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A rational representation for the self-energy is explored to interpolate the solution of the Anderson impurity
model in the general orbitally degenerate case. Several constraints such as Friedel’s sum rule and the positions
of the Hubbard bands, as well as the value of the quasiparticle residue, are used to establish the equations for
the coefficients of the interpolation. We employ two fast techniques, the slave-boson mean-field and the
Hubbard I approximations, to determine the functional dependence of the coefficients on doping, degeneracy,
and the strength of the interaction. The obtained spectral functions and self-energies are in good agreement
with the results of the numerically exact quantum Monte Carlo method.
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I. INTRODUCTION

There has been recent progress in understanding the phys-
ics of strongly correlated electronic systems and their elec-
tronic structure near a localization-delocalization transition
through the development of dynamical mean-field theory
sDMFTd.1 Merging this computationally tractable many-
body technique with electronic structure calculations of
strongly correlated solids based on the local-density
approximation2 sLDA d is promising due to its simplicity and
correctness in both band and atomic limits. At present, much
effort is being made in this direction including the develop-
ment of a LDA+DMFT method,3 the LDA++ approach,4

combinedGWand DMFT theory,5 and spectral density func-
tional theory,6 as well as applications to various systems such
as La1−xSrxTiO3,

7 V2O3,
8 Fe and Ni,9 Ce,10 Pu,11,12 transition

metal oxides,13 and many others. For a review, see Ref. 14.
Such ab initio DMFT-based self-consistent electronic

structure algorithms should be able to explore the whole
space of parameters where neither doping nor even the de-
generacy itself is kept fixed, as different states may appear
close to the Fermi level during iterations toward self-
consistency. This is crucial if one would like to calculate
properties of realistic solid state systems where the band-
width and the strength of the interaction are not known at the
beginning. It is very different from the ideology of model
Hamiltonians where the input set of parameters defines the
regime of correlations, and the corresponding many-body
techniques may be applied afterward. Realistic DMFT simu-
lations of material properties require fast scans of the entire
parameter space to determine the interaction for a given dop-
ing, degeneracy, and bandwidth via the solution of the gen-
eral multiorbital Anderson impurity modelsAIM d.15 Unfor-
tunately, present approaches based on either the noncrossing
approximationsNCAd or iterative perturbation theorysIPTd
are unable to provide the solution to that problem due to the
limited number of regimes where these methods can be
applied.1 The quantum Monte CarlosQMCd technique1,16 is
very accurate and can cope with multiorbital situations but

not with multiplet interactions. Also its applicability so far
has been limited either to a small number of orbitals or to
unphysically large temperatures due to its computational
cost. Recently some progress has been achieved using impu-
rity solvers that improve upon the NCA,17–19 but it has not
been possible to retrieve Fermi liquid behavior at very low
temperatures with these methods in the orbitally degenerate
case.

As universal impurity solvers have not yet being designed
we need to explore other possibilities, and this paper pro-
poses an interpolative approach for the self-energy in the
general multiorbital situation. We stress that this is not an
attempt to develop an alternative method for solving the im-
purity problem, but a follow-up of the ideology of LDA
theory where approximations were designed by analytical
fits20 to the quantum Monte Carlo simulations for a homoge-
neous electron gas.21 Numerically very expensive QMC cal-
culations for the impurity model display smooth self-
energies at imaginary frequencies for a wide range of
interactions and dopings, and it is therefore tempting to de-
sign such an interpolation. We also keep in mind that for
many applications a high precision in reproducing the self-
energies may not be required. One such application is, for
example, the calculation of the total energy,10–13which, as is
well known from LDA-based experience, may not be so sen-
sitive to the details of the one-electron spectra. As a result,
we expect that even crude evaluations of the self-energy
shapes on the imaginary axis may be sufficient for solving
many realistic total energy problems, some of which have
appeared already.11–13Another point is the computational ef-
ficiency and numerical stability. Obtaining fully self-
consistent loops with respect to charge densities11 and other
spectral functions requires many iterations toward conver-
gency, which may not need very accurate frequency resolu-
tion at every step. However, the procedure that solves the
impurity model should smoothly connect various regions of
the parameter space. This is a crucial point if one would like
to have a numerically stable algorithm and our interpola-
tional approach ideally solves this problem.
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In calculations of properties such as the low-energy spec-
troscopy and especially transport, a more delicate distribu-
tion of spectral weight takes place at low energies, and the
imaginary part of the analytically continued self-energy
needs to be computed with greater precision. Here we expect
that our obtained spectral functions should be used with care.
Also, in a few clearly distinct regimes, such as, e.g., very
near the Mott transition, the behavior may be much more
complicated and more difficult to interpolate. For the cases
mentioned above, extensions of the interpolative method
should be implemented, and this is beyond the scope of the
present work.

We can achieve a fast interpolative algorithm for the self-
energy by utilizing a rational representation. The coefficients
in this interpolation can be found by forcing the self-energy
to obey several limits and constraints. For example, if the
infinite-frequencysHartree-Fockd limit, the positions of the
Hubbard bands, the low-frequency mass renormalizationz,
the mean number of particlesn̄, as well as the value of the
self-energy at zero frequencySs0d are known from indepen-
dent calculation, the set of interpolating coefficients is well
defined. In this work, we explore the slave-boson mean-field
sSBMFd approach22–25and the Hubbard I approximation26 to
determine the functional dependence of these coefficients
upon doping, degeneracy, and the strength of the interaction
U. We verify all trends produced by this interpolative proce-
dure in the regimes of weak, intermediate, and strong inter-
actions and at various doping conditions. These trends are
compared with known analytical limits as well as against
calculations using the quantum Monte Carlo method. Also
compared with QMC results are the self-energies and spec-
tral functions on both imaginary and real axes for selected
values of the doping. The results indicate that the SBMF
approach can predict such parameters of interpolation as
n̄, Ss0d, and z with a good accuracy while the Hubbard I
method fails in a number of regimes. However, the func-
tional form of the atomic Green’s function which appears
within the Hubbard I approximation can be used to deter-
mine the positions of atomic satellites, which helps to im-
pose additional constraints on our procedure.

Given the extraordinary computational speed of this ap-
proach we generally find a very satisfactory accuracy in
comparisons with the numerically more accurate QMC cal-
culations. If an increased accuracy is desired our method can
be naturally extended by imposing more constraints and by
implementing more refined impurity solvers other than the
ones explored in this work.

The paper is organized as follows. In Sec. II we discuss
rational interpolation for the self-energy and list the con-
straints. In Sec. III we discuss methods for solving the
Anderson impurity model such as the slave-boson mean-field
and Hubbard I approximations, which can be used to find
these constraints. A brief survey of the QMC method used to
benchmark our algorithm is also given. We present numerical
comparisons of the SBMF and Hubbard I techniques against
the QMC simulations for such quantities as the quasiparticle
residue and multiple occupancies. In Sec. IV we report the
results of the interpolative method and compare the obtained
spectral functions with the QMC results. In Sec. V we dis-
cuss possible improvements of the algorithm. Section VI is
the conclusion.

II. INTERPOLATIVE APPROACH

To be specific, we concentrate on the Anderson impurity
Hamiltonian

H = e fo
a=1

N

fa
† fa +

1

2
U o

aÞb

N

na
f nb

f + o
ka

Ekacka
† cka

+ o
ka

fVa
* skdfa

†ckaa + Vaskdcka
† fag, s1d

describing the interaction of the impurity levele f with bands
of conduction electronsEka via hybridizationVaskd. U is the
Coulomb repulsion between different orbitals in thef band,
anda is the orbital-spin index running from 1 toN. Inspired
by the success of the iterative perturbation theory,1 in order
to solve the Anderson impurity model in the general multi-
orbital case, we use a rational interpolative formula for the
self-energy. This can be encoded into the form

Ssvd =

o
m=0

M

amvm

o
m=0

M

bmvm

= Ss`d
p
m=1

M

fv − Zm
sSdg

p
m=1

M

fv − Pm
sSdg

. s2d

The coefficientsam,bm, or, alternatively, the polesPm
sSd, zeros

Zm
sSd, and Ss`d in this equation are to be determined. The

form s2d can be also viewed as a continued fraction expan-
sion but this representation will not be necessary for the de-
scription of the method.

Our basic assumption is that only a clearly distinct set of
poles in the rational representations2d is necessary to repro-
duce the overall frequency dependence of the self-energy.
Extensive experience gained from solving the Hubbard and
periodic Anderson models within DMFT at various ratios of
the on-site Coulomb interactionU to the bandwidthW shows
the appearance of lower and upper Hubbard bands as well as
a renormalized quasiparticle peak in the spectrum of one-
electron excitations.1

It is clear that the Hubbard bands are damped atomic ex-
citations and to the lowest-order approximation appear as the
positions of the poles of the atomic Green’s function. In the
SUsNd symmetry case which is described by the Hamiltonian
s1d, these energies are denoted by the number of electrons
occupying impurity level, i.e.,En=e fn+ 1

2Unsn−1d, and the
atomic Green’s function takes the simple functional form

Gatsvd = o
n=0

N−1
Cn

N−1sXn + Xn+1d
v + m − En+1 + En

, s3d

whereXn are the probabilities to find an atom in a configu-
ration with n electrons while the combinatorial factorCn

N−1

=sN−1d ! / n! sN−n−1d! appears due to the equivalence of all
states withn electrons in SUsNd.

We can represent the atomic Green’s functions3d using
the rational representations2d, i.e.,
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Gatsvd =

p
n=1

N−1

fv − Zn
sGdg

p
n=1

N

fv − Pn
sGdg

, s4d

where Pn
sGd are all N atomic poles, whileZn

sGd denoteN−1
zeros withN being the total degeneracy. The centers of the
Hubbard bands are thus located at the atomic excitations
Pn

sGd=En−En−1−m=e f −m−Usn−1d. Using the standard ex-
pression for the atomic Green’s functionGatsvd=1/fv+m
−e f −Satsvdg, we arrive at the desired representation for the
atomic self-energy,

Ssatdsvd = v + m − e f −

p
n=1

N

fv − Pn
sGdg

p
n=1

N−1

fv − Zn
sGdg

. s5d

Using this functional form for finiteDsvd modifies the
positions of poles and zeros via recalculating the probabili-
tiesXn which is equivalent to the famous Hubbard I approxi-
mation sdiscussed in more detail in the next sectiond.

We now concentrate on the description of the quasiparti-
cle peak which is present in the metallic state of the system.
For this an extra pole and zero have to be added in Eq.s5d.
To see this, let us consider the Hubbard model for the SUsNd
case where the local Green’s function can be written by the
Hilbert transformGfsvd=Hfv+m−e f −Ssvdg. If self-energy
lifetime effects are ignored, the local spectral function be-
comesNfsvd=Dfv+m−e f −ReSsvdg whereD is the nonin-
teracting density of states. The peaks of the spectral func-
tions thus appear as zeros in Eq.s5d and in order to add the
quasiparticle peak, one needs to add one extra zerosdenoted
hereafter asXd to the numerator in Eq.s5d. To make the
self-energy finite atv→` one has to also add one more pole
sdenoted hereafter asP1

sSdd which should appear in the de-
nominator of Eq.s5d. Furthermore, frequently the Hartree-
Fock value for the self-energy can be computed separately
and it is desirable to have a parameter in the functional form
s5d which will allow us to fixSs`d. An obvious candidate to
be changed is the self-energy pole in Eq.s5d that is closest to
zero frequency. Let us denote this parameter byP2

sSd and
rewrite the denominator of Eq.s5d as sv−P1

sSddsv
−P2

sSddpn=1
N−2fv−Zn

sGdg where the product is now extended over
all zeros of the atomic Green’s functions except the one clos-
est to zero, and two extra polesP1

sSd andP2
sSd can control the

width of the quasiparticle peak andSs`d. Thus, we arrive at
the functional form for the self-energy,

Ssvd = v + m − e f −

sv − Xdp
n=1

N

fv − Pn
sGdg

sv − P1
sSddsv − P2

sSddp
n=1

N−2

fv − Zn
sGdg

.

s6d

We are now ready to list all constraints of our interpola-
tive scheme. To fix the unknown coefficients
X, P1

sSd , P2
sSd , Pn

sGd, andZn
sGd in Eq. s6d and to write down the

linear set of equations for the coefficientsam,bm in Eq. s2d
we use the following set of conditions.

sad Hartree-Fock valueSs`d. In the limit v→` the
self-energy takes its Hartree-Fock form

Ss`d = UsN − 1dknl. s7d

The mean level occupancyknl is defined as the sum over all
Matsubara frequencies for the Green’s function, i.e.,

knl = To
iv

Gfsivdeiv0+
, s8d

where

Gfsvd =
1

v + m − e f − Dsvd − Ssvd
s9d

defines the impurity Green function andDsvd
=okuVaskdu2/ sv−Ekad is the hybridization functionfwhich is
the same for alla within SUsNdg.

sbd Zero-frequency valueSs0d. The so-called Friedel
sum rule establishes the relation between the total density
and the real part of the self-energy at zero frequency,

knl =
1

2
+

1

p
arctanS e f + ReSsi0+d + ReDsi0+d

ImDsi0+d D
+E

−i`

+i` dz

2pi
Gfszd

]Dszd

]z
ez0+

. s10d

scd Quasiparticle mass renormalization value
] ReS /]vuv=0. The slope of the self-energy at zero fre-
quency controls the quasiparticle residuez using the follow-
ing relationship:

U ] ReS

]v
U

v=0
= 1 −z−1. s11d

Formally, constraintssbd and scd hold for zero temperature
only but we expect no significant deviations in many regions
of parameters as long as we stay at low enough temperatures.
The behavior may be more complicated in the vicinity of the
Mott transition.27

sdd Positions of Hubbard bands. As we discussed, in
order that the self-energy obeys the atomic limit and places
the centers of the Hubbard bands at the positions of the
atomic excitations, we demand that

Pn
sGd + m − e f = SsPn

sGdd. s12d

This condition fixes almost all self-energy zerosZm
sSd in Eq.

s2d to the polesPn
sGd. However, it alone does not ensure that

the weight is correctly distributed among the Hubbard bands
and that the very distant Hubbard bands disappear. For this
to occur, distant poles of the Green’s function have to be
canceled out by nearby zeros of the Green’s function. It is
clear that each polePn

sGd far from the Fermi level has to be
accompanied by a nearby zeroZn

sGd in order for the weight of
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the pole to be small. Thus, the self-energy has poles at the
positions of Green’s function zeros which can be encoded
into the constraint

fSsZn
sGddg−1 = 0. s13d

We want to keep this property of the self-energy for finite
Dsvd and thus demand that the self-energy divergesswhen
lifetime effects are kept, it only reaches a local maximumd at
the zeros of the functional forms3d of Gatsvd. Note that the
relationships13d holds sapproximatelyd for frequencyv
larger than the renormalized bandwidthzW. Therefore the
information about oneZn

sGd that lies close tov=0 is omit-
ted and replaced by the information aboutSs`d , Ss0d, and
z as is done by separatingP1

sSd andP2
sSd in the denominator

of Eq. s6d.
We can now write down a set of linear equations for all

unknown coefficients in the expressions2d. There is a total of
2M +2 of parametersam and bm, m=0, M, where we can
always setb0=1. The conditionssad, sbd, andscd give

a0 = Ss0d, s14d

b0 = 1, s15d

a1 − Ss0db1 = 1 −z−1, s16d

aM − bMSs`d = 0. s17d

According to conditionsdd we can use allN polesPn
sGd and

N−2 zerosZn
sGd. The zeroZn

sGd closest tov=0 is dropped out.
sThere are small discontinuities that arise when the closest
and next-closest zeros to the origin change their role. How-
ever, we found this effect to be very small, which will be
evident from our plots presented in Sec. IV A.d This brings
additionally 2N−2 equations for the coefficients and makes
M =N as the degree of the rational interpolation, which is
written below:

o
m=0

N

amfPn
sGdgm − sPn

sGd + m − e fdo
m=0

N

bmfPn
sGdgm = 0

for n = 1,…,N, s18d

o
m=0

N

bmfZn
sGdgm = 0 for n = 1,…,N − 2. s19d

Note that whileM may be rather large, the actual number
of poles contributing to the self-energy behavior is indeed
very small. We can directly see this from Eq.s5d which uses
all N polesPn

sGd satisfying Eq.s12d and usesN−2 zerosZn
sGd

directly related toN−2 polesPm
sSd. Clearly, when the spectral

weight of the atomic excitation becomes small, the corre-
spondingPn

sGd becomes close toZn
sGd and cancellation occurs.

Therefore in realistic situations when only the upper and
lower Hubbard bands have significant spectral weight along
with the quasiparticle peak, the actual degree of the polyno-
mial expansion is either 2 or 3. However, it is advantageous
numerically and cheap computationally to keep all poles and
zeros in Eq.s6d because the formula automatically distributes

spectral weight over all existing Hubbard bands.
In the limit when U→0 the self-energy automatically

translates to the noninteracting one. The atomic poles get
close to each other but, most importantly, their spectral
weight goes rapidly to zero as it gets accumulated within the
quasiparticle band.

In the Mott insulating regime, the conditionssbd and scd
drop out while all polesPn

sGd and zerosZn
sGd can be used to

determine the interpolation. However, in this regime it does
not matter whether one ofZn

sGd closest tov=0 is dropped out
or kept, since we can always replace this information by
information aboutSs`d. Therefore the Mott transition can be
studied without changing the constraints.

We thus see that in the insulating case the self-energy
correctly reproduces the well-known result of the Hubbard I
method where the Green’s function is computed after Eq.s9d
with the atomic self-energy. If the lifetime effects are com-
puted, the parametersPn

sGd andZn
sGd become complex and the

Hubbard bands will acquire an additional bandwidth. This
effect is evident from the simulations using various pertur-
bative or QMC impurity solvers and can be naturally incor-
porated into the interpolative formulass2d or s6d. However,
in the practical implementation below we will omit it for
illustrative purposes.

Let us now discuss the quality of interpolation from the
perspective of the high-frequency behavior for the self-
energy. The latter can be viewed30 as an expansion in terms
of the momentsSsmd, i.e.,

Ssv → `d = o
m=0

`
Ssmd

vm .

Most important for us is to look at the highest moments
which are given by the Hartree-Fock value Eq.s7d involving
the single-occupancy matrixknl, as well as the first moment

Ss1d = fsN − 1dsN − 2dknnl + sN − 1dknl − sN − 1d2knl2gU2,

s20d

containing a double-occupancy matrixknnl. We see that the
interpolation in part relies on the accuracy in computing mul-
tiple occupancies which are functionals of both the atomic
excitations and the hybridization function. In this regard, us-
ing the exact atomic Green’s function to find the polesPn

sGd

and zerosZn
sGd as part of the constrained procedure may not

be as accurate since it would assume the use ofatomicmul-
tiple occupancies which donot carry information about
Dsvd. On the other hand, we can also use only a functional
form of the atomic Green’s function where the multiple oc-
cupancies are computed in a more rigorous manner. In the
next section we will show how this can be implemented
using the SBMF multiple occupancies which will be found to
be in better agreement with the quantum Monte Carlo data.

Note that the momentsSsmd themselves can be used in
establishing the constraints for interpolation coefficients.
This would involve independent evaluations of
knl , knnl , knnnl, etc., as well as various integrals involving
the hybridization functionDsvd. However, we may run into
an ill-defined numerical problem since high-frequency infor-
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mation will be used to extract the low-frequency behavior.
Therefore, it is more advantageous numerically to use some
poles and zeros ofGatsvd as given by conditionsdd above.

We thus see that the interpolational scheme is defined
completely once a prescription for obtaining parameters such
asSs0d , z, andknl as well as the polesPn

sGd and zerosZn
sGd is

given. For this purpose we will test two commonly used
methods: the SBMF method due to Gutzwiller22 as described
by Kotliar and Ruckenstein23 and the well-known Hubbard I
approximation.26 We compare these results against more ac-
curate but computationally demanding quantum Monte Carlo
calculations and establish the procedure to extract all neces-
sary parameters.

Note that once the constraints such asz are computed
from a given approximate method, some of the quantities
such as the total number of particlesknl and the value of the
self-energy at zero frequency,Ss0d, can be computed fully
self-consistently. They can be compared with their non-self-
consistent values. If the approximate scheme already pro-
vides a good approximation forknl and satisfies the Friedel
sum rule, the self-consistency check can be avoided, hence
accelerating the calculation. Indeed we found that inclusion
of the self-consistency requirement improves the results only
marginally except when we are in close vicinity to the Mott
transition, but here we do not expect that our simple interpo-
lative algorithm is very accurate.

We now give the description of the approximate methods
for solving the impurity model and then present the compari-
sons of our interpolative procedure with the QMC calcula-
tions.

III. METHODS FOR SOLVING IMPURITY MODEL

A. Quantum Monte Carlo method

The quantum Monte Carlo method is a powerful and
manifestly not perturbative approach in either the interaction
U or the bandwidthW. In the QMC method one introduces a
Hubbard-Stratonovich field and averages over it using Monte
Carlo sampling. This is a controlled approximation using a
different expansion parameter, the size of the mesh for the
imaginary time discretization. Unfortunately it is computa-
tionally very expensive as the number of time slices and the
number of Hubbard-Stratonovich fields increases. Also the
method works only on the imaginary axis while analytical
continuation is less accurate and has to be done with great
care. An extensive description of this method can be found in
Ref. 1. We will use this method to benchmark our calcula-
tions using approximate algorithms described later in this
section. The parameterDt=0.25 is used in all QMC simula-
tions. For the calculations requiring a fixed mean number of
electronsn̄, the values of the chemical potental are adjusted
to reach the desired numbern̄ with an accuracy not worse
than 0.3%.

B. Slave-boson mean field method

A fast approach to solve the general impurity problem is
the slave-boson method.23–25At the mean-field level, it gives
results similar to the famous Gutzwiller approximation.22

However, it is improvable by performing fluctuations around
the saddle point. This approach is accurate as it has been
shown recently to give the exact critical value ofU in the
large-degeneracy limit at half filling.28

The main idea is to rewrite atomic states consisting ofn
electronsug1,… ,gnl , 0ønøN, with the help of a set of
slave bosonshcn

g1,…,gnj. In the following, we assume the
SUsNd symmetric case, i.e., equivalence between different
statesug1,… ,gnl for fixed n. The formulas corresponding to
the more general crystal-field case are given in the Appendix.
The creation operator of the physical electron is expressed
via slave particles in the standard manner.24 In order to re-
cover the correct noninteracting limit at the mean-field level,
the Bose fieldscn can be considered as classical values
found from minimizing a LagrangianLhcnj corresponding to
the Hamiltonians1d. Two Lagrange multipliersl and L
should be introduced in this way, which correspond to the
following two constraints:

o
n=0

N

Cn
Ncn

2 = 1, s21d

o
n=0

N

nCn
Ncn

2 = TNo
iv

Ggsivdeiv0+
= n̄. s22d

The numberscn
2 are similar to the probabilitiesXn dis-

cussed in connection with the formula for the atomic Green’s
function s3d. We thus see the physical meaning of the first
constraint, which is that the sum of probabilities of finding
the atom in any state is equal to 1, and the second constraint
gives the mean number of electrons coinciding with that
found from Ggsvd=fv−l−b2Dsivdg−1. The combinatorial
factorCn

N=N! / n! sN−nd! comes due to the assumed equiva-
lence of all states withn electrons.

Minimization of Lhcnj with respect tocn leads us to the
following set of equations to determine the quantitiescn:

fEn + L − nlgcn + nbTo
iv

DsivdGgsivdfLRcn−1 + cnbL2g

+ sN − ndbTo
iv

DsivdGgsivdfR2bcn + LRcn+1g = 0,

s23d

whereb=RLon=1
N Cn−1

N−1cncn−1 determines the mass renormal-
ization, and the coefficientsL=s1−on=1

N Cn−1
N−1cn

2d−1/2, R=s1
−on=0

N Cn
N−1cn

2d−1/2 are normalization constants as in Refs. 23
and 24.En=e fn+Unsn−1d /2 is the total energy of the atom
with n electrons in the SUsNd approximation.

Equations23d along with the constraintss21d,s22d consti-
tute a set of nonlinear equations which have to be solved
iteratively. In practice, we consider Eq.s23d as an eigenvalue
problem withL being the eigenvalue andcn being the eigen-
vectors of the matrix. The physical root corresponds to the
lowest eigenvalue ofL which gives a set ofcn determining
the mass renormalizationZ=b2. Since the matrix to be di-
agonalized depends nonlinearly oncn via the parameters
L , R, andb and also onl, the solution of the whole problem
assumes self-consistency:sid we build an initial approxima-
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tion to cn sfor example the Hartree-Fock solutiond and fix
somel; sii d we solve the eigenvalue problem and find new
normalizedcn; siii d we mix the newcn with the old ones
using the Broyden method29 and build newL , R, and b.
Stepssii d and siii d are repeated until self-consistency with
respect tocn is reached. During the iterations we also varyl
to obey the constraints. The described procedure provides a
stable computational algorithm for solving the AIM and
gives us access to the low-frequency Green’s function and
the self-energy of the problem via knowledge of the slope of
Im Ssivd and the value ReSs0d at zero frequency.

The described slave-boson method gives the following
expression for the self-energy:

Ssvd = s1 − b−2dv − e f + lb−2. s24d

The impurity Green’s functionGfsvd in this limit is given by
the expression

Gfsvd = b2Ggsvd. s25d

As an illustration, we now give the solution of Eq.s23d
for the nondegenerate casesN=2d and at the particle-hole
symmetry point withe f −m=−sU /2dsN−1d. Consider the dy-
namical mean-field theory for the Hubbard model which re-
duces the problem to solving the impurity model subject to
the self-consistency condition with respect toDsvd. Starting
with the semicircular density of statessDOSd, the self-
consistency condition is given by Eq.s23d. We obtain the
following simplifications: L=R=Î2, l=0, c0=c2, b
=4c1c2, and Ggsvd=fv−sW/4d2b2Ggsvdg−1. The sum
ToivDsivdGgsivd appearing in Eq.s23d scales asWa /2 with
the constanta being the characteristic of a particular density
of states and approximately equal to −0.2 in the semicircular
DOS case. A self-consistent solution of Eq.s23d is therefore
possible and simply givesc2

2=U /32Wa+1/4. The Mott
transition occurs when no sites with double occupancies can
be found, i.e., whenc0=c2=0. The critical value ofUc
=8Wuau. For a<−0.2, this givesUc<1.6W and reproduces
the result forUc2=1.49W known from the QMC calculation
within a few percent accuracy. As the degeneracy increases,
the criticalU is shifted toward higher values.28 From numeri-
cal calculations we obtained the following values of the criti-
cal interactions in the half-filled case:Uc<3W for N=6 sp
leveld, Uc<4.5W for N=10 sd leveld, and Uc<6W for N
=14 sf leveld.

The density-density correlation functionknnl for local
states withn electrons is proportional to the number of pairs
formed by n particles C2

n/C2
N. Since the probability forn

electron orbitals to be occupied is given byPn=cn
2Cn

N, the
physical density-density correlator can be deduced from
knnl=onC2

n/C2
NPn. Similarly, the triple occupancy can be

calculated fromknnnl=onC3
n/C3

NPn.
Let us now check the accuracy of this method by compar-

ing its results with the QMC data. We consider the two-band
Hubbard model in the SUsN=4d orbitally degenerate case.
The hybridizationDsvd satisfies the DMFT self-consistency
condition of the Hubbard model on a Bethe lattice

Dsvd = SW

4
D2

Gsvd. s26d

The Coulomb interaction is chosen to beU=2W which is
sufficiently large to open the Mott gap at integer fillings. All
calculations are done for the temperatureT=W/32.

We first compare the average number of electrons vs
chemical potential determined from the slave bosons, which
is plotted in Fig. 1sad. This quantity is sensitive to the low-
frequency part of the Green’s function which should be de-
scribed well by the present method. We see that it reproduces
the QMC data with a very high accuracy and only differs by
20% very near the jump ofm̃ at n=1.

The quasiparticle residuez versus filling n̄ is plotted in
Fig. 1sbd. The slave-boson method gives a Fermi liquid and
provides estimates for the quasiparticle residue with an over-
all discrepancy of the order of 30%. Here we would like to
point out thatsid the extraction of zero-frequency self-energy
slopes from the high-temperature QMC calculation is by it-
self numerically not a well-grounded procedure, as informa-
tion for the self-energy is known at the Matsubara points
only, which is then extrapolated tov=0; sii d other methods
for solving the impurity model, such as the NCA or IPT,
display similar discrepancies; andsiii d recent findings28 sug-
gest that at least at half filling quasiparticle residues deduced
from slave bosons become exact whenN→`. Most impor-
tant for our interpolative method is that the entire functional
dependence ofz vs filling, interaction, and degeneracy is
correctly captured. Its overall accuracy is acceptable as is
evident from our comparisons of the spectral functions pre-
sented in the next section and well within the main goal of
our work to provide fast scans of the entire parameter space
necessary for simulating real materials.

FIG. 1. sColor onlined Comparison between the slave-boson
mean-field and the QMC calculations forsad concentration versus
chemical potentialm̃=m−e f −sN−1dU /2, sbd dependence of the
spectral weightZ on concentration, andscd density-density correla-
tion functionknnl versus fillingn̄, in the two-band Hubbard model
in SUs4d andU=4=2W.
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Figure 1scd shows the density-density correlation function
knnl as a function of average occupationn̄. The discrepancy
is most pronounced for fillingsn̄,1 fsee the inset of Fig.
1scdg where the absolute values ofknnl are rather small. Al-
though our slave-boson technique captures only the quasipar-
ticle peak, it gives a correlation function in reasonable agree-
ment with the QMC result for dopings not too close to the
Mott transition.

C. Hubbard I approximation

Now we turn to the Hubbard I approximation26 which is
closely related to the moments expansion method.30 Consider
many-body atomic statesuFk

sndl which in SUsNd are all de-
generate with indexk denoting these states for a given num-
ber of electronsn. The impurity Green’s functions is defined
as the average

Gfstd = − kTtfastdfb
†s0dl s27d

and becomes diagonal with all equal elements in SUsNd. It is
convenient to introduce the Hubbard operators

X̂kk8
nn8 = uFk

sndlkFk8
sn8du s28d

and represent the one-electron creation and destruction op-
erators as follows:

fa = o
n

o
kk8

kFk
sndufauFk8

sn+1dlX̂kk8
nn+1, s29d

fa
† = o

n
o
kk8

kFk
sn+1dufa

†uFk8
sndlX̂kk8

n+1n. s30d

The impurity Green’s functions27d is given by

Gfstd = o
nm

Gnmstd, s31d

where the matrixGnmstd is defined as

Gnmstd = − o
k1k2k3k4

kFk1

sndufauFk2

sn+1dlkTtX̂k1k2

nn+1stdX̂k3k4

m+1ms0dl

3kFk3

sm+1dufa
†uFk4

smdl. s32d

Establishing the equations forGnmstd can be performed
using the method of equations of motion for theX operators.
Performing their decoupling due to Hubbard,26,31 carrying
out the Fourier transformation and analytical continuation to
the real frequency axis, and summing overn andm after Eq.
s31d, we arrive at the net result

Gf
−1svd = Gat

−1svd − Dsvd. s33d

The Gatsvd can be viewed in the matrix forms31d with the
following definition of the diagonal atomic Green’s function:

Gnm
at svd = dnm

Cn
N−1sXn + Xn+1d

v + m − En+1 + En
s34d

with En=e fn+Unsn−1d /2 being the total energies of the
atom withn electrons in SUsNd. The coefficientsXn are the

probabilities of finding an atom withn electrons and were
already discussed in connection with the formulas3d for the
atomic Green’s function. They are similar to the coefficients
cn

2 introduced within the SBMF method but now found from
a different set of equations. These numbers are normalized to
unity, on=0

N Cn
NXn=on=0

N−1Cn
N−1sXn+Xn+1d=1, and are expressed

via the diagonal elements ofGnmsivd as follows:

Xn = − To
iv

Gnnsivde−iv0+
/Cn

N−1. s35d

Their determination in principle assumes solving a nonlinear
set of equations while determiningGfsvd. The mean number
of electrons can be measured asn̄=on=0

N nCn
NXn or as n̄

=TNoivGfsivdeiv0+
. The numbersXn can also be used to find

the averagesknnl , knnnl in a way similar to what has been
done in the SBMF approach.

If we neglect the hybridizationDsvd in Eq. s33d, the prob-
abilities Xn become simply statistical weights:

Xn =
e−sEn−mnd/T

o
m=0

N

Cm
Ne−sEm−mmd/T

. s36d

We thus see that in principle there are several different ways
to determine the coefficientsXn, either via self-consistent
determinations35d, or using the statistical formulas36d, or
taking them from the SBMF equations23d, i.e., settingXn
=cn

2 while still utilizing the functional dependence provided
by the Hubbard I method. To determine the best procedure
let us first consider the limits of large and smallU’s. When
Dsvd;0, Gfsvd is reduced toonmGnm

at svd, i.e., the Hubbard
I method reproduces the atomic limit. SettingU;0 gives
Gfsvd=fv+m−e f −Dsvdg−1, which is the correct band limit.
Unfortunately, at half filling this limit has a pathology con-
nected to the instability toward the Mott transition at any
interaction strengthU. To see this, we consider the dynami-
cal mean-field theory for the Hubbard model. Using a semi-
circular density of states, we obtainGfsvd=f1
−sW/4d2GfsvdGatsvdg−1Gatsvd and conclude that for any
smallU the system opens a pathological gap in the spectrum.
Clearly, using the Hubbard I method only, the behavior of the
Green’s function atv→0 cannot be reproduced and the
quality of the numbersXn is in question. This already em-
phasizes the importance of using the slave-boson treatment
at small frequencies.

Ultimately, making the comparisons with the QMC calcu-
lations is the best option in picking the most accurate proce-
dure to compute the probabilitiesXn. To check the accuracy
against the QMC result we again consider the two-band Hub-
bard model in SUs4d symmetry as above. The chemical
potential, mass renormalization, and double occupancy are
plotted versus filling in Fig. 2. All quantities here were com-
puted with the self-consistent determination ofXn after Eq.
s35d. We first see that the Hubbard I approximation does not
give satisfactory agreement with the QMC data forn̄sm̃d be-
cause it misses the correct behavior at low frequencies.

The comparisons forzsn̄d plotted in Fig. 2sbd surprisingly
show a relatively good behavior. However, since the Hub-
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bard I approximation is never a Fermi liquid, it is not fair to
talk aboutz in our context because there are no quasiparticles
there. Figure 2scd showsknnl as a function of average occu-
pation n̄. As this quantity is directly related to the high-
frequency expansion one may expect a better accuracy here.
However, comparing Fig. 2scd and Fig. 1scd, it is clear that
the slave-boson method gives more accurate double occu-
pancy. This is due to the fact that the density matrix obtained
by the slave-boson method is of higher quality than the one
obtained from the Hubbard I approximation.

The results of these comparisons suggest that the prob-
abilities cn

2 provided by the slave-boson method are a better
way of determining the coefficientsXn in the metallic region
of parameters. Therefore it is preferable to use these numbers
while establishing the equations for the unknown coefficients
in the interpolational forms2d. However, the functional form
s34d of the Hubbard I approximation withXn=cn

2 can still be
used as it provides the positions of the polesPn

sGd and zeros
Zn

sGd of the atomic Green’s function necessary for the condi-
tion sdd in the previous section. This also ensures accurate
high-frequency behavior of the interpolated self-energy since
its moments expressed via multiple occupancies are directly
related tocn

2.
Interestingly, while the more sophisticated QMC approach

captures both the quasiparticle peak and the Hubbard bands
this is not the case for the slave-boson mean-field method. To
obtain the Hubbard bands in this method fluctuations need to
be computed, which would be very tedious in the general
multiorbital situation. However the slave-boson method de-
livers many parameters in good agreement with the QMC
results, and, hence, it can be used to give the functional
dependence of the coefficients of the rational approximation.

IV. RESULTS OF THE INTERPOLATIVE SCHEME

By now the procedure to determine the coefficients is well
established. We use the SBMF method to determine
n̄, Ss`d , Ss0d, andz as well as the poles and zeros of the
atomic Green’s function provided by the SBMF probabilities
cn

2 and by the bare atomic energy levelsEn swe omit the
lifetime effects for simplicityd. This generates a set of linear
equations for coefficientsam

a , bm
a in the rational interpolation

formula s2d. In the present section we show the trends our
interpolative algorithm gives for the spectral functions in
various regions of parameters as well as provide detailed
comparisons for some values of doping for both the imagi-
nary and real axis spectral functions. The two-band Hubbard
model with semicircular density of states and DMFT self-
consistency condition afters26d is utilized in SUsN=4d sym-
metry in all cases using the bandwidthW=2 and temperature
T=1/16.

A. Trends

Figure 3 shows the behavior of the density of states
Nsvd=−Im Gfsvd /p for U=W as a function of the chemical
potentialm̃ computed with respect to the particle-hole sym-
metry point sN−1dU /2 and as a function of frequencyv.
The semicircular quasiparticle band is seen at the central part
of the figure. Its bandwidth is only weakly renormalized by
the interactions in this regime. It is half filled form̃=0 fi.e.,
when m=e f −sN−1dU /2g and gets fully emptied when the
chemical potential is shifted to negative values. Several weak
satellites can also be seen on this figure, which are due to
atomic poles. Their spectral weight is extremely small in this
case and any sizable lifetime effectswhich was not included
while plotting this figured will smear these satellites out al-
most completely. When approaching the fully emptiedsor
fully filled d situation the spectral weight of the Hubbard
bands disappears completely and only the unrenormalized
quasiparticle band remains. It is clear that even without shift-

FIG. 2. sColor onlined Comparison between the Hubbard I and
the QMC calculations forsad concentration versus chemical poten-
tial m̃=m−e f −sN−1dU /2, sbd dependence of the spectral weightZ
on concentration, andscd density-density correlation function
knana8l versus filling n̄, in the two-band Hubbard model in SUs4d
and forU=2W=4.

FIG. 3. sColor onlined Calculated density of states using the
interpolative method as a function of chemical potentialm̃=m−e f

−sN−1dU /2 and frequency for the two-band Hubbard model in
SUs4d and atU=W=2.

SAVRASOV et al. PHYSICAL REVIEW B 71, 115117s2005d

115117-8



ing the atomic poles to the complex axis, the numerical pro-
cedure of generating the self-energy is absolutely stable.

This trend can be directly compared with the simulations
using a more accurate QMC impurity solver. We present this
in Fig. 4 for U=W, which shows the calculated density of
states in the same region of parameters. Remarkably, again
we can distinguish the renormalized quasiparticle band and
very weak Hubbard satellites. The Hubbard bands appear to
be much more diffuse in this figure mainly due to the life-
time effects and partially due to the maximum entropy
method used for analytical continuation from the imaginary
to the real axis. Otherwise the entire picture looks very much
like the one on Fig. 3, generated with much less computa-
tional effort.

Figure 5 gives the same behavior of the density of states
for the strongly correlated regimeU=2W. In this case the
situation at integer filling is totally different as the system
undergoes the metal-insulator transition. This is seen around
the dopings levels withm̃ between 0 and −1 and between −3
and −5 where the width of the quasiparticle band collapses
while lower and upper Hubbard bands acquire all the spectral
weight. In the remaining region of parameters both the
strongly renormalized quasiparticle band and Hubbard satel-
lites remain. Again, once full filling or full emptying is ap-
proached the quasiparticle band has its original bandwidth
restored while the Hubbard bands disappear. The QMC result
for the same region of parameters is given in Fig. 6. Again
we can distinguish the renormalized quasiparticle band and
Hubbard satellites as well as the areas of Mott insulator and
of strongly correlated metal. The Hubbard bands appear to be
sharper in this figure, which signals the approach to the
atomic limit.

B. Comparison for spectral functions on imaginary axis

We now turn to the comparison of the Green’s functions
and the self-energies obtained using the formulass9d ands2d,

respectively, against the predictions of the quantum Monte
Carlo method. We will report our comparisons for the two-
band Hubbard model and sets of dopings corresponding to
n̄=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 using the value ofU=2W=4.
Other tests for different degeneracies, doping levels, and in-
teractions have been performed and display similar accuracy.

Figure 7 shows the comparison between the real and
imaginary parts of the Green’s function obtained by the in-
terpolative method with the results of the QMC calculations.
As one can see, almost complete agreement has been ob-
tained for a wide regime of dopings. The agreement gets less
accurate once half filling is approached, but is still very good
given the extraordinary computational speed of the interpo-
lative method compared to QMC simulations.

FIG. 4. sColor onlined Calculated density of states using the
QMC method as a function of chemical potentialm̃=m−e f −sN
−1dU /2 and frequency for the two-band Hubbard model in SUs4d
and atU=W=2.

FIG. 5. sColor onlined Calculated density of states using the
interpolative method as a function of chemical potentialm̃=m−e f

−sN−1dU /2 and frequency for the two-band Hubbard model in
SUs4d and atU=2W=4.

FIG. 6. sColor onlined Calculated density of states using the
QMC method as a function of chemical potentialm̃=m−e f −sN
−1dU /2 and frequency for the two-band Hubbard model in SUs4d
and atU=2W=4.
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Figure 8 shows similar comparison between the real and
imaginary parts of the self-energies obtained by the interpo-
lative and the QMC methods. We can see that the self-
energies exhibit some noise which is intrinsic to the stochas-
tic QMC procedure. The values of the self-energies neariv
=0 and` are correctly captured with some residual discrep-
ancies, attributed to slightly different chemical potentials
used to reproduce the given filling within each method. The
results on the imaginary axis show slightly underestimated
slopes of the self-energies within the interpolative algorithm,
which is attributed to the underestimated values ofz obtained
from the SBMF calculation. Ultimately, improving these
numbers by inclusions of fluctuations beyond the mean field
will further improve the comparisons. However, even at the
present stage of accuracy, all the functional dependence
given by the SBMF method quantitatively captures the be-
havior of the self-energy seen from the time-consuming
QMC simulation.

C. Comparison for spectral functions on real axis

We also made detailed comparisons between the calcu-
lated densities of states obtained on the real axis using the
interpolative method and the QMC algorithm. The QMC

densities of states require an analytical continuation from the
imaginary to the real axis and were generated using the
maximum entropy method. By itself this procedure intro-
duces some errors within the QMC calculation especially at
higher frequencies. In Fig. 9, we show our results for the
fillings corresponding ton̄=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 using
the value ofU=2W=4. One can see the appearance of the
quasiparticle band and two Hubbard bands distanced by the
value ofU. It can be seen that the interpolative method re-
markably reproduces the trend in shifting of the Hubbard
bands upon changing the doping. It automatically holds the
distance between them to the value ofU, while this is not
always true in the quantum Monte Carlo method. Despite
this result, the overall agreement between both methods is
very satisfactory.

V. DISCUSSION

Here we would like to discuss possible ways to further
improve the accuracy of the method. The inaccuracies are
mainly seen in three different quantities:sid the width of the
Hubbard bands,sii d the mass renormalizationzsmd which is
borrowed from the SBMF method, andsiii d the number of
electrons nsmd extracted from the interpolated impurity

FIG. 7. sColor onlined Comparison between real and imaginary
parts of the Green’s function obtained from the interpolative
method and the quantum Monte Carlo calculation for the two-band
Hubbard model at a set of fillingsn̄=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 and
U=2W=4.

FIG. 8. sColor onlined Comparison between real and imaginary
parts of the self-energies obtained from the interpolative method
and the quantum Monte Carlo calculation for the two-band Hubbard
model at a set of fillingsn̄=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 andU
=2W=4.
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Green’s functions9d. The inaccuracy in the width of the
Hubbard band is mainly connected to neglecting the lifetime
effect. Provided it is computed, this will shift the positions of
atomic poles onto the complex plane, which is in principle
trivial to account for within our interpolative algorithm. To
improve the accuracy ofzsmd one can, for example, work out
a modified slave-boson scheme which will account for the
fluctuations around the mean-field solution. The inaccuracy
in nsmd is small in many regions of parameters and typically
amounts to 5-10 %. We can try to improve this agreement by
the requirement thatnsmd obtained via interpolation matches
with nSBMFsmd obtained by the SBMF method. The latter
agrees very well with the QMC result for a wide region of
parameters as is evident from Fig. 1sad. In reality, our analy-
sis shows that in many cases the discrepancy innsmd is con-
nected with the overestimation ofzSBMFsmd. Therefore,
points sii d and siii d mentioned above are interrelated.

The requirement thatnsmd=nSBMFsmd can be enforced by
adjusting the width of the quasiparticle band, and in many
regions of parameters this is controlled byzsmd. However,
there are situations when the Hubbard band appears in the

vicinity of v=0, and changingzsmd does not affect the band-
width. To gain control in those cases it is better to replace the
constraintsSs0d , dS /dvuv=0 by the constraints of fixing the
self-energies at two frequencies, saySs0d andSsiv0d, where
v0 is a frequency of order of the renormalized bandwidth.
We have found that this scheme gives mass renormalizations
which are about 30% smaller than the SBMF ones, and the
agreement with the QMC result is significantly improved.
Thus, inaccuraciessii d andsiii d can be avoided with this very
cheap trick. However, we also would like to point out that
the conditionnsmd=nSBMFsmd is essentially nonlinear as the
solution may not exist for all regions of parameters. It is, for
example, evident that at such points wherensmd is given by
a symmetryssuch as, e.g., the particle-hole symmetry point
n=2 in the case considered aboved the mass renormalization
does not affect the number of electrons.

As the philosophy of our approach is to get the best pos-
sible fit we are also open to implementing any kinds ofad
hoc renormalization constants. One such possibility could be
the use of a quasiparticle residue 30% smaller thanzSBMFsmd.
As zsmd should go to unity whenU=0, the correction
can, for example, be encoded into the formulazsmd
=zSBMFsmdf0.7+0.3zSBMFsmdg.

We finally would like to remark that the scheme defined
by the set of linear equations for the coefficientss14d–s19d is
absolutely robust as solutions exist for all regimes of param-
eters such as the strength of the interaction, doping, and de-
generacy. In general, including any information on the self-
energySsvxd at some frequency pointvx or its derivative
dS /dvuv=vx

would generate a linear relationship between the
interpolation coefficients, thus keeping the robustness of the
method. On the other hand, fixing such relationships as the
numbers of electrons brings nonlinearity to the problem,
which could lead to multiplicity or nonexistence of solutions.
It is also clear that by narrowing the regime of parameters,
the accuracy of the interpolative algorithm can be systemati-
cally increased.

VI. CONCLUSION

To summarize, this paper shows the possibility of interpo-
lating the self-energies for a whole range of dopings, degen-
eracies, and interactions using a computationally efficient al-
gorithm. The parameters of the interpolation are obtained
from a set of constraints in the slave-boson mean-field
method combined with the functional form of the atomic
Green’s function. The interpolative method reproduces all
trends in remarkable agreement with such a sophisticated
and numerically accurate impurity solver as the QMC
method. We also obtain a very good quantitative agreement
in a whole range of parameters for such quantities as mean
level occupancies, spectral functions, and self-energies.
Some residual discrepancies remain, which can be corrected
provided better algorithms delivering the constraints are uti-
lized. Nevertheless, given the superior speed of the present
approach, we have obtained a truly exceptional accuracy and
efficiency of the proposed procedure.

ACKNOWLEDGMENTS

The work was supported by NSF-DMR Grants No.
0096462, No. 02382188, No. 0312478, and No. 0342290 and

FIG. 9. sColor onlined Comparison between the one-electron
densities of states obtained from the interpolative formula and the
quantum Monte Carlo calculation for the two-band Hubbard model
at fillings n̄=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 andU=2W=4.

INTERPOLATIVE APPROACH FOR SOLVING THE… PHYSICAL REVIEW B 71, 115117s2005d

115117-11



by U.S. DOE Grant No. DE-FG02-99ER45761. The authors
also acknowledge financial support from the Computational
Material Science Network operated by U.S. DOE and from
the Ministry of Education, Science and Sport of Slovenia.

APPENDIX

In the crystal-field case we assume that theN-fold degen-
erate impurity levele f is split by a crystal field intoG sub-
levels e f1,… ,e fa ,… ,e fG. We assume that for each sublevel
there is still some partial degeneracyda so thatoa=1

G da=N.
In the limiting case of SUsNd degeneracy,G=1, d1=N, and
in the nondegenerate case,G=N, d1=da=dG=1. We need to
discuss how a number of electronsn can be accommodated
over different sublevelse fa. Introducing the numbers of elec-
trons in each sublevel,na, we obtainoa=1

G na=n. Note the
restrictions: 0,n,N, and 0,naøda. In the SUsNd case,
G=1, n1=n, and in the nondegenerate case,G=N, andna is
either 0 or 1. The total energy for the shell withn electrons
depends on the particular configurationhnaj,

En1,…,nG
= o

a=1

G

e fana +
1

2
UsSanadfsSanad − 1g. sA1d

The many-body wave function is also characterized by a set
of numbershnaj, i.e., un1,… ,nGl. The energyEn1,…,nG

re-
mains degenerate, and can be calculated as the product of the
number of combinations existing to accommodate the elec-
trons in each sublevel, i.e.,Cn1

d13 ¯ 3Cna

da 3 ¯ 3CnG

da. Let
us further introduce the probability amplitudescn1,…,nG

to
find a shell in a given state with energyEn1,…,nG

. The sum of
all probabilities should be equal to 1, i.e.,

o
n1=0

d1

¯ o
na=0

da

¯ o
nG=0

dG

Cn1

d1 3 ¯ 3 Cna

da 3 ¯

3 CnG

dGcn1,…,nG

2 = 1. sA2d

There are two Green’s functions in the Gutzwiller

method: the impurity Green’s functionĜfsivd and the quasi-

particle Green’s functionĜgsvd= b̂−1Ĝfsvdb̂−1, where the

matrix coefficientsb̂ represent generalized mass renormal-
ization parameters. All matrices are assumed to be diagonal
and have diagonal elements enumerated as follows:
G1svd ,… ,Gasvd ,… ,GGsvd. Each element in the Green’s
function is represented as follows:

Ggasvd =
1

v − la − ba
2Dasvd

, sA3d

Gfasvd = ba
2Ggasvd sA4d

and determines the mean number of electrons in each sub-
level,

n̄a = daTo
iv

Ggasivdeiv0+
. sA5d

The total mean number of electrons is thusn̄=oa=1
G n̄a. The

hybridization functionD̂sivd is a matrix that is assumed to be
diagonal, and it has diagonal elements enumerated as fol-
lows: D1svd ,… ,Dasvd ,… ,DGsvd. The mass renormaliza-
tions Za=ba

2 are determined in each sublevel.
The diagonal elements for the self-energy are

Sasvd = v + m − e fa − Dasvd − Ga
−1svd

= vS1 −
1

ba
2D − e fa −

la

ba
2 . sA6d

Here,

ba = RaLa o
n1=0

d1

¯ o
na=1

da

¯ o
nG=0

dG

Cn1

d1 3 ¯ 3 Cna−1
da−1 3 ¯

3 CnG

dGcn1,…,na,…,nG
cn1,…,na−1,…,nG

, sA7d

La = S1 − o
n1=0

d1

¯ o
na=1

da

¯ o
nG=0

dG

Cn1

d1 3 ¯ 3 Cna−1
da−1 3 ¯

3 CnG

dGcn1,…,na,…,nG

2 D−1/2

, sA8d

Ra = S1 − o
n1=0

d1

¯ o
na=0

da−1

¯ o
nG=0

dG

Cn1

d1 3 ¯ 3 Cna

da−1 3 ¯

3 CnG

dGcn1,…,na,…,nG

2 D−1/2

. sA9d

The generalization of the nonlinear equationss23d has the
form

0 = fEn1,…,nG
+ L − sSa

Glanadgcn1…nG
+ o

a=1

G

nafTSivDasivd

3GgasivdgbafRaLacn1,…,na−1,…,nG
+ baLa

2cn1,…,na,…,nG
g

+ o
a=1

G

sda − nadfTSivDasivdGgasivdg

3bafRaLacn1,…,na+1,…,nG
+ baRa

2cn1,…,na,…,nG
g. sA10d
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