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Nodal-Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator
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We study the superconducting state of the hole-doped two-dimensional Hubbard model using cellular
dynamical mean-field theory, with the Lanczos method as impurity solver. In the underdoped regime, we
find a natural decomposition of the one-particle (photoemission) energy gap into two components. The
gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping.
The antinodal gap has an additional contribution from the normal component of the self-energy, inherited
from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.
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Superconductivity in strongly correlated materials such
as the high-T, cuprates has been the subject of intensive
research for more than 20 years (for a review, see, e.g., [1]).
From the theoretical side, low-energy descriptions in terms
of quasiparticles interacting with bosonic modes have been
widely studied starting from the weak correlation limit. A
different approach views the essence of the high-7'. phe-
nomenon as deriving from doping with holes a Mott insu-
lator [2]. The strong correlation viewpoint has not been yet
developed into a fully quantitative theory and whether the
weak- and strong-coupling pictures are qualitatively or
only quantitatively different is an important open issue.

The development of dynamical mean-field theory
(DMFT) and its cluster extensions [3] provides a new
path to investigate strongly correlated systems. These
methods construct a mean-field theory for Hubbard-like
models using a cluster of sites embedded in a self-
consistent bath. Extensive investigations have been carried
out for intermediate interaction strength using the dynami-
cal cluster approximation on large clusters [4]. The strong-
coupling limit is more difficult, as only small clusters can
be employed. Many groups, however, have identified in-
teresting phenomena, such as the competition between
superconductivity and antiferromagnetism [5], the pres-
ence of a pseudogap (PG) [6], the formation of Fermi
arcs [7-10], and the existence of an avoided critical point
[11]. In this work we use cellular DMFT (CDMEFT) to
explore the energy gap in the one-particle spectra of the
superconducting state when correlations are strong. The
goal is to identify qualitative aspects of the approach to the
Mott transition in the light of recent experimental studies
on superconducting underdoped cuprates [12—16], which
report the presence of two distinct energy scales.
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We consider the two-dimensional Hubbard model:
H == tycl,c;io+ U ngny (1)
i,j,o i

¢; , destroys a o-spin electron on site i, n;, = c;rgc,-(, is the
number operator, and #; = u is the chemical potential.
Only next-neighbor ¢ and nearest-next-neighbor ¢ =
—0.3¢ hoppings are considered. The on-site repulsion is
set U = 12t. We implement CDMFT on a 2 X 2 plaquette.
Though this is the minimal configuration allowing to study
a d-wave superconducting state, it already presents a rich
physics and we think that its deep understanding is an
essential step to be accomplished before challenging big-
ger clusters (hardly accessible by the computational meth-
ods presently available). H is mapped onto a2 X 2 cluster
Anderson impurity model which is solved using the
Lanczos method [17]. The CDMFT self-consistency con-
dition [18] is then enforced via the Dyson relations

S(iw,) = G '(iw,) — G '[S](iw,), which determines
the cluster self-energy S.. The hat denotes 8 X 8 matrices
with cluster-site indices containing both normal and
anomalous components (Nambu notation). G is the
“Weiss field” describing the bath, G[3] is the one-particle
cluster Green’s function [18], and w, = (2n + 1)7r/ B the
Matsubara frequencies, with St = 300. The bath is de-
scribed by 8 energy levels determined through a fit on
the Matsubara axis (0 < w,, < 2U), which weights more
the low frequencies [8].

Our main result is the presence of two energy scales on
the underdoped side of the phase diagram. We first show
that this can be established directly from an analysis of
quantities inside the 2 X 2 cluster, which are the output of
the CDMFT procedure. In the left panel of Fig. 1 we
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FIG. 1 (color online). Left: ReX{3° vs w,. In the inset, the
w, — 0 value as a function of doping 6. Right: The distance
from the Fermi level (w = 0) of the left (circle) and right
(square) edge-peaks in the local DOS —% ImG,; (see inset)
are displayed as a function of 6. The dashed line is the average of
the left and right values. In the inset Gy; is shown for 6 = 0.06
using a broadening 1 ~ 7 X 1073¢ to display poles.

display the real part of the anomalous cluster self-energy
3310 on the Matsubara axis. Only the nearest-neighbor
component Re24%°(iw) is appreciably nonzero. The main
observation is that at low energy 275°(0) presents a non-
monotonic behavior with doping 0, as emphasized in the
inset. A first characteristic energy scale, measuring the
superconducting  contribution to the one-particle
energy gap, can be defined as Z,,42%5°(0), where Z,.4 is
the quasiparticle spectral weight at the nodal k points,
where quasiparticles are well defined. As shown below,
and as physically expected, Z,,q decreases as the doping is
reduced towards the Mott insulator. Hence, Z,,q235°(0)
decreases too due to the behavior of both Z, 4 and
245°(0). We stress the sharp contrast of this result with
resonating valence bond mean-field (RVBMF) theories
[19], where Z,,,q245°(0) corresponds to the spinon pairing
amplitude which is largest close to half-filling. In the right
panel of Fig. 1 we show that there is actually another
energy scale, which increases when the doping level is
reduced. This is revealed by looking at the local density
of state (DOS) — LImG; in G[2]. In the Lanczos CDMFT
the spectral function on the real axis is obtained as a
discrete set of poles (shown in the inset), which are dis-
played by adding a small imaginary broadening in. We
extract relevant energy scales by measuring the distance
from the Fermi level of the gap edge peaks. While for 6 >
0.08 the spectrum is symmetric, an asymmetry appears for
6 < 0.08. The total energy gap (dashed line in Fig. 1)
grows with decreasing doping 6, as in RVBMEF theories.
In order to make contact with experimental observables
it is useful to obtain momentum-resolved quantities from
the local cluster quantities. For this we need a periodization
procedure restoring the translational invariance of the lat-
tice. Several schemes have been proposed [3]. Building on
previous normal-state studies [7,9] we use a mixed scheme
which is able to reconstruct the local cluster Green’s
function (upon integrating over k the lattice Green’s func-
tion) in the nodal and antinodal points better than uniform
periodization schemes. Our method is based on the idea

that, when the self-energies are regular, the most suitable
choice is to periodize the cluster self-energy via the for-
mula

S,k 0) = 1 Y e S, @ @)

¢ uy

(w, v label cluster sites). The anomalous self-energy 2
and the normal self-energy 2" in the nodal regions, where
we expect to find quasiparticles, are well behaved quanti-
ties, therefore we extract them through formula (2). In
particular, the anomalous self-energy acquires a standard
d2_p-wave form: 2*°(k, @) = X{5°(w)(cosk, — cosk,).
On the other hand, when the self-energies develop singu-
larities, the cluster self-energy is not a good quantity to be
periodized. In Ref. [9], it has been shown that this takes
place in the normal self-energy 2" in the antinodal
regions, when the system approaches the Mott insulator.
In this case, a more suitable quantity to be periodized is the

irreducible two-point cluster cumulant M2 (w) = [(w +

w)1 — 2™, which is a more local and regular quantity.
In the antinodal region, therefore, we can apply formula (2)
to M to obtain M™(k, ) and finally extract the
normal lattice  self-energy  3"f(k, w) = @ + u —
1/ M (k, w). The k-dependent Green’s function can be
written as a matrix in Nambu’s space.

— 1, = 32(k )

G )= < w KW 4 — 30k, w) >

o+t + 29k, —w)* )
(3)

The imaginary part of the diagonal entry yields the spectral
function A(k, @) measured in photoemission.

In order to compare our results with experiments, it is
useful to disentangle the normal and superconducting con-
tributions to the spectral gap. To this end, we first set
3 = () in Eq. (3). The results are shown in Fig. 2. The
k points along the nodal and antinodal directions are
chosen as those where the highest peak is observed in
A(k, w), as done, e.g., in Ref. [13]. Their actual values
are shown in the inset of panel C of Fig. 2. Near the nodal
point (panel A) a quasiparticle peak is well defined at the
Fermi level (w = 0) and decreases by decreasing doping.
In the antinodal region (panel B), a quasiparticle peak is
also found at the Fermi level for 6 > 0.08. For 6 < 0.08,
however, the spectral weight shifts to negative energies
signaling the opening of a PG, whose size increases as 6 —
0. The behavior of the PG in the superconducting solution
smoothly connects to the PG previously found in the
normal-state CDMFT study [9]. The approach to the
Mott transition is characterized by a strong reduction in
the area of the nodal spectral peak Z,,4, which is plotted in
panel C (green circles). We also plot the area of the anti-
nodal peak Z,,,q, Which shows a constant value upon the
opening of the PG (8 > 0.08). In panel D, we restore %",
and examine the actual superconducting solution. The
superconducting gap opens in the antinodal region (the
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FIG. 2 (color online). Spectral function A(k, w) for different 8.
Broadening m = 0.03z. Panel A: nodal-quasiparticle peak;
panel B, normal component [set 32" = 0 in Eq. (3)] of the
antinodal quasiparticle peaks; panel C, nodal and antinodal
quasiparticle weights. The inset shows the k positions of the
nodal and antinodal points; panel D, spectra at the antinodes.

nodal region is practically unaffected). For 6 > 0.08 the
spectra are almost symmetric around the Fermi level, as in
a standard BCS d-wave superconductor. In contrast, close
to the Mott transition the PG, which originates from the
normal component, is superimposed to the superconduct-
ing gap, resulting in asymmetric spectra. This reveals the
origin of the left-right asymmetry in the cluster DOS
discussed in Fig. 1.

In the nodal region the quasiparticle peaks are well
defined at all dopings and we can expand the self-energies
at low frequencies. The quasiparticle residue [1 —
d,Re2(w)]!,—o (blue crosses in panel C of Fig. 2)
numerically coincides with the area of the quasiparticle

peak Z,.4. From Eq. (3), we get A(k, w) = Z,0q6(w —

ﬂvz ki + UzAkﬁ)a where Unod = Znodlvk[tk - Enor(k’ O)]l

nod
and vy = v/2Z,,,3%5°(0)| sink,eq| are the normal and
anomalous velocities, respectively, perpendicular and par-
allel to the Fermi surface. v, physically expresses the
superconducting energy-scale discussed in the left panel
of Fig. 1. We display them as a function of doping 6 on the
left side of Fig. 3. v,,q does not show a special trend for
6 — 0 and it stays finite, consistently with experiments
[20]. The anomalous velocity, v, <K v,,q presents a dome-
like shape. This behavior (confirmed by continuous time
quantum Monte Carlo (CTQMC) calculations [21]) is in
agreement with recent experiments on underdoped cup-
rates showing that, contrary to the antinodal gap, the nodal
gap decreases by reducing doping [12-14].

The low-energy behavior of several physical observ-
ables in the superconducting state is controlled by nodal-
quasiparticle properties and hence can be related to v,
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FIG. 3 (color online). Left: v,y and v, as a function of doping
6 (a, is the lattice spacing). Right: low-frequency coefficients of
local DOS vy and of the Raman B,, and superfluid density
response «, renormalized by the value at 6 = 0.16.

v, and Z,,4. Two specific ratios are particularly signifi-
cant, namely: y = Z,0q/(Vnoava) and @ = Z2,/(Vpoqva)-
The first one is associated with the low-energy behavior of
the local DOS measured in tunneling experiments: N(w) =
> Ak, w) ~ yo (for w — 0). Neglecting vertex correc-
tions [12], the second one determines the low-energy B,
Raman response function y”’(w) * a¢w and the low-
temperature (7 — 0) behavior of the penetration depth
(superfluid density) p,(T) — p,(0) = aT. We display «
and 7y in the right panel of Fig. 3 as a function of 8. « is
monotonically decreasing (see also CTQMC results [21])
and, on the underdoped side & < 0.08, it saturates to a
constant value, in agreement with Raman spectroscopy
[12] and penetration depth measurements [22]. Also y
neatly decreases in going from the overdoped to the under-
doped side, but it presents a weak upturn for low doping.
The low-frequency linear behavior of N(w) is well estab-
lished in scanning tunneling experiments on the cuprates
[23]. However, it is not currently possible to determine the
absolute values of the tunneling slope « from experiments,
hence the behavior we find is a theoretical prediction.

We finally turn to the one-electron spectra in the anti-
nodal region, shown in Fig. 4, physically interpreting the
cluster energy scales observed in Fig. 1. We evaluate the
antinodal gap in the superconducting state A, by measur-
ing the distance from the Fermi level (w = 0) at which
spectral peaks are located (panel D of Fig. 2). A, mono-
tonically increases by reducing doping, as observed in
experiments. The data of panel B in Fig. 2, where 3° =
0, allow us to extract the normal contribution A,.,. We
notice that the peaks found there at negative frequency w,
do not represent Landau quasiparticles in a strict sense, but
we can estimate the PG as |w,,|. We also display the
anomalous contribution to the antinodal gap A, =

JAZ, — AZ., and find that, within numerical precision,
Age = Zynodl 22 (kynod» @pe)|. The appearance of A,
signs a downturn in A,. We interpret A, as the mono-
tonically increasing antinodal gap observed in cuprate
superconductors, while the superconducting gap A, de-
tectable as the nodal-slope v, (Fig. 3), is decreasing in
approaching the Mott transition.
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FIG. 4 (color online). Antinodal energy gap A, (circles),
obtained from the spectra of panel D in Fig. 2, as a function
of doping 8, and decomposed in a normal contribution A .
(squares), obtained from panel B in Fig. 2, and in a super-
conducting contribution A, (diamonds).

The concept of two energy gaps with distinct doping
dependence in the cuprates has recently been brought into
focus from an analysis of Raman spectroscopy [12], and
photoemission experiments [13,14], which have revived
experimental and theoretical debate [16]. Our theoretical
dynamical mean-field study of superconductivity near the
Mott transition establishes the remarkable coexistence of a
superconducting gap, stemming from the anomalous self-
energy, with a PG stemming from the normal self-energy.
This is reminiscent of slave-boson RVBMF of the #-J
model [19,24], which uses order parameters defined on a
link and includes the possibility of pairing in both the
particle-particle and the particle-hole channels. Com-
pared to the self-energy of the RVBMEF, the CDMFT lattice
self-energy has considerably stronger variations on the
Fermi surface [9] and additional frequency dependence,
which makes the electron states near the antinodes very
incoherent even in the superconducting state. Furthermore,
in the RVBMF theory the anomalous self-energy mono-
tonically increases by decreasing doping, in contrast to our
CDMEFT results which reveal a second energy scale asso-
ciated with superconductivity, distinct from the PG, which
decreases with decreasing doping. Whether this feature
survives in larger clusters, representing a property of the
real ground-state, or it requires some further ingredient to
be stabilized against competing instabilities (above all
antiferromagnetism at low doping [5]) remains an impor-
tant open question addressed to future developments. We
think, however, that the assumption of a d-wave super-
conducting ground state is a reasonable starting point, and
the importance of our 2 X 2 plaquette CDMFT result
stands in the natural explanation it provides of the proper-
ties of underdoped cuprates.
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