.26: Hall number multiplied by doping vs temperature for various doping con-
centrations. It is positive at low doping and gets negative in the overdoped regime and low
temperature. Close to the Mott-Hubbard transition and zero temperature it approaches
classical limit RH = 1/(e0δ).

at the point where effective chemical potential µ̄ gets negative (δ ∼ 17%) and
the Fermi surface becomes electron-like. However, it is negative only in the
low temperature region, while it rapidly converges to a positive value beyond
the high energy scale t∗ even in the far overdoped regime. This is because the
system is Fermi liquid only for low enough temperatures where quasiparti-
cles exist while electrons behave like almost independent spins with hole-like
character for temperatures above the Fermi liquid characteristic temperature.

For doping above 20%, Hall number of the t-J model is very similar to
that found in the infinite-d Hubbard model for large but finite U [71]. It
starts at the non-interacting value (at T = 0) and goes through a maximum
roughly located at T ≈ 0.15t∗ = J . The position of the maximum cannot
be related to J because it is irrelevant for such large doping and because
infinite-d Hubbard model does not capture magnetic exchange interaction,
but has maximum at the same location. It was argued in Ref. [71] that
the decrease of the Hall constant as a function of temperature beyond its
maximum is due to the excitation of charge across the Mott-Hubbard gap.
This is certainly not the case in the t-J model because double-occupancy of
a lattice site is not allowed here. The only scale in this model at large doping
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Figure 5.27: Doping dependence of the Hall number for various temperatures. For small
doping and low temperature, RH diverges as 1/δ and changes sign when the Fermi surface
becomes electron-like. This happens around 17% in our case.

is the Fermi liquid characteristic temperature. It was estimated in chapter
5.2 to be just around J for largest doping shown (see Fig. 5.9). This scale
therefore might determine the position of the maximum of the Hall coefficient
shown in Fig. 5.26.

The Hall number in the low doping regime is experimentally and theoret-
ically far more interesting because it shows unusual temperature and doping
dependence. Experiments on cuprates demonstrate that the Hall number is
hole-like and approximately follows the semiclassical relation RH = 1/(e0δ),
which cannot be explained with a simple Drude or Fermi liquid theory. At
the same time, RH monotonically decreases with increasing temperature as
is evident from Fig. 5.28. The EDMFT results qualitatively agree with the
experiment, at least for sufficiently low doping. The Hall number is positive
up to overdoped regime and follow the semiclassical relation. It also mono-
tonically decreases with increasing temperature up to 10% doping. Finally,
RH becomes negative in the overdoped regime which is consistent with the
experiment.
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Figure 5.28: left: Experimental results for the temperature dependence of the Hall
number RH for LSCO (from Ref. [79]). right: Corresponding EDMFT+NCA results.
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Chapter 6

Anderson impurity model at
finite Coulomb interaction U:
generalized NCA

Anderson impurity models have been of considerable interest recently as
generic models of local systems with internal degrees of freedom coupled to
a Fermi gas. Although first introduced as models for magnetic impurities
in metals [80], they describe two–level systems in metals [81], quantum dots
in mesoscopic structures [82, 83, 84] and strongly correlated lattice systems
in the local approximation of the Dynamic Mean Field Theory (DMFT) [5]
as well. In a nutshell, the Anderson model features one or several local
levels hybridizing with the conduction electron states of the metal. Multiple
occupancy of the local levels is inhibited by the strong Coulomb repulsion
U between electrons in the local states. As a consequence, the local levels
are approximately singly occupied, giving rise to a magnetic moment or an
equivalent degree of freedom. Due to the coupling to the conduction electron
system, the local moment is screened [80], or in a multi–channel situation
forms a more complicated many–body state [85].

Most investigations of Anderson models have concentrated on the case
of infinite Coulomb repulsion U where double occupancy of impurity site
is prohibited. The t-J model, infinite-U Hubbard model and t-model are
generic lattice systems that can be mapped onto the infinite-U Anderson
impurity model in the limit of large dimensions. In previous chapters, we
have concentrated on the t-J lattice, which does not require this kind of
generalization of the local system. Instead we included non-local magnetic
interaction and ended up with different generalization of the impurity model,
where local degree of freedom is coupled to both boson and fermion bath.
In order to treat Hubbard or Anderson lattice, even on the level of usual
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DMFT, the finite-U generalization of the local system is needed.

In the case of infinite U impurity models, the restriction of the local
Hilbert space to electron occupation nd ≤ 1 allows for an economical treat-
ment in terms of pseudo–particle representations [86, 87] and a projection
onto the physical sector of Hilbert space. In this framework, the simplest
approximation consists of second-order self-consistent perturbation theory
in the hybridization, the so-called Non-Crossing Approximation (NCA) [88,
89, 90]. Although the NCA has its limitations, it is a valuable tool for ex-
tracting the complex many-body physics of Anderson impurity models. In
the single channel case the NCA accounts correctly for the formation of a
Kondo resonance at the Fermi level below the Kondo temperature TK [91],
even though the appearance of a local Fermi liquid state at temperatures
T � TK is not captured in this approximation [92]. In the multichannel case
even the correct low temperature power law behavior is obtained in NCA
[93]. However, in order to capture, e.g., the physics of the upper and the
lower Hubbard bands in a DMFT description of the Hubbard model and the
Mott-Hubbard metal-insulator transition, it is essential to consider the case
of large but finite U . It is therefore desirable to develop a generalization of
NCA to the case of finite Coulomb interaction. In the following we present
a straightforward generalization of NCA, which conserves the symmetry of
virtual transitions to the empty local level or doubly occupied local level
states. This is essential for recovering the correct Kondo temperature TK,
as pointed out by Pruschke and Grewe [94] and, as will be shown, requires
an infinite summation of a certain class of crossing diagrams [95]. We find
that inclusion of only the first crossing term in this resummation [94], while
contributing the larger part of the change of TK , is not sufficient to provide
a qualitatively correct Kondo temperature.

6.1 Pseudoparticle representation of the model

The model we consider describes a local impurity level (called d-level in the
following), hybridizing with the conduction electron states. The energy Ed

of the level may be located below or above the Fermi energy. Two electrons
with spins ↑ and ↓ on the local level experience a Coulomb interaction U . The
local states will be assumed to be created by pseudo–particle operators f †σ
(singly occupied state with spin σ), b† (empty state) and a† (doubly occupied
state) acting on a vacuum state without any impurity. We choose fσ to be
fermion and a, b to be boson operators, where b will be called the “light” and
a the “heavy” boson. The creation operator for the local physical electron can
then be written as d†σ = f †σb+ σa†f−σ, where the pseudo–particle occupation
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numbers must satisfy the operator constraint

Q = a†a+ b†b +
∑

σ

f †σfσ = 1 , (6.1)

expressing the fact that at any instant of time the impurity is in exactly one
charge state, empty, singly, or doubly occupied, respectively. The fermion
operators c†~kσ create electrons in conduction electron states | ~kσ > with
energy εk. The Hamiltonian then takes the form

H =
∑

~k,σ

ε~kc
†
~kσ
c~kσ + Ed(2a

†a+ Σσf
†
σfσ) +

+ Ua†a+
∑

~k,σ

V (c†~kσb
†fσ + σc†~kσf

†
−σa+ h.c) , (6.2)

where V is the hybridization matrix element. For later use we define the
conduction electron density of states at the Fermi energy as N (0) and the
effective hybridization Γ = πN (0)V 2.

6.2 Gauge Symmetry and Projection onto the

Physical Hilbert Space

The model described by the auxiliary particle Hamiltonian (6.2) is invariant
under simultaneous, local U(1) gauge transformations, fσ → fσe

iφ(t), b →
beiφ(t), a → aeiφ(t), where φ(t) is an arbitrary, time-dependent phase. This
gauge symmetry guarantees the conservation of the local charge Q in time.
In order to project onto the physical subspace Q = 1, it is therefore sufficient
to carry out the projection at time t → −∞, if the gauge symmetry is
implemented exactly. One starts with the grandcanonical ensemble with
respect to Q and the associated chemical potential −λ. The projection is
achieved by taking the limit λ→∞ of any grandcanonical expectation value
of a physical operator Â acting in the impurity Hilbert space

〈Â〉 = lim
λ→∞

〈Â〉G
〈Q̂〉G

. (6.3)

Here the subscript G denotes the grandcanonical ensemble. The extra factor
Q̂ in the denominator of Eq. (6.3) has been introduced to project out the
Q = 0 subspace. Note that in the numerator this factor can be omitted, since
any physical operator Â acting on the impurity states consists of powers of
d†σ, dσ, which annihilate any state in the Q = 0 subspace, d†σ|Q = 0〉 = 0,
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dσ|Q = 0〉 = 0. A detailed description of the projection procedure is given
in Ref. [91]. Expectation values in the grandcanonical ensemble may be
calculated straightforwardly in perturbation theory in the hybridization V ,
making use of Wick’s theorem. The usual resummation techniques may be
applied. Thus the imaginary time single particle Green’s functions

Gfσ(τ1 − τ2) = −〈T̂ [fσ(τ1)f †σ(τ2)]〉G (6.4)

and analagously for the two bosons a, b, may be expressed in terms of the
self–energies Σf,b,c(iω) as

Gfσ(iω) = [iω − λ− Ed − Σf (iω)]−1

Gb(iω) = [iω − λ− Σb(iω)]−1 (6.5)

Ga(iω) = [iω − λ− 2Ed − U − Σa(iω)]−1 .

The local conduction electron Green’s function is given by

Gcσ(iω) =
{[
G0
cσ(iω)

]−1

− Σcσ(iω)
}−1

(6.6)

with
G0
cσ(iω) =

∑

~k

G0
cσ(~k, iω) =

∑

~k

[iω − εk]−1 . (6.7)

The physical d-electron Green’s function is proportional to the single-particle
conduction electron t-matrix tcσ(iω), and is related to the grandcanonical
(unprojected) Σcσ G as

Gdσ(iω) =
1

V 2
tcσ(iω) =

1

V 2
lim
λ→∞

eβλΣcσ G(iω, λ) , (6.8)

where β is the inverse temperature. The physical (projected onto the Q = 1
subspace) local conduction electron self–energy is then obtained from the
t-matrix as

Σcσ(iω) =
V 2Gdσ(iω)

1 + V 2G0
cσ(iω)Gdσ(iω)

. (6.9)

6.3 Generating Functional

Gauge invariant approximations conserving the local charge Q may be de-
rived from a Luttinger–Ward generating functional Φ. For a given approx-
imation the functional Φ is defined by a sum of closed skeleton diagrams.
The self–energies Σµ, µ = a, b, f, c, are obtained by taking the functional
derivatives

Σµ =
δΦ

δGµ
. (6.10)
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+    Φ  =

+

++

++

++ + . . .

a)   NCA

b)   UNCA

c)   SUNCA

Figure 6.1: Diagrammatic representation of the generating functional to describe the
Anderson impurity model at finite U . Throughout this paper, solid, dashed, wiggly and
zig-zag lines correspond to conduction electron c, pseudo–fermion f , light boson b, and
heavy boson a propagators, respectively. a) NCA including light and heavy boson lines.
a)–b) Finite-U NCA (UNCA). This approximation amounts to renormalizing only one of
the vertices in each of the self–energy diagrams of Fig. 6.3 and keeping only one (light
or heavy boson) rung in the corresponding vertex function (see text). a)–c) Symmetrized
finite-U NCA (SUNCA).
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The “Non-crossing Approximation” (NCA) in the limit U → ∞ is defined
by the single lowest order diagram (2nd order in V ) containing a light boson
line (the first diagram of Fig. 1). In the limit of small hybridization element
V~k, it appears to be justified to keep only the lowest order contribution in V .
However, as discussed in Refs. [92, 96, 97], the singular behavior of vertex
functions may require to include these as well. This turns out to be necessary
in the single channel model where the formation of a many-body resonance
state is essential for recovering the Fermi liquid behavior, and less so in the
multi-channel models. Including an infinite class of skeleton diagrams in
Φ (in a “Conserving T-matrix Approximation” (CTMA)), which allows to
capture a singular structure in the spin and charge excitation sectors, the
low temperature Fermi liquid phase of the single channel Anderson model is
recovered [92].

Here we are interested in constructing a simpler generalization of NCA
to describe the case of finite U . It seems straightforward to define such an
approximation on the NCA level by adding to the second order skeleton di-
agram for Φ containing the light boson (the first diagram in Fig. 1 a)) the
corresponding diagram containing the heavy boson (the second diagram in
Fig. 1 a)). This approximation and certain extensions motivated by pertur-
bative arguments [94] or by a 1/N expansion (N beeing the spin degeneracy)
[98] have been considered sometime ago. However, in the case of finite U
NCA was found to fail badly: Not even the Kondo energy scale is recovered
in the so-defined approximation. The reason for this failure is obvious: In

the Kondo regime (nd
∼
<1) the local spin is coupled to the conduction elec-

tron spin density at the impurity through the antiferromagnetic exchange
coupling

J = V 2(− 1

Ed
+

1

Ed + U
). (6.11)

The two terms on the r.h.s. of this relation arise from virtual transitions into
the empty and doubly occupied local level, which e.g. contribute equally
in the symmetric case | Ed |= Ed + U . The symmetric occurrence of these
two virtual processes in all intermediate states is not included in the simple
extension of NCA proposed above. Rather, the self–energy insertions in each
of the two diagrams contain always only one of the processes, leading to
an effective J which is only one half of the correct value. Correspondingly,
the Kondo temperature TK ∼ exp[−1/(2N (0)J)] comes out to scale as the
square of the correct value, which can be orders of magnitude too small.

To correct this deficiency it is necessary to include additional diagrams,
restoring the symmetry between the two virtual processes. As a first step
one may add the next order skeleton diagram to Φ (Fig. 6.1 b)). As we will
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Figure 6.2: Two examples of how diagrams involving hybridization into the doubly
occupied impurity state are generated from the bare noncrossing diagrams of the infnite
U case by replacing light with heavy boson lines (see text).

show below, this approximation, later referred to as UNCA, helps to recover
a large part of the correct behavior of TK [94]. However, as seen from the
preceding discussion, for a completely symmetric treatment of empty and
doubly occupied intermediate states one must first consider the diagrams of
bare perturbation theory instead of skeleton diagrams. A symmetric class
of diagrams is generated by replacing a light boson line with a heavy boson
line in each of the bare (non-skeleton) diagrams comprising the NCA, and
vice versa (An example is shown in Fig. 6.2). Each replacement leads to a
crossing of conduction electron lines spanning one fermion and at most two
boson lines. A conserving approximation is then constructed by substituting
renormalized propagators for the bare ones and keeping only skeleton dia-
grams. The resulting generating functional Φ is shown diagrammatically in
Fig. 6.1 a)–c). These diagrams look similar to the CTMA diagrams men-
tioned above, but contain one light boson line and an arbitrary number of
heavy boson lines, or vice versa. Diagrams with, for example, two light boson
lines and an arbitrary number of heavy boson lines (and conduction electron
lines spanning at most one fermion line) are reducible and do not appear.
We will call the approximation defined by the generating functional given by
the sum of the diagrams of Fig 6.1 “Symmetrized finite-U NCA” (SUNCA).
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+Σb  = -

+Σa  = -

+Σf  = -2

+V2 Gd = -2

Figure 6.3: Diagrammatic representation of the auxiliary particle self–energies of
SUNCA in terms of the renormalized hybridization vertices, defined in Fig. 6.4. In each
line the third diagram is subtracted in order to avoid double counting of terms within the
first two diagrams.

The above approximation corresponding to the CTMA at U → ∞, termed
“Symmetrized finite-U Conserving T-matrix Approximation” (SUCTMA) is
thus defined in a natural way by summing up all skeleton Φ diagrams con-
taining a single closed ring of auxiliary particle propagators with an arbitrary
number of light or heavy boson lines, dressed by conduction electron lines
spanning only one fermion line. Thus, the SUCTMA is defined by adding
to the diagrams of the SUNCA the CTMA diagrams with (only) light boson
lines or (only) heavy boson lines. The SUCTMA equations have not yet been
evaluated.

6.4 Results of SUNCA

As discussed above, the self–energies Σµ are obtained by functional differ-
entiation of the generating functional with respect to the Green’s functions
Gµ. The functional Φ defined by Fig. 6.1 leads to an infinite series of dia-
grams for Σα, which may be conveniently presented in terms of three–point
vertex functions (the filled semicircles with three legs: one boson and two
fermion lines), see Fig. 6.3. It is necessary to substract a diagram of 4th
order in V in each case to avoid double counting. On the level of SUNCA
and SUCTMA the vertex functions consist of ladder summations, with light
or heavy boson lines as rungs, and are defined diagrammatically in Fig. 6.4.
Note that keeping only a single light or heavy boson rung in these vertex
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a) 
b) 

= +

= +
Figure 6.4: Diagrammatic representation of the Bethe–Salpeter equations for a) the
renormalized light boson (empty impurity) and b) the renormalized heavy boson (dou-
bly occupied impurity) vertex, as generated by the SUNCA Luttinger–Ward functional
(Fig. 1).

functions corresponds to UNCA.

The expressions for the self–energies Σµ defined by Figs. 6.3 and 6.4, together
with the definition of the Green’s functions, Eqs. (6.5), constitute a set of
nonlinear integral equations for Σµ(ω), µ = a, b, f . The local conduction
electron self–energy Σc does not appear in any internal Green’s functions
because it contains at least one auxiliary particle loop, i.e. carries a factor
exp(−βλ) and thus vanishes due to the exact projection onto the physi-
cal Hilbert space (λ → ∞) [91]. Gd and therefore Σc may be calculated
at the end via Eqs. (6.8), (6.9) by using the self–consistently determined
Gα, α = a, b, f . The SUNCA equations are given explicitly in appendix A.
Although these equations are more involved than the regular NCA, they are
numerically considerably more easily tractable than the CTMA equations
[92, 96, 97], since SUNCA contains only renormalized three-point vertices
(see Fig. 6.3) as compared to four-point vertex functions occuring in CTMA
[92]. We solved the SUNCA equations numerically in the real frequency rep-
resentation, i.e. after analytic continuation from Matsubara frequencies ωn
to the real frequency axis.

As a first important characteristic feature of the pseudo–particles we note
that the single–particle excitation spectrum is powerlaw divergent, Gµ(ω) ∼
ω−αµ, µ = a, b, f reflecting the abundance of low energy excitations forced
by the constraint. At finite temperature T these singularities are cut off at
the scale ω ∼ T . As observed in earlier work [92, 99, 100, 101], the values of
the exponents αµ are characteristic of the state of the system. In the single
channel case, when the ground state is a local Fermi liquid, the exponents may
be inferred from the Friedel sum rule relating the scattering phase shifts ηµ,σ
to the number of electrons bound to the impurity in each channel ∆nµ,σ =
ηµσ/π. The exponents αµ in turn are related to the ηµ,σ by the general result
first derived for the x-ray edge singularities [102], αµ = 1−∑σ(ηµσ/π)2. This
is so, since e.g. the heavy boson Green’s function, describing the transition
amplitude for a doubly occupied impurity to be created at time t = 0 and
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Figure 6.5: Upper panel: Log-log plots of pseudo–fermion (Af ), havy (Aa) and light
(Ab) slave boson spectral functions in the Kondo regime. The singular divergence below
TK is clearly visible in the plot. Lower panel: Infrared threshold exponents of the auxiliary
particle spectral functions in dependence of the impurity occupation nd, for fixed values of
Γ and U and varying Ed. Dashed curved lines: exact results (Eq. (12)); horizontal lines:
NCA results; data points with error bars: SUNCA results. In the Kondo limit (nd → 1)
the exact exponents are recovered, while in the mixed valence and empty impurity regime
the SUNCA results for αf and αb cross over to the NCA values.
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removed at a later time is proportional to the overlap of the free Fermi sea
of conduction electrons with the ground state of the Anderson model. The
change in the occupation of the local level due to the hybridization with the
conduction band ∆nµσ is the difference between the t = 0 initial impurity
occupation nµσ(t = 0) (without hybridization) and the occupation in the
ground state of the Anderson impurity model ndσ = nd/2, i.e. it depends
on the initial conditions of the different Green’s functions Gµ, µ = a, b, f .
Thus we have ∆na,σ = 2−nd

2
,∆nf,σ = δσ,σ0 − 1

2
nd (where σ0 is the spin of

the fermion in the Green’s function Gfσ0), and ∆nb,σ = −nd
2

. The infrared
threshold exponents of Gµ(ω) are therefore given by

αa = −1 + 2nd −
n2
d

2

αb = 1− n2
d

2
(6.12)

αf = nd −
n2
d

2
.

In Fig. 6.5 we show the exponents αµ for different nd, as obtained from
a numerical solution of the SUNCA equations. Also shown is the exact
result given by Eq. (6.12) (dashed lines), and the analytical result that can
be extracted analytically from the NCA equations (defined by the first two
diagrams in Fig. 1) in analogy to Ref. [103]. The numerical results of SUNCA
(data points) are seen to approach the exact result in the limit nd → 1, but
in the case of αb and αf appear to follow the NCA result rather than the
exact result for nd ≤ 0.8. The results for the exponent αa trace the exact
behavior in reasonable agreement. Clearly the SUNCA does much better
than the simple NCA. From our experience [92] with the Anderson model in
the limit U →∞, we expect that the correct exponents should be recovered
in SUCTMA.

We now turn to the d-electron spectral function Ad(ω) = 1
π
ImGd(ω− i0).

Fig. 6.6 shows the results for Ad(ω) for the symmetric Anderson model in the
Kondo regime (nd ≈ 1) at a very low temperature of T ' 10−2TK. Shown
are the results obtained from the simple NCA (diagrams of first line in Fig.
1), the perturbatively corrected version UNCA (including the diagram in the
second line of Fig. 1) and the full SUNCA. The inset shows that the width
of the Kondo resonance peak, which is a measure of TK, comes out orders
of magnitude different in the three approximations. In order to compare the
numerical results with the exact expression for TK,

TK = min
{ 1

2π
U
√

I,
√

DΓ
}

e−π/I (6.13)
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Figure 6.6: Local electron spectral function calculated using NCA, UNCA, and SUNCA.
The Kondo temperature is determined as the HWHM of the Kondo peak (see inset). It is
seen that in NCA the Kondo peak width comes out orders of magnitude too low.
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Figure 6.7: Kondo Temperature for various parameters Ed, U and fixed Γ. Solid lines
represent the exact results, Eqs. (13), (14). Data points are the SUNCA results determined
from the width of the Kondo peak in the d-electron spectral function.
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Figure 6.8: Comparison between SUNCA and NRG impurity spectral function for var-
ious temperatures. The NRG method is essentially exact in the low-energy region while
SUNCA slightly overestimates the zero frequency value of the Abrikosov-Suhl resonance.
However, the width of the peak (i.e. the Kondo temperature) is correct within SUNCA.
The high frequency descrepancy (around Ed and Ed + U) is due to the fact that NRG
does not resolve high-energy structure very accurately.

where

I = 2

[
Γ

|Ed|
+

Γ

Ed + U

]
, (6.14)

we determine TK as the half width of the Kondo resonance at half maximum
(HWHM).

In Fig. 6.7 the results for TK/Γ obtained in this way for a fixed value of
Γ = 0.05 (in units of D) and several values of Ed/Γ, as a function of I(U/Γ)
(data points) are compared with the exact values Eqs. (6.13), (6.13) (solid
lines). The agreement is excellent, demonstrating that the SUNCA provides
the correct scale TK for a wide range of parameters Ed and U .
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Chapter 7

Conclusions

In first five chapters we described in detail the recently introduced Extended
dynamical mean field theory (EDMFT) [6, 8] and explained its assumptions
and limitations. We solved the EDMFT equations for the paramagnetic
metallic state of t-J model within a Non-crossing approximation and cal-
culated various thermodynamic quantities, transport and single-particle re-
sponse functions. The results are compared to the Exact diagonalization
(ED) results for small 2D system of 20 sites.

Last chapter introduces novel metod to describe Anderson impurity model
at finite on-site repulsion U arising in DMFT studies of the Hubbard and
related lattice models.

The EDMFT is an extension of very successful Dynamical mean field
theory (DMFT) which, however, takes full account of only local quantum
fluctuations but fails to capture the dynamical effects of intersite interac-
tions, in either the charge channel (e.g., nearest-neighbor repulsion) or spin
channel (exchange). The EDMFT, on the other hand, treats the inter-site
quantum fluctuations on the same footing with local ones. This is particu-
larly important in case of the t − J model where the exchange coupling J
competes with the kinetic term t. For the correct description of the model,
it is crucial to preserve the symmetry between both terms, and take into
account the dynamical effect of the non-local exchange fluctuations as well.

To keep the symmetry between the local and non-local term of the t− J
model, EDMFT reduces the correlated lattice to a self-consistent impurity
problem, where the local moment is coupled to both fermionic and bosonic
bath. The fermionic bath gives rise to a Kondo interaction that tends to
quench the local moments whereas the bosonic bath mimics the RKKY inter-
action that promotes local-moment ordering. For large doping, where Kondo
screening prevails, the low-energy properties can be explained within a Fermi-
liquid picture. In the opposite limit of RKKY domination, a pseudogap opens
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in one particle spectra which determines the properties of the metal in the
vicinity of the Mott-Hubbard transition. The conventional d → ∞ metal-
insulator transition with diverging effective mass is thus crucially modified
here. The region, where both interactions are about equally important, is
characterized by the largest low temperature entropy and largest scattering
rate at the chemical potential. This point (δ ∼ 15%) corresponds to optimum
doping in cuprates.

The most serious limitation of EDMFT is that it mainly freezes spatial
fluctuations so that the single particle self-energy and irreducible spin cu-
mulant are momentum independent. However, this weakness of the method
might not be crucial to explain many anomalous properties of strongly cor-
related systems. Indeed, as proposed by Varma et al. [10], the normal state
properties of cuprates can be well explained by momentum independent self-
energy of marginal Fermi liquid type. The assumptions of EDMFT might
therefore be justified by the success of the marginal Fermi liquid theory.

To investigate the novel effective impurity model, corresponding to an
Anderson impurity problem with an additional self-consistent bosonic bath,
we employed the diagrammatic theory for quantum impurities with strong
on-site repulsion. The method is based on auxiliary particle technique, where
Wick’s theorem is valid, which offers straightforward generalization of exist-
ing approximations to the model considered here. A Luttinger-Ward func-
tional for a conserving approximation was proposed in section 4.3, based on
the so-called Non-Crossing Approximation for Anderson impurity model.

The simplest conserving approximation, which neglects all crossing di-
agrams but keeps symmetry between Kondo and RKKY interaction, was
numerically evaluated and used to study various physical properties of the
t− J model within EDMFT. The lowest order approximation does not work
down to zero temperature. In the Fermi-liquid regime it is known to work
down to T & 0.2 ε∗, where ε∗ is the characteristic energy scale of the metal
and is equal to J for doping around 25%. In the opposite limit of low dop-
ing, the method also suffers from the absence of the vertex corrections and
is limited to temperatures higher than T ∼ 0.2J .

The thermodynamic properties of the t−J model were obtained from the
free-energy of the lattice system that can be expressed by the free-energy of
the impurity model, single-particle Green’s functions and spin susceptibility
alone. As a function of doping, the entropy shows a rather broad maximum
at the hole density of 15%, corresponding to optimum doping in cuprates.
The degeneracy temperature, associated with the release of the entropy, is
relatively small Tdeg < J . The chemical potential increases with increasing
temperature in the underdoped regime while in decreases with temperature
in the overdoped regime. The point, where µ is temperature independent co-
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incides with the point of maximal entropy and characterizes optimum doping.
It is important to stress that the excellent agreement is found between the ex-
act diagonalization and EDMFT results for all temperatures and all dopings
considered.

The Mott insulating gap of the half-filled t− J model is slowly destroyed
with adding holes to the system but a remnant of the gap persists up to
the overdoped regime. The non-Fermi liquid state with a large pseudogap
of order J is found in the underdoped region of the t − J model. A small
shoulder with weight 2δ appears above the chemical potential and approaches
the Fermi energy with doping. In the overdoped regime, it finally merges
with the Hubbard sideband and a broad quasiparticle peak emerges above
the chemical potential. For doping δ & 24%, t − J model is found to be a
Fermi-liquid with a characteristic energy scale ε∗ of order J . In this region,
RKKY interaction becomes unimportant and therefore the impurity model is
equivalent to the usual Anderson impurity model with a well defined Kondo
temperature ε∗ that monotonically increases with doping.

The EDMFT results for the t-J model suggest that the Luttinger theorem
is not satisfied for doping below 20%. The deviation from the Luttinger
volume is quite pronounced at low doping and seems to support a simple
rigid picture of doping the Mott insulator as proposed already by Hubbard:
at half filling, the chemical potential is between the Hubbard bands and the
effect of doping is that the chemical potential gradually cuts into the top of
the lower Hubbard band. The Fermi surface is hole-like and centered around
(π, π) for underdoped and optimum doped case, while it is electron-like for
the overdoped system.

The change of the Fermi surface from hole-like to electron-like is closely
related to the change of sign of the Hall coefficient from positive to negative
occurring for doping slightly above the optimum doping. The Hall number
diverges as 1/(e0δ) close to the Mott-Hubbard transition consistent with the
simple semiclassical picture of doping with independent hole carriers and in
agreement with experiments on cuprates. For low doping system, the Hall
number is found to monotonically decrease with increasing temperature again
in agreement with experiments.

In chapter 6 we have proposed a conserving scheme to describe the Ander-
son impurity model at finite on-site repulsion U within the auxiliary particle
method. In order to incorporate the correct value of the spin exchange cou-
pling J into the theory and, hence, to obtain the correct size of the low-energy
scale TK, it is necessary to treat fluctuation processes into the empty and
into the doubly occupied intermediate state on equal footing at the level of
bare perturbation theory. The simplest Luttinger–Ward functional which is
completely symmetric in this respect consists of an infinite series of skeleton
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diagrams, corresponding to ladder–type vertex renormalizations in the self–
energies. Although considerably more involved than the regular NCA, this
approximation, termed “symmetrized finite–U NCA” (SUNCA), is numeri-
cally tractable on a typical workstation. We find that SUNCA recovers the
correct Kondo temperature over a wide range of the parameters of the An-
derson model Ed, U , and Γ, while simplified approximations (NCA, UNCA)
produce a low-energy scale typically orders of magnitude smaller than the
exact value. This result is especially relevant for a correct description of
the low temperature properties of strongly correlated lattice models by a di-
agrammatic many-body technique, since in the limit of infinite dimensions
these models reduce to a selfconsistent, finite-U single-impurity problem.
Applications of the present theory to such models are currently in progress.

In conclusion, in this work we have applied the Extended dynamical mean
field theory to the t− J model. Single-particle spectra, thermodynamic and
transport properties were calculated and compared to the Exact diagonaliza-
tion results. Our results show that several anomalous properties of cuprates
are captured in the t− J model and simple local EDMFT theory.
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Appendix A

Weiss fields

The lattice self-energy and irreducible spin cumulant become local quantities
in the limit of large dimensions as has been shown in chapter 3. The lattice
Green’s function and spin susceptibility can therefore be written as

Gk = 1/(ξ − εk) ξ = ıω + µ− Σ(ıω) (A.1)

χq = 1/(ζ + Jq) ζ = M−1. (A.2)

It is then straightforward to check the following identities for the Green’s
function

∑

k

εkGk =
∑

k

εk − ξ + ξ

ξ − εk

= −1 + ξ
∑

k

Gk = −1 + ξGoo (A.3)

∑

k

ε2
kGk =

∑

k

εk(εk − ξ) + εkξ

ξ − εk
= ξ

∑

k

εk

ξ − εk
= −ξ + ξ2Goo(A.4)

as well as the corresponding relations for the susceptibility
∑

q

Jqχq = 1− ζχoo (A.5)

∑

q

J2
qχq = −ζ + ζ2χoo. (A.6)

The expressions (2.13) and (3.10) for the Weiss fields can be greatly simplified
using the above relations

G−1
0 = ıω + µ−

∑

ij

tiotoj

(
Gij −

GioGoj

Goo

)
=

ıω + µ−
(∑

k

ε2
kGk −

(
∑

k εkGk)2

Goo

)
= Σ +G−1

oo (A.7)
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χ−1
0 =

∑

ij

JioJoj

(
χij −

χioχoj
χoo

)
=



∑

q

J2
qχq −

(∑
q Jqχq

)2

χoo


 = M−1 − χ−1

oo (A.8)
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Appendix B

Equation of motion

All local correlation functions can be obtained from the local action (3.8)
alone. Once Luttinger-Ward functional for a particular approximation is
written down, one should be able to identify diagrams for any one or two
particle correlation function, particularly local Green’s function and local
magnetic susceptibility. The objective of this appendix is to show that local
Green’s function is proportional to the grand-canonical conduction electron
self-energy, which is built out of diagrams obtained by cutting a single con-
duction electron line in Luttinger-Ward functional. Similarly, local suscepti-
bility is proportional to the grand-canonical boson self-energy that consists of
diagrams obtained by cutting single boson line in the same Luttinger-Ward
functional.

The conduction electron Green’s function is defined as

Gk(τ − τ ′) = −
〈
Tτckσ(τ)c†kσ(τ ′)

〉
, (B.1)

where ckσ destroys a conduction electron with momentum k and spin σ.

The time development of any operator is governed by its commutator
with Hamiltonian

∂

∂τ
ckσ = [H, ckσ] = −εkckσ − V coσ

∂

∂τ
c†kσ =

[
H, c†kσ

]
= εkc

†
kσ + V c†oσ, (B.2)

where H is the full impurity Hamiltonian (3.12). Time derivative of the
conduction electron Green’s function then follows

−
(
∂

∂τ
+ εk

)
Gk(τ − τ ′) = δ(τ − τ ′) + V Gok(τ − τ ′) (B.3)
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and Gok is proportional to the amplitude for the conduction electron with
momentum k and spin σ to be created at time τ ′ and destroyed at the
impurity at time τ

Gok(τ − τ ′) = −
〈
Tτcoσ(τ)c†kσ(τ ′)

〉
. (B.4)

The time derivative of latter Green’s function is proportional to the local
Green’s function

(
∂

∂τ ′
− εk

)
Gok(τ − τ ′) = V Goo(τ − τ ′) (B.5)

The corresponding equations for the free particle propagators are

−(
∂

∂τ
+ εk)gk(τ − τ ′) = δ(τ − τ ′)

(
∂

∂τ ′
− εk)gk(τ − τ ′) = δ(τ − τ ′). (B.6)

Combining these equation together, the exact relation between local and
conduction-electron Green’s function is obtained

Gk(ıω) = gk(ıω) + gk(ıω)V Goo(ıω)V gk(ıω). (B.7)

The equation (B.7) is valid for the grand-canonical ensemble as well as for
the canonical (i.e. physical Q = 1) subspace. Once the local Green’s function
is known, the physical (Q = 1) conduction electron Green’s function can be
obtained. The relation (B.7) is even more important in the grand-canonical
ensemble. In the Q = 0 subspace (i.e. without impurity) Goo vanishes,
therefore Goo = O(e−βλ). The grand-canonical conduction electron Green’s
function is thus Gk = gk + O(e−βλ) and comparison of Eq. (B.7) with the
Dyson equation

Gk(ıω) = gk(ıω) + gk(ıω)Σc
k(ıω)Gk(ıω) (B.8)

assures that the local Green’s function is proportional to the conduction
electron self-energy, since both vanish in the Q = 0 subspace and are thus of
the order O(e−βλ)

Goo(ıω) =
1

V 2
Σc
k(ıω). (B.9)

In the case of k independent hopping matrix elements Vk = V , grand canon-
ical conduction-electron self-energy Σc

k(ıω) is also k independent and can be
denoted just by Σc. The equation (B.9) is important, since it establishes
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the relationship between the local physical (Q = 1) spectral function and
Luttinger-Ward functional for a chosen approximation. The self-energy dia-
grams for any type of particle is obtained just by cutting the corresponding
propagators in the Luttinger-Ward functional (Σ = δΦ/δG), whereas it is
much less trivial to draw the right diagrams for any other correlation func-
tion and keep the approximation conserving.

There exists a certain symmetry between boson and fermion bath in the
Eq. (3.12). In the case of fermions, impurity creation operator coσ is coupled

to the bath, while in the boson case, the impurity spin ~So couples to the free
vector bosonic bath. It is therefore not surprising that the spin susceptibility
is just proportional to the grand canonical boson self-energy.

The time derivative of the bosonic operators is obtained by their commu-
tator with the impurity Hamiltonian (3.12)

∂

∂τ
Φα
q =

[
H,Φα

q

]
= −wqΦα

q − g Sαf (B.10)

∂

∂τ
Φα†
q =

[
H,Φα†

q

]
= wqΦ

α†
q + g Sαf (B.11)

The boson Green’s function can be defined by

GΦαq (τ − τ ′) = −
〈
Tτ ~Φ

α
q (τ)~Φα

q (τ ′)
〉

(B.12)

and its time derivative is

−
(
∂

∂τ
+ wq

)
GΦαq (τ − τ ′) = δ(τ − τ ′) + g GSαΦαq (τ − τ ′). (B.13)

The obtained correlation function GSαΦαq takes the form

GSαΦαq (τ − τ ′) = −
〈
Tτ ~S

α(τ)~Φα
q (τ ′)

〉
(B.14)

and its time derivative with respect to τ ′ is finally proportional to the local
susceptibility

(
∂

∂τ ′
− wq

)
GSαΦαq (τ − τ ′) = −gχααoo (τ − τ ′). (B.15)

Non-interacting (Q = 0 subspace) Green’s functions obey the following equa-
tion of motion

−(
∂

∂τ
+ wq)gΦαq (τ − τ ′) = δ(τ − τ ′)

(
∂

∂τ ′
− wq)gΦαq (τ − τ ′) = δ(τ − τ ′) (B.16)
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Combining (B.13), (B.15) and (B.16) and using the Fourier representation,
a closed relation between boson Green’s function and local impurity suscep-
tibility is obtained

GΦαq (ıω) = gΦαq (ıω)− g2gΦαq (ıω)χααoo (ıω)gΦαq (ıω). (B.17)

The last relation can be compared to the Dyson equation for bosons in the
bath

GΦαq (ıω) = gΦαq (ıω) + gΦαq (ıω)ΣΦ(ıω)GΦαq (ıω). (B.18)

In the grand canonical ensemble ΣΦ = O(e−βλ) and GΦαq = gΦαq + O(e−βλ),
finally after projecting onto the physical subspace (λ → ∞) the important
relation is obtained

χααoo (ıω) = − 1

g2
ΣΦ(ıω). (B.19)
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Appendix C

Derivation of NCA equations

For pedagogical reasons, a detailed derivation of the NCA equations together
with the projection on to the physical subspace will be presented here.

Σf = +ω,s

ω′,s

ω-ω′ ω,s

Ω,α

ω+Ω,s′

Figure C.1: Pseudo–fermion self-energy within NCA.

Consider first the left diagram in Fig. C.1. Following the standard di-
agrammatic rules for evaluating Feyman diagrams at finite temperature we
get for the pseudo–fermion self-energy

Σfs(ıω) = −V
2

β

∑

ıω′

Gcs(ıω
′)Gb(ıω−ıω′) = −V 2

∮
dz

2πı
f(−z)Gcs(z)Gb(ıω−z)

In summation over Matsubara frequencies, the Fermi function with minus
sign f(−z) was chosen. As it will be shown below, this choice guarantees
that only integral over conduction electron branch-cut survives after the pro-
jection onto the physical subspace. Alternatively, if f(z) is taken instead
of f(−z), both integrals (over conduction electron branch-cut and pseudo–
boson branch-cut) would give a nonzero contribution after the projection
onto the physical subspace. The sum of both terms naturally gives identical
result. Hence, we will take f(−z) and consider only the integral over con-
duction electron branch-cut for the moment. Later, we will show that the
other contribution vanishes after the projection onto the physical subspace.
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For the first term we get

Σfs(ıω) = −V 2

∫
dξ

π
f(−ξ)ImGcs(ξ)Gb(ıω − ξ).

The analytic continuation to real frequencies is trivial in this case: it is done
by replacing ıω with ω + ıδ at all places

Σfs(ω + ıδ) =

∫
dξ f(−ξ)Acs(ξ)Gb(ω − ξ + ıδ). (C.1)

The projection onto the physical subspace is somewhat more tedious. A term
was added to the original Hamiltonian +λQ, which pushes all structure of the
auxiliary Green’s functions and auxiliary self-energies to infinity when λ goes
to infinity. In another words, the eigenvalues ofH+λQ scale to infinity as λQ.
It is therefore convenient to redefine arguments of the auxiliary quantities
such that the structure will appear around zero. Hence, the transformation
of frequencies in arguments of the auxiliary functions is performed ω → ω+λ
and after that λ is assumed to go to infinity. After the projection, the pseudo–
fermion and pseudo–boson Green’s functions become

Gf(ıω) =
1

ıω + µ− Σf(ıω)

Gb(ıω) =
1

ıω − Σb(ıω)
.

This should be compare with the original definitions in Fig. 4.1. Note that
the conduction electron and vector boson Green’s functions do not contain
λ and are not changed with the projection. This is because the operator
number Q counts only auxiliary particles.

In the Eq. (C.1) only ω has to be transformed, but not ξ, since the
conduction electron quantities do not involve λ. It is then clear, that the
equation (C.1) remains unchanged after the projection.

On the other hand, the integral over the pseudo–boson branch-cut, that
was omitted above, is proportional to e−βλ and vanishes in the physical sub-
space. To show that, let us write the self-energy contribution explicitly

Σ′fs(ıω) = −V 2

∫
dξ

π
f(ξ − ıω)(−1)ImGb(ξ)Gcs(ıω − ξ).

Now, both variables ω and ξ must be transformed, so that the structure of Σ′f
and Gb is shifted to zero. The Bose function is then replaced by e−β(λ+ξ) and

104



λ is limited to infinity. The result is then proportional to e−βλ and vanishes

Σ′fs(ω + ıδ) = −V 2

∫
dξ

π
n(ξ)ImGb(ξ)Gcs(ω − ξ + ıδ) =

−e−βλ V 2

∫
dξ

π
e−βξ ImGb(ξ)Gcs(ω − ξ + ıδ).

The pseudo–fermion self-energy contribution depicted on the right in
Fig. C.1 reduces to

Σfs(ıω) = −1

4
g2
∑

s′,α

σαss′σ
α
s′s

1

β

∑

ıΩ

GΦα(ıΩ)Gfs′(ıω + ıΩ) =

−1

4
g2
∑

s′,α

σαss′σ
α
s′s

∮
dz

2πı
n(z)GΦα(z)Gfs′(z + ıω) =

−1

4
g2
∑

s′,α

σαss′σ
α
s′s

∫
dξ

π
n(ξ)ImGΦα(ξ)Gfs′(ξ + ıω).

The integration was performed only around the Φ boson branch-cut. The
other contribution, coming from the loop around pseudo–fermion branch-cut
again vanishes after the projection. The analytic continuation is straightfor-
ward and gives

Σfs(ω + ıδ) =
1

4

∫
dξ n(ξ)DΦ(ξ) [Gfs(ω + ξ + ıδ) + 2Gfs̄(ω + ξ + ıδ)] .

(C.2)
As before, the projection does not alter this term, since only ω is transformed,
while ξ is left unchanged. Finally, the pseudo–fermion self-energy within
NCA is equal to the sum of both diagrams given by Eq. (C.1) and (C.2).

Σb = ω

ω′,s

ω+ω′,s

Figure C.2: pseudo–boson self-energy within NCA.

Using standard diagrammatic rules, one obtains for the pseudo–boson
self-energy diagram depicted in Fig. C.2 the following expression

Σb(ıω) =
V 2

β

∑

s,ıω′

Gcs(ıω
′)Gfs(ıω+ıω′) = −V 2

∑

s

∮
dz

2πı
f(z)Gcs(z)Gfs(z+ıω).
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As discussed above, only the integral around conduction electron branch-cut
contributes to the auxiliary self-energies and gives

Σb(ıω) = −V 2
∑

s

∫
dξ

π
f(ξ)ImGcs(ξ)Gfs(ξ + ıω),

with analytic continuation to the real frequency

Σb(ω + ıδ) =
∑

s

∫
dξf(ξ)Acs(ξ)Gfs(ω + ξ + ıδ). (C.3)

Again, the projection does not change the expression since only ω has to be
transformed while ξ remains unchanged. The Eq. (C.3) is thus the final and
only contribution to the pseudo–boson self-energy within NCA.

All physical quantities that vanish in the Q = 0 subspace, like the local
Green’s function or local susceptibility, are proportional to the e−βλ, since in
that case the relation (4.12) can be equivalently written as

〈A〉 = lim
λ→∞

〈A〉G
〈Q〉G

. (C.4)

The grand-canonical expectation value of the number operator is

〈Q〉G =

∫
[f(ω)

∑

s

Afs(ω) + n(ω)Ab(ω)]dω.

In the limit λ→∞ this expression is simplified to

〈Q〉G = e−βλ
∫
e−βω[

∑

s

Afs(ω) + Ab(ω)]dω.

Furthermore, the frequency scale of the auxiliary particles can be conve-
niently chosen such that the

∫
e−βω[

∑

s

Afs(ω) + Ab(ω)]dω = 1 (C.5)

and therefore the expectation value of any physical operator that vanish in
the Q = 0 subspace is

〈A〉 = lim
λ→∞

eβλ 〈A〉G . (C.6)

The conduction electron self-energy sketched in Fig. C.3 is

Σcs(ıω) = −V
2

β

∑

ıω′

Gfs(ıω + ıω′)Gb(ıω
′) = −V 2

∮
dz

2πı
n(z)Gfs(z + ıω)Gb(z) =

−V 2

∫
dξ

π
[n(ξ)Gfs(ξ + ıω) ImGb(ξ) + n(ξ − ıω) ImGfs(ξ)Gb(ξ − ıω)]
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Σc = ω,s

ω′

ω+ω′,s ΣΦα = ω
ω+ω′,s′

ω′,s

Figure C.3: Local Green’s function (conduction electron self-energy) and local
susceptibility (boson self-energy) within NCA.

Here, we have integrated over both branch-cuts since they are equally im-
portant and carry a factor e−βλ. The analytic continuation introduces in this
case both, retarded and advanced Green’s functions

Σcs(ω + ıδ) = −V 2

∫
dξ

π
[n(ξ)Gfs(ξ + ω + ıδ) ImGb(ξ)−
f(ξ) ImGfs(ξ)Gb(ξ − ω − ıδ)] .

The projection transforms only ξ and leaves ω unchanged, hence the self-
energy is proportional to e−βλ and reads

Σcs(ω + ıδ) = −e−βλ V 2

∫
dξ

π
e−βξ [Gfs(ξ + ω + ıδ) ImGb(ξ)−

ImGfs(ξ)Gb(ξ − ω − ıδ)]

with the imaginary part equal to

Im Σcs(ω + ıδ) = −e−βλ V 2π

∫
dξe−βξ [Afs(ξ + ω)Ab(ξ) + Afs(ξ)Ab(ξ − ω)] .

Finally, the grand-canonical (not yet fully projected) local Green’s function is
obtained just by dividing this expression by V 2, as one can see from Eq. (B.9).
However, the projection is still not finished in this case. It follows from
Eq. (C.6), that in order to get physical spectral function, calculated only
within the subspace Q = 1, we need to multiply the grand-canonical spectral
function by eβλ. Thus the local Green’s function calculated within NCA is

ImGs oo = − π

f(−ω)

∫
dξe−βξAfs(ξ + ω)Ab(ξ). (C.7)

Finally, we would like to obtain the expression for local magnetic suscep-
tibility. The derivation closely follows the above derivation of local Green’s
function. Instead of conduction electron self-energy, the Φ boson self-energy
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is required first

ΣΦz(ıω) =
1

4
g2
∑

ss′

σzss′σ
z
s′s

1

β

∑

ıω′

Gfs(ıω
′)Gfs′(ıω

′ + ıω) =

−1

4
g2
∑

s

∮
dz

2πı
f(z)Gfs(z)Gfs(z + ıω) =

−1

4
g2
∑

s

∫
dξ

π
[f(ξ)ImGfs(ξ)Gfs(ξ + ıω)+

f(ξ − ıω)Gfs(ξ − ıω)ImGfs(ξ).]

After the analytic continuation to the real frequency the self-energy reads

ΣΦz(ω+ıδ) = −1

4
g2
∑

s

∫
dξ

π
f(ξ)ImGfs(ξ) [Gfs(ξ + ω + ıδ) +Gfs(ξ − ω − ıδ)] .

The imaginary part can be further simplified

Im ΣΦz(ω + ıδ) = −e−βλπ
4

g2
∑

s

∫
dξe−βξ(eβω − 1)Afs(ξ − ω)Afs(ξ).

Projecting onto the physical subspace and taking into account Eq. (B.19)
and (C.6), we finally obtain

Imχoo(ω + ıδ) =
π

4n(ω)

∑

s

∫
dξe−βξAfs(ξ − ω)Afs(ξ)
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Appendix D

Friedel sum rule

The Luttinger theorem, or equivalently, the Friedel sum rule [104] for sys-
tem of interacting fermions was first derived by Langer and Ambegaokar
[105]. If well defined quasy-particles exist in the system that bear a one-
to-one correspondence with a non-interacting problem, in our case a system
of free electrons, the low energy and long wavelength exciations as well as
the correlation and the response functions follow the same universal laws.
The system is a Fermi liquid. Alternatively, in the language of perturbation
theory, the systems has to vary in a continuous way when the interaction
increases from zero to its actual value. It is thus possible to obtain the exact
solution perturbing the system of non-interacting electrons. This solution
can be formally represented with the exact Luttinger-Ward functional Φ(G)
[48], which contains all possible vacuum skeleton diagrams build out of only
exact Green’s functions G. The functional derivative of Φ with respect to G
yields the exact self-energy

Σα(ıω) =
δΦ

δGα(ıω)
. (D.1)

We may also write

δΦ =
∑

α,ıω

Σα(ıω)δGα(ıω), (D.2)

where δG represents any displacement of the exact Green’s function from
its equilibrium value. Let us consider a particular transformation, where
Green’s functions are shifted for a small amount δλ

δGα(ıω) = Gα(ıω + δλ)−Gα(ıω) =
∂Gα(ıω)

∂ıω
δλ. (D.3)
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The change in Φ induced by this change in G is zero since the functional is
invariant under a frequency shifts

δΦ = 0 = δλ
∑

α,ıω

Σα(ıω)
∂Gα(ıω)

∂ıω
. (D.4)

In passing to the limit T → 0, we can simply make the replacement [106]

1

β

∑

ıω

→
∫ ı∞

−ı∞

dz

2πı
(D.5)

since the separation between different ıω values is 2πı/β. The integration
path is thus in the vertical direction in contrast to the usual integration
along the real axis. However, a great deal of care has to be taken in using
D.5 if the integrand has double or multiple poles on the path of integration.
Integrating by parts Eq. (D.4), the Luttinger theorem is readily obtained

−
∑

α

∫ ı∞

−ı∞

dz

2πı
Σα(z)

∂Gα(z)

∂z
=
∑

α

∫ ı∞

−ı∞

dz

2πı
Gα(z)

∂Σα(z)

∂z
= 0. (D.6)

The integration can also be done along the real axis. To embrace the same
simple poles than above, we need to close the contour to the left (integrating
from −∞ above the real axis to 0 and back to −∞ below the real axis,
corresponding to f(ξ, T → 0)) or to the right (corresponding to f(−ξ, T →
0)). As usually, a term e−zτ with small τ → 0− is assumed to be added to
the integral which requires closing the contour to the left

∫ ı∞

−ı∞

dz

2πı
g(z)ez0

+

=

∫ 0

−∞

dξ

2πı
(g(ξ + ıδ)− g(ξ − ıδ)) . (D.7)

The same Luttinger theorem on the real axis thus reads

Im
∑

α

∫ 0

−∞

dω

π
Gα(ω + ıδ)

∂Σα(ω + ıδ)

∂ω
= 0. (D.8)

Next, we would like to relate the average occupation number with the value
of the quasiparticle peak at the Fermi energy at zero temperature. For that
purpose we may write the occupation number as

n =
∑

α

Gα(τ = 0−) =
1

β

∑

α,ıω

Gα(ıω)eıω0+

, (D.9)

where α is a spin variable in the impurity case or complete set of states {k, σ}
in the lattice case.
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Using the Dyson equation, the Green’s function becomes

Gα(ıω) =
1

ıω + µ− Λα(ıω)− Σα(ıω)
, (D.10)

where we have separated the self-energy into proper (Σ) and improper (Λ)
part. The latter comes from the noninteracting problem (when interaction is
not yet present) and does not vanish at zero temperature and zero frequency.
In the impurity case, the improper part is just the exact self-energy for the
case U = 0 (i.e. the self-energy for the system we perturb on).

It is easy to see from the definition of the Green’s function D.10 that the
following equation holds

∂

∂z

(
G−1(z) + Λ(z) + Σ(z)

)
= 1. (D.11)

Evaluating the derivative in D.11 and multiplying by G, we get

G(z) = G(z)(− 1

G2(z)

∂G(z)

∂z
+
∂Λ(z)

∂z
+
∂Σ(z)

∂z
)

= − ∂

∂z
lnG(z) +G(z)

∂Λ(z)

∂z
+G(z)

∂Σ(z)

∂z
(D.12)

Inserting the form D.12 for the Green’s function into D.9 and changing the
summation over Matsubara frequencies into the integral over the real axis,
we obtain

n = Im
∑

α

∫
dξ

π
f(ξ)

[
∂

∂ξ
lnGα(ξ)−Gα(ξ)

∂Λα

∂ξ
−Gα(ξ)

∂Σα

∂ξ
.

]
(D.13)

In the zero temperature limit the last term vanishes due to the Luttinger
theorem, while the first term can be evaluated exactly

Im

∫ 0

−∞

dξ

π

∂

∂ξ
lnGα(ξ) =

1

π
Im lnGα(ξ)

∣∣∣∣
0

−∞
=

1

π
arg (Gα(0))− 1. (D.14)

We have used the fact that imaginary part of the Green’s function drops
exponentially while the real part decays much slower, usually as 1/ω.

The second term in Eq. (D.13) is usually zero in the impurity problem,
since Λ is taken to be a constant or very slowly varying function up to cut-
off being usually much larger than any other scale in the system. However,
DMFT imposes self-consistency condition on Λ and therefore it becomes
quite rapidly varying function of frequency. In general, it is composed of
Hubbard bands (incoherent part) and also very pronounced quasiparticle
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peak (coherent contribution), which is responsible for the large derivative
∂Λ/∂ξ on the chemical potential. The second term cannot be neglected in
general and has to be incorporated in the generalized Friedel sum-rule

nc = −Im
∑

α

∫ 0

−∞

dξ

π
Gα(ξ)

∂Λα

∂ξ
(D.15)

This term is connected with the change of the charge in the conduction band
as a consequence of introducing an impurity in the system of free fermions.
Using the identity arctan(1/x) = π/2 − arctan(x), the generalized Friedel
sum-rule can be written in its usual form

n− nc =
∑

α

{
1

2
− 1

π
arctan

(
ReGα(0)

ImGα(0)

)}
. (D.16)

Until now, the derivation was completely general and holds for any sys-
tem in equilibrium that bears a one-to-one correspondence with a system of
free electrons. For a translational invariant system trace is assumed over a
complete set of states from very beginning (Eq. D.2), so that for a lattice
model, sum over all possible wave vectors k = {k, σ} must be performed in
Eq. (D.16). The improper part of the self-energy Λ is zero in this case and
therefore the Luttinger theorem reads

n =
∑

k

{
1

2
− 1

π
arctan

(
ReGk(0)

ImGk(0)

)}
(D.17)

or equivalently

n =
∑

k

{
1

2
− 1

π
arctan

(
µ− εk − Re Σk(0)

Im Σk(0)

)}
. (D.18)

Since the imaginary part of the self-energy goes to zero at the chemical
potential and zero temperature the Eq. (D.18) can be further simplified to

n =
∑

k

Θ(µ− εk − Re Σk(0)). (D.19)

Thus, the volume enclosed by the Fermi surface is not changed with the
interaction, while the shape is changed if the self-energy is k dependent. In
the case of local self-energy, the shape is also preserved and the effective
chemical potential µ− Re Σ(0) = µ0 is equal to the noninteracting chemical
potential corresponding to the same filling.
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Now, we would like to invert the Eq. (D.16) and calculate the Green’s
function at the chemical potential knowing the change of the occupation.
This can be easily done in the impurity case, where it takes the form

ImG(0)

ReG(0)
= tan

(π
2

(n− nc)
)
. (D.20)

Here we have assumed that the spin symmetry breaking does not occur, so
that G↑ = G↓.

Local (impurity) Green’s function at the chemical potential can also be
expressed in terms of the self-energy

ImG(0) =
Im Λ(0)

[Re (µ− Σ(0)− Λ(0))]2 + [Im Λ(0)]2

ReG(0) =
Re (µ− Σ(0)− Λ(0))

[Re (µ− Σ(0)− Λ(0))]2 + [Im Λ(0)]2
, (D.21)

where we have assumed that Im Σ(0) = 0. Inserting D.21 into D.20, we get

Im Λ(0)

Re (µ− Σ(0)− Λ(0))
= tan

(π
2

(n− nc)
)
. (D.22)

Finally, the imaginary part of the Green’s function can be reduced to

ImG(0) =
Im Λ(0)

[Im Λ(0)]2
(
1 + tan−2

(
π
2
(n− nc)

)) =
sin2

(
π
2
(n− nc)

)

Im Λ(0)
. (D.23)

Hence, the value of the impurity Green’s at the chemical potential and
zero temperature is entirely determined by the change in number of electrons
due to the introduction of the impurity n− nc and the hybridization matrix
elements Im Λ(ω) = −π∑k |Vk|2δ(ω − εk).
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Appendix E

Density of states

It is convenient to replace the momentum sum by an energy integration where
possible. In many calculations within EDMFT, the density of states D(ε)
is sufficient. However, to study transport properties, one needs to define
additional functions like Φxx(ε) and Φxy(ε), given by

D(ε) =
1

N

∑

k

δ(ε− εk) (E.1)

Φxx(ε) =
1

N

∑

k

(2t)2sin2(kx)δ(ε− εk) (E.2)

Φxy(ε) =
1

N

∑

k

(2t)3sin2(kx)cos(ky) δ(ε− εk). (E.3)

For the two dimensional square lattice, those densities can be expressed
by elementary functions as follows

D(x) =
1

2tπ2

1

|x|K(1− 1/x2) (E.4)

Φxx(x) =
2t

π2

[
2|x|E(1− 1/x2) + 2K(1− 1/x2)− 2Π(1− 1/|x|, 1− 1/x2)

]

Φxy(x) = 2

(
2t

π

)2

(x2E(1− 1/x2)−K(1− 1/x2))Sign(x). (E.5)

Here, K(x), E(x) and Π(x) are complete elliptic integrals of first, second and
third kind and x = ε/(4t).
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Appendix F

Internal and free energy

The internal energy of lattice system can quite generally be calculated from
the Green’s functions alone [47]. It is easy to see this by considering the
following commutator ∑

k

c†k[V, ck], (F.1)

where ck represent the complete set of states and V is the interaction part of
the Hamiltonian. For most two particle interactions, like Coulomb interaction
or magnetic exchange interaction, this commutator is equal to −2V . Note
that in the case of interaction between electrons and phonons the commutator
is equal to −V .

This commutator can also be calculated for the non-interacting part of
the Hamiltonian H0 and in the case of the tight-binding H0 =

∑
k (εk − µ)nk

explicitly read
∑

k

c†k[H0, ck] = −H0 = −
∑

k

(εk − µ)nk = −
∑

k

(εk − µ)Gk(τ → 0−)

(F.2)
On the other hand, the time derivative of the Green’s function involves

commutator with a full Hamiltonian
(
∂Gk(τ)

∂τ

)

τ→0−
=
〈
c†k[H, ck]

〉
. (F.3)

Combining equations (F.1), (F.2) and (F.3) we readily obtain

〈−2V 〉 =
∑

k

〈
c†k[H −H0, ck]

〉
=
∑

k

[
(
∂

∂τ
+ εk − µ)Gk(τ)

]

τ→0−
=

1

β

∑

k,ıω

(−ıω + εk − µ)Gk(ıω)eıω0+

. (F.4)
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Thus, the average of the potential energy is given by

〈V 〉 =
1

2β

∑

k,ıω

(ıω + µ− εk)Gk(ıω)eıω0+

. (F.5)

For the tight binding H0, the kinetic energy part is

〈H0〉 =
1

β

∑

k,ıω

(εk − µ)Gk(ıω)eıω0+

, (F.6)

which can be combined with (F.5) to yield the internal energy

E = 〈H〉+ µN =
1

2β

∑

k,ıω

(ıω + εk + µ)Gk(ıω)eıω0+

. (F.7)

Within a local theory like EDMFT, the free energy of the lattice system
can be obtained from the free energy of the corresponding impurity problem
and the local Green’s functions (fermionic and bosonic) alone. The proof
usually considers free-energy as a functional of Green’s functions and involves
Luttinger-Ward potential. The main idea is that the interactions considered
in a dynamical mean field theory are only those defined within the unit
cell. Diagrammatically, DMFT retains only local diagrams, i.e., those whose
internal propagators and vertices just connect points within the same unit
cell, therefore the Luttinger-Ward potential is local. In other words, the
Luttinger-Ward potential is common for both lattice and impurity problem
and can thus be eliminated.

The situation is not so simple in the context of the EDMFT because some
long range vertices are retained in this theory. Not only that the Luttinger-
Ward functional is not local, it even doesn’t exist at least not in the picture
we have presented earlier. It does exist before taking the infinite d limit, the
momentum dependent diagrams are then of leading order for the two particle
vertex function while they are subleading in the context of self-energy.

An alternative derivation of EDMFT equations is possible, where bosonic
fields that maintain nonlocal interaction, are introduced before the limit of
large dimensions is taken. In this case, two essential steps (i.e. large d limit
and Hubbard-Stratonovich transformation) needed to obtain EDMFT equa-
tions are interchanged. The advantage of this procedure is that the lattice
model with bosons more closely resembles the impurity model. After the limit
of large d is taken, only the local component of self-energies survives. But in
this case, boson Green’s function, which is naturally momentum dependent,
replaces the two particle vertex in Fig. F.1. The same approximation is Φ-
derivable in this picture and is completely local so that the Luttinger-Ward
functional is common to both the lattice and impurity model.
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Figure F.1: The Luttinger-Ward functional Φ for EDMFT before taking the limit of
large z is shown in the first line. The first term (a) is the local on-site part while the
second (b) and the third (c) terms correspond to Hartree and Fock non-local contributions,
respectively. The local self-energy Σii is then of leading order within EDMFT, the Hartree
self-energy is exactly zero (not shown) and the Fock term Σij is subleading. The non-local
part of the irreducible two-particle vertex Iij , coming from the Hartree and Fock term, is
of leading order.

Replacing the non-local interaction Jij in the action (3.3) by the Hubbard-
Stratonovich fields Φ, we obtain

S =

∫ β

0

dτ

[∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ)−

∑

ij,σ

tijc
†
iσ(τ)cjσ(τ) +

∑

i

Uni↑(τ)ni↓(τ) +

∑

q

wqΦ†q(τ)Φq(τ) + g
∑

i

Si(τ)(Φ†i (τ) + Φi(τ))

]
,

where the boson free-particle energy wq = −2g2/Jq.

Boson Green’s function Dqα is closely related to the spin susceptibility,
i.e.,

Dqα = D0
qα −D0

qα gχααq gD0
qα. (F.8)

Here, D0
qα is noninteracting boson Green’s function for instantaneous inter-

action, which in our case reads D0
q = Jq/g

2. A diagrammatic representation
of the above equation is shown in Fig. F.2, where shaded ellipse represents
the spin susceptibility χααq .

Using the Dyson equation Πq = D0 −1
q − D−1

q , we can express boson self
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Figure F.2: Diagrammatic representation of Eq. (F.8). The double and single dashed
lines represent fully dressed (Dq) and noninteracting (D0

q ) boson Green’s functions, re-
spectively. Shaded ellipse is spin spin susceptibility and small black circle is vertex g.

energy in terms of spin susceptibility

Πq = − g2

χ−1
q − Jq

, (F.9)

where q is compact notations for {q, α}. Inserting the form of the noninter-
acting propagator D0

q into Eq. (F.8), we also get

Dq =
1

g2
Jqχq(χ

−1
q − Jq), (F.10)

therefore the product of self-energy and Green’s function is just

ΠqDq = −Jqχq. (F.11)

In the limit of large dimensions, boson self-energy becomes a local quan-
tity Πq = Πii. From Eq. (F.9) we can see that the irreducible spin cumulant
Mq, defined by

χq =
1

M−1
q + Jq

is also local and just proportional to the boson self-energy

Πii = −g2Mii. (F.12)

This proves that the approximation made in chapter 3.3, where we took a
local irreducible spin cumulant, is equivalent to the usual large d limit of
wave vector independent self-energies.

The important consequence of local self-energies Σij = Σiiδij and Πij =
Πiiδij is that the Luttinger-Ward functional Φ[Gij,Dij] is also local. It is the
sum of all vacuum-to-vacuum skeleton graphs with the property

Σij(ıω) =
δΦ

δGij(ıω)
(F.13)

Πij(ıω) = −2
δΦ

δDij(ıω)
. (F.14)
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Thus, the Luttinger-Ward functional can be collapsed to a single site since
it depends only on the local Green’s functions Gii and Dii

Φ =
∑

i

Φ(Gii,Dii). (F.15)

Now, we can write the thermodynamic potential in terms of Φ, Gk and
Dq as

Ω =
1

β
Φ +

1

β

∑

k,ıω

[lnGk − ΣkGk]−
1

2

1

β

∑

q,ıω

[lnDq − ΠqDq], (F.16)

where q and k are compact notations for {q, α} and {k, σ}, respectively.
Only this functional form of Ω is stationary under small variation of Gk or
Dq, i.e.,

δΩ

δGk
= 0 and

δΩ

δDq
= 0. (F.17)

Substituting Eq. (F.10) and (F.11) in (F.16), we get

Ω =
1

β
Φ +

1

β

∑

k,ıω

[lnGk −ΣkGk]−
1

2

1

β

∑

q,ıω

[ln(χq(χ
−1
q − Jq)) + Jqχq]. (F.18)

Taking into account that M and Σ are local, Eq. (F.18) can be reduced to

Ω =
1

β
Φ +

1

β

∑

k,ıω

[lnGk − ΣGoo]−
1

2

1

β

∑

q,ıω

[ln(χqM
−1)−M−1χoo]. (F.19)

Now, we would like to compare expression (F.19) with the impurity ther-
modynamic potential, which may also be expressed as a functional of electron
and boson Green’s functions by

Ω =
1

β
Φ[Goo, Doo]+

1

β

∑

ıω

Tr[lnG−ΣG]− 1

2

1

β

∑

ıω

Tr[lnGΦ−ΣΦGΦ]. (F.20)

Here G denotes the whole set of electron Green’s functions (impurity and
electronic bath) while GΦ stands for Green’s functions of the bosonic bath.
A straightforward calculation gives the following relations

det[G] = det[G0
c]
∏

σ

Goo

Tr[ΣG] =
∑

σ

ΣGoo

det[GΦ] = det[G0
Φ]
∏

α

χooM
−1

Tr[ΣΦGΦ] =
∑

α

(M−1χoo − 1), (F.21)
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where G0
c and G0

Φ denote the Green’s functions of the electronic and bosonic
baths in the absence of the impurity, respectively. Inserting relations (F.21)
in (F.22), we get

Ωimp =
1

β
Φ[Goo,Doo]+

1

β

∑

σıω

[lnGoo−ΣGoo]−
1

2

1

β

∑

αıω

[ln(χooM
−1)−M−1χoo].

(F.22)
The crucial point in combining Eqs. (F.19) and (F.22) is that the Luttinger-

Ward functional Φ of the lattice model is just N-times the impurity functional
Φ[Goo,Doo] (see Eq. F.15) and can therefore be eliminated. Thus, the ther-
modynamic potential can be calculated from the impurity free-energy Ωimp,
self-energy Σ and and irreducible spin cummulant M by

Ω = Ωimp +
1

β

∑

k,ıω

(lnGk − lnGoo)−
1

2

1

β

∑

q,ıω

(lnχq − lnχoo), (F.23)

where Gk(ıω) = 1/(ıω+ µ− εk−Σ(ıω)) and χq(ıω) = 1/(M−1(ıω) + Jq) are
lattice Green’s function and spin susceptibility, respectively.

For completeness, let us briefly mention how to calculate the impurity
free-energy within a self-consistent auxiliary method that was presented in
chapter 4.2. The impurity part of Ω is the difference between the free-energy
of the system with (Q = 1) and without (Q = 0) the impurity. It can be
expressed by auxiliary spectral functions as

e−βΩimp =
ZQ=1

ZQ=0

=

∫
dωe−βω[

∑

σ

Afσ(ω) + Ab(ω)], (F.24)

where Af and Ab are pseudo–fermion and pseudo–boson spectral functions,
respectively.
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Appendix G

SUNCA equations

In this appendix we explicitly give the self-consistent SUNCA equations
which, together with the definitions Eqs. (6.5) of the Green’s functions, de-
termine the auxiliary particle self-energies. We also give the expression for
the physical d-electron spectral function in terms of the auxiliary particle
propagators.

We first define the ladder vertex functions Ta, Tb with heavy boson a
and light boson b rungs, respectively, as shown diagrammatically in Fig. 6.4.
These vertex functions, projected onto the physical subspace Q = 1 and
analytically continued to real frequencies, obey the following Bethe–Salpeter
equations,

Taσ(ω,Ω) = Γ

∫
dε

π
f(ε− Ω)A0

c−σ(ε− Ω)Gf−σ(ε)Ga(ε+ ω − Ω)+

Γ

∫
dε

π
f(ε− Ω)A0

c−σ(ε− Ω)Gf−σ(ε)Ga(ε+ ω − Ω)Ta−σ(ε,Ω)(G.1)

Tbσ(ω,Ω) = Γ

∫
dε

π
f(ε− Ω)A0

cσ(Ω− ε)Gf−σ(ε)Gb(ε+ ω − Ω)+

Γ

∫
dε

π
f(ε− Ω)A0

cσ(Ω− ε)Gf−σ(ε)Gb(ε+ ω − Ω)Tb−σ(ε,Ω),(G.2)

where f(ε) is the Fermi function, A0
cσ(ε) = 1

π
ImG0

cσ(ε)/N (0) the bare conduc-
tion electron density of states per spin, normalized to the density of states at
the Fermi level and, for concreteness, all propagators are to be understood
as the retarded ones. The auxiliary particle self–energies (Fig. 6.3) are then
given by,
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Σfσ(ω) = Γ

∫
dε

π
f(ε− ω)A0

cσ(ω − ε)Gb(ε)[1 + Taσ(ω, ε)]2 +

Γ

∫
dε

π
f(ε− ω)A0

c−σ(ε− ω)Ga(ε)[1 + Tbσ(ω, ε)]2 −

2Γ2

∫
dε

π
f(ε− ω)A0

cσ(ω − ε)Gb(ε)×
∫
dε′

π
f(ε′ − ε)A0

c−σ(ε′ − ε)Gf−σ(ε′)Ga(ε
′ + ω − ε)(G.3)

Σb(ω) = Γ
∑

σ

∫
dε

π
f(ε− ω)A0

cσ(ε− ω)Gfσ(ε)[1 + Taσ(ε, ω)] +

Γ2
∑

σ

∫
dε

π
f(ε− ω)A0

cσ(ε− ω)Gfσ(ε)×
∫
dε′

π
f(ε′ − ω)A0

c−σ(ε
′ − ω)Gf−σ(ε′)Ga(ε

′ + ε− ω)×

{[1 + Tbσ(ε, ε′ + ε− ω)] [1 + Tb−σ(ε′, ε′ + ε− ω)]− 1}(G.4)

Σa(ω) = Γ
∑

σ

∫
dε

π
f(ε− ω)A0

c−σ(ω − ε)Gfσ(ε)[1 + Tbσ(ε, ω)] +

Γ2
∑

σ

∫
dε

π
f(ε− ω)A0

c−σ(ω − ε)Gfσ(ε)×
∫
dε′

π
f(ε′ − ω)A0

cσ(ω − ε′)Gf−σ(ε′)Gb(ε
′ + ε− ω)

{[1 + Taσ(ε, ε′ + ε− ω)] [1 + Ta−σ(ε′, ε′ + ε− ω)]− 1}(G.5)

In order to calculate the physical impurity electron spectral function Adσ

from the selfconsistently determined Ga, Gb, Gf , it is convenient to define
modified vertex functions as

SRaσ(ω,Ω) = 1 + Γ

∫
dε

π
f(ε− Ω)A0

cσ(ε− Ω)Re{Gfσ(ε)[1 + Taσ(ε,Ω)]}Ga(ε + ω)(G.6)

SIaσ(ω,Ω) = 1 + Γ

∫
dε

π
f(ε− Ω)A0

cσ(ε− Ω)Im{Gfσ(ε)[1 + Taσ(ε,Ω)]}Ga(ε + ω)(G.7)

SRbσ(ω,Ω) = 1 + Γ

∫
dε

π
f(ε− Ω)A0

c−σ(Ω− ε)Re{Gfσ(ε)[1 + Tbσ(ε,Ω)]}Gb(ε− ω)(G.8)

SIbσ(ω,Ω) = 1 + Γ

∫
dε

π
f(ε− Ω)A0

c−σ(Ω− ε) Im{Gfσ(ε)[1 + Tbσ(ε,Ω)]}Gb(ε− ω).(G.9)
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The impurity spectral function then reads

Adσ(ω) = − 1

π
Im

∫
dΩ

π

e−βΩ

f(−ω)
Gfσ(Ω + ω)

{
Im[Gb(Ω)][SRa−σ(ω,Ω)2 − SIa−σ(ω,Ω)2]+

2Re[Gb(Ω)]SRa−σ(ω,Ω)SIa−σ(ω,Ω)
}

− 1

π
Im

∫
dΩ

π

e−βΩ

f(ω)
Gf−σ(Ω− ω)

{
Im[Ga(Ω)][SRbσ(ω,Ω)2 − SIbσ(ω,Ω)2]+

2Re[Ga(Ω)]SRbσ(ω,Ω)SIbσ(ω,Ω)
}

+2
Γ

π

∫
dΩ

π

e−βΩ

f(ω)

∫
dε

π
f(ε− Ω)A0

c−σ(ε− Ω) Im[Gb(Ω)Gf−σ(ε)]×

Im[Gfσ(Ω + ω)Ga(ε+ ω)] . (1.10)

Note that the exponential divergencies of the statistical factors appearing
in Eq. (G.10) are compensated by the threshold behavior of the corresponding
auxiliary particle spectral functions Aµ(ω) = 1

π
ImGµ(ω), µ = a, b, f in the

integrands. For the numerical treatment, these divergencies can be explicitly
absorbed by formulating the self–consistency equations (A1)–(A10) in terms
of the functions Ãµ(ω) which are defined via

Aµ(ω) = f(−ω)Ãµ(ω) (G.10)

and, hence, have no exponential divergence. We thus have, e.g., exp(−βω)Aµ(ω) =
f(ω)Ãµ(ω). Details of this representation are described in Ref. [91].
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235-240, 2287 (1994).

[101] T. Schauerte, J. Kroha, and P. Wölfle. Phys. Rev. B 62, 4394 (2000).
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