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The � ! � Transition in Ce: A Theoretical View from Optical Spectroscopy
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Using a novel approach to calculate optical properties of strongly correlated systems, we address the old
question of the physical origin of the �! � transition in Ce. We find that the Kondo collapse model,
involving both the f and the spd electrons, describes the optical data better than a Mott transition picture
involving the f electrons only. Our results compare well with existing experiments on thin films. We
predict the full temperature dependence of the optical spectra and find the development of a hybridization
pseudogap in the vicinity of the �! � phase transition.
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At a temperature of 600 K and pressure less than
20 kbar, elemental cerium undergoes a transition between
two isostructural phases: a high pressure phase or � phase
and a low pressure � phase. In �-Ce the f electron is
delocalized (for example, the spin susceptibility is tem-
perature independent) while in �-Ce the f electron is
localized (for example, the electron has a Curie-like sus-
ceptibility) [1]. Several basic questions about this transi-
tion are still being debated. What is the driving mechanism
of this transition? How is the electronic structure coupled
to the volume changes? What is the role of the ‘‘heavy’’ f
and the ‘‘light’’ spd electrons which are near the Fermi
level in this material? These fundamental questions con-
tinue to be the subject of experimental investigations [2,3].

Two main theoretical hypotheses have been advanced to
describe the electronic structure changes across the �-�
boundary. Johansson proposed a Mott transition scenario
[4], where the transition is connected to delocalization of
the f electron. In the� phase the f electron is itinerant, i.e.,
bandlike, while in the � phase it is localized and hence
does not participate in the bonding, explaining the volume
collapse. In this picture the spd electrons are mere specta-
tors well described by the density functional theory calcu-
lations (DFT) in the local density approximation (LDA) or
its extensions.

A different view on this problem was proposed by Allen
and Martin [5] and independently by Lavagna, Lacroix,
and Cyrot [6], who introduced the Kondo volume collapse
model. They suggested that the transition was connected
with modifications in the effective hybridization of the spd
bands with the f electron. The main change when going
from � to � is the degree of hybridization and hence the
Kondo scale. This idea can be implemented mathemati-
cally [5,6] by estimating free energy differences between
these phases by using the solution of an Anderson impurity
model supplemented with elastic energy terms.

More recently, the modern dynamical mean field theory
(DMFT) in combination with realistic band structure cal-
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culations (LDA� DMFT) [7] was brought to bear on this
problem [8,9]. LDA� DMFT allowed the computation of
the photoemission spectra of cerium in both phases and the
thermodynamics of the transition starting from first prin-
ciples. The theoretical results were in good agreement with
existing experiments [10]. The photoemission spectra
close to the Fermi level are dominated by the f electron
density of states. The spectrum of the � phase consists of
Hubbard bands and a quasiparticle peak while the insulat-
ing � phase has no quasiparticle or Kondo peak in the
spectra and consists of Hubbard bands only. These features
are consistent with both the volume collapse picture and
the Mott transition picture.

In this Letter we revisit this problem theoretically using
optical spectroscopy. Our qualitative idea is that the spd
electrons have very large velocities, and therefore they will
dominate the optical spectrum of this material. In the Mott
transition picture, the spd electrons are pure spectators,
and hence no appreciable changes in the optical spectrum
should be observed. On the other hand, if the hybridization
between the spd electrons and the f electrons increases
upon entering the � phase, we expect a hybridization
(pseudo)gap to develop as the temperature is lowered
because spd carriers are strongly modified as they bind
to the f electrons.

Formalism.—Within the LDA� DMFT method [7], the
LDA Hamiltonian is superposed by a Hubbard-like local
Coulomb interaction, which is the most important source
of strong correlations in correlated materials and is not
adequately treated within LDA alone. The resulting many-
body problem is then treated in DMFT spirit, i.e., neglect-
ing the nonlocal part of self-energy. It is well understood
by now that this theory is not only exact in the limit of
infinite dimensions but is also a very valuable approxima-
tion for many three-dimensional systems since it is capable
of treating delocalized electrons from LDA bands as well
as localized electrons on equal footing.
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To calculate the central object of DMFT, the local
Green’s function Gloc, we solved the Dyson equation

�HLDA
k � ��!� � Edc � �kj!Ok� 

R;j
k! � 0; (1)

where HLDA
k is the LDA Hamiltonian expressed in a local-

ized linear muffin-tin orbital (LMTO) basis set (which we
evaluated at the LDA density of cerium), Ok is the overlap
matrix appearing due to nonorthogonality of the base, and
��!� is the self-energy matrix to be determined by the
DMFT. A double counting term Edc appears here since the
Coulomb interaction is also treated by LDA in a static way;
therefore, the LDA local correlation energy has to be
subtracted. Given the eigenvalues �kj!, the left eigenvec-
tors  L;jk!, and the right eigenvectors  R;jk! of Eq. (1) the
local Green’s function can be expressed by

Gloc;�� �
X
kj

 R;jk!;� 
L;j
k!;�

!��� �kj!
: (2)

The local self-energy ��!� that appears in Eq. (1) can be
calculated from the corresponding impurity problem, de-
fined by the DMFT self-consistency condition

Gloc � �!� Eimp � ��!� � �imp�!��: (3)

Here �imp is the impurity hybridization matrix and Eimp are
the impurity levels. The solution of the Anderson impurity
problem, i.e., the functional ���imp�!�; Eimp; U�, closes
the set of Eqs. (1)–(3).

Various many-body techniques can be used to solve the
impurity problem—among others, the quantum Monte
Carlo method (QMC), noncrossing approximation
(NCA), or iterative perturbation theory (IPT). Here, we
used one-crossing approximation (OCA) [11], which is,
like NCA, based on the perturbation theory in the hybrid-
ization strength between the bath and the impurity. The
lowest order self-consistent conserving approximation in
this approach is the sum of all bubbles (known as NCA).
The next order term in the expansion contains conduction
lines that cross once. All the diagrams with singly crossed
lines (that do not contain a line with more than one cross-
ing) are summed up in the approximation [called (OCA)]
[11]. The number of the crossing diagrams is very large
due to the large number of pseudoparticles (214) represent-
ing the f electrons; therefore, the diagrams were generated
on the computer. The OCA approximation is far superior to
NCA; it considerably improves the Fermi-liquid scale TK
and reduces some pathologies of NCA, but is more time
consuming. The OCA is also the lowest order self-
consistent approximation exact up to V2 / �imp where
�imp is the impurity hybridization with the electronic bath.
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The optical conductivity is given by the expression [12]
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where we have denoted "� � "�!=2 and used the short-
cut notations ��kj"  �kj", ��kj"  ��kj". In the spirit of
DMFT, the vertex corrections to the conductivity are ne-
glected in Eq. (4). The matrix elements Mkjj0 appear as
standard dipole allowed transition probabilities which are
now defined with the right and left solutions  R and  L of
the Dyson equation:

Mss0;��
kjj0 �"�; "�� �

X
�1;�2

� j;sk"�;�1
�sv�k�1�2

� j
0;�s0

k"�;�2
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0
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X
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k"�;�3
�s

0
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� j;�sk"�;�4
�s; (5)

where we have denoted  j;�k"   j;Lk" ,  j;�k"   j;Rk" , and
assumed that � j;sk"�

�   s;jk" while � j;sk"�
�  � j;sk"�

�. The
expressions (4) and (5) represent generalizations of the
formulas for optical conductivity for a strongly correlated
system and involve the extra internal frequency integral
appearing in Eq. (4).

As in previous work [8,9] we treat only the f electrons as
strongly correlated thus requiring full energy resolution,
while all other electrons such as Ce s; p; d are assumed to
be well described by the LDA. To obtain the one particle
Hamiltonian HLDA

k , we employed the linear muffin-tin
orbital method within the atomic-spheres approximation
as implemented in Ref. [13]. We used 6s, 5p, 5d, and 4f
basis functions, 4096 k points in the irreducible Brillouin
zone, exchange correlation potential by Vosko et al., and
experimental lattice constants. Our LDA results are in good
agreement with previous LDA calculations [14]. The spin-
orbit coupling is taken into account; therefore, the size of
the matrices in Eq. (1) is 32� 32, while the self-energy
matrix appears in a sub-block of size 14� 14. The value of
the Coulomb interaction U was obtained by the local
density constrained occupation calculations and is shown
in Fig. 5 of Ref. [15] as a function of volume. The absolute
value of U in the volume range considered here is around
6 eV. The effects of the Hund’s exchange J was not
included in the calculation. After the self-consistency of
the dynamical mean field equations is reached, the quasi-
particle spectra described by  jk! and �kj! are found, and
the expression (4) for ����!� can be evaluated. Here, we
paid a special attention to the energy denominator 1=�!�

�skj"� � �s
0

kj0"�� appearing in (4). Because of its strong k
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dependence the tetrahedron method of Lambin and
Vigneron [16] is used. The integral over internal energy
" is calculated in an analogous way. The frequency axis is
divided into a discrete set of points "i and assumed that the
eigenvalues �kj" and the matrix elements Mss0;��

kjj0 �"�; "��

can be linearly interpolated between each pair of points.
We first perform the frequency integration to convert the
double pole expression (4) into a single pole expression for
which the tetrahedron method is best suited.

Results and comparison with experiments.—In the top
panel of Fig. 1, we present the optical conductivity ob-
tained by the LDA� DMFT for bulk cerium while in the
bottom panel the results of recent experiment on thin films
[2] are reproduced. The optical conductivity of � Ce is
fairly featureless, consisting of a very broad Drude-like
peak of half-width 0.4 eVon a constant background. The �
phase has a much narrower Drude peak with a width of the
order of 0.1 eV and a peak at 1 eV. The latter feature is
remarkable because, as pointed out in Ref. [2], it indicates
that when going from � to � the electronic structure of
cerium is modified on an energy scale larger than the
Kondo energy. All these important qualitative features
are present in both the theory and the experiment and
will be interpreted theoretically below as due to excitations
across a hybridization induced (pseudo)gap. Notice that, in
contrast to the LDA� DMFT results, LDA predicts a
narrow Drude peak in both phases [14].

In both the experiment and theory, the overall magnitude
of conductivity in � phase is smaller than in � due to the
larger volume and hence reduced velocity of � phase.
There are also quantitative discrepancies between theory
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FIG. 1 (color online). The top panel shows the calculated
optical conductivity for both � and � phase of cerium. The
temperature used in calculation is 580 K while the volume of �
and � phase is 28:06 �A3 and 34:37 �A3, respectively. The bottom
panel shows experimental results measured by the group of van
der Marel [2]. The measurements for � phase were done at 5 K
and for � phase at 400 K.
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and experiments. The overall magnitude of measured con-
ductivity in both phases is approximately half of the calcu-
lated value. This discrepancy might be a consequence of
neglecting Hubbard interactions among the spd electrons,
an effect which would reduce the current matrix elements.
Early measurements by Rhee et al. [17], however, suggest
that the optical conductivity is a factor of 2 larger than the
results of Ref. [2]. Also, both theory and experiment have a
dip around 0.18 eV in the � phase, but it is much more
pronounced in the LDA� DMFT calculation than in
experiments.

The optical conductivity is dominated by the d bands
while the photoemission spectra is dominated by the large
f contribution. This is a consequence of a small overlap
between neighboring f shells or, equivalently, f velocities
are orders of magnitude smaller than the d velocities.
However, this does not imply that the f electrons are
irrelevant to the optical properties. At very high tempera-
tures, the f electrons scatter the spd electrons, but when
the temperature is lowered, they strongly hybridize or mix
with the spd electrons. This results in a Kondo resonance
in the f photoemission spectra and also in a hybridization
(pseudo)gap in spd spectra. The traditional way to de-
scribe the low temperature state is by means of a renor-
malized band theory where the conductivity is given by a
band theory such as the LDA with a rescaled hybridization
and a shifted f level [18]. DMFT is able to describe the
high temperature and the low temperature state, and in
addition, add the very large lifetime effects that occur at
finite temperatures and finite frequencies which are omit-
ted in simpler treatments. To understand the optical con-
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FIG. 2 (color online). Temperature dependence of partial den-
sity of states and hybridization function for both phases � and �
of Ce. The upper panel shows L � 3 and the middle panel L � 2
density of states. The lower panel shows the effective hybrid-
ization function Tr�imp. The inset shows the f density of states
in the extended frequency range where also the upper Hubbard
band is clearly visible.
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FIG. 3 (color online). Temperature dependence of optical con-
ductivity for both phases � and � of Ce.
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ductivity, we plot the orbitally resolved density of states
(DOS) in Fig. 2.

As one can see in Fig. 2, the d bands in � phase have a
very pronounced hybridization (pseudo)gap which is
growing by lowering temperature exactly as the Kondo
peak builds up. The spectral weight is transferred from
the Fermi level into the side peaks which are 1 eV apart
causing 1 eV peak in optical conductivity. In the � phase,
the Kondo peak disappears because the effective hybrid-
ization of the f with spd electrons is smaller (see bottom
panel of Fig. 2) and the coherence scale TK is reduced for at
least an order of magnitude. Thus, the d bands are almost
decoupled from the f’s leading to a broad Drude-like peak
of width 0.4 eV. In contrast, the effective hybridization
obtained by the pure LDA calculation (i.e., setting � � 0)
does not change much during the transition and remains
close to the hybridization of the alpha phase.

The temperature dependence of the optical response for
both the � and � phase is shown in Fig. 3. With increasing
temperature, the 1 eV peak moves to smaller frequencies
and finally at few 1000 K disappears. At the same time, the
hybridization (pseudo)gap below the peak gradually dis-
appears as the temperature is raised and evolves into a
broad hump, similar to the one in � phase. This tempera-
ture dependence is easily understood by looking at the
partial density of states in Fig. 2. Since the Kondo peak
is gradually reduced with increasing temperature, the hy-
bridization (pseudo)gap in d bands disappears causing
featureless optical response.

The main features of the optical spectra in cerium are a
consequence of a different hybridization strength in the
two phases. Theory allows us to follow the development of
the hybridization features as a function of temperature. The
hybridization (pseudo)gap in � phase is developed at very
high temperatures and hence cannot be observed experi-
mentally in cerium. However, this could be observed in
03640
cerium alloyed with lanthanum and thorium [19] where the
Kondo scale of the � phase can be reduced enough to make
the onset of hybridization experimentally observable. The
hybridization (pseudo)gap was recently also observed in
skutterudites [20] and previously in heavy fermion mate-
rial UPt3 [21].

Conclusion.—The methodology introduced allowed us
to interpret the optical spectra of � and � cerium, in favor
of the Kondo volume collapse model. The approach out-
lined here will be useful for elucidating the role of the spd
electrons in other materials where the f electrons are
neither fully localized nor fully itinerant such as elemental
plutonium and other heavy fermion compounds.

K. H. was supported by the Ministry of Education
Science and Sport of Slovenia, NSF-DMR 0096462, and
the Center for Materials Theory. This work was also sup-
ported by NSF-DMR Grants No. 02382188, No. 0312478,
No. 0342290, DOE Grant No. DEFG02- 99ER45761, the
Computational Material Science Network, and DOE Grant
No. LDRD-DR 200030084.
1-4
[1] D. G. Koskimaki and K. A. Gschneidner, Jr., in Handbook
on the Physics and Chemistry of Rare Earths, edited by
K. A. Gschneidner, Jr. and L. R. Eyring (North-Holland,
Amsterdam, 1978), p. 337.

[2] J. W. van der Eb, A. B. Kuz’menko, and D. van der Marel,
Phys. Rev. Lett. 86, 3407 (2001).

[3] I. K. Jeong et al., Phys. Rev. Lett. 92, 105702 (2004).
[4] B. Johansson, Philos. Mag. 30, 469 (1974).
[5] J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106

(1982); J. W. Allen et al., Phys. Rev. B 46, 5047 (1992).
[6] M. Lavagna et al., Phys. Lett. A 90, 210 (1982).
[7] For recent reviews, see K. Held et al., Psi-k Newsletter

No. 56 (2003) 65; A. I. Lichtenstein, M. I. Katsnelson, and
G. Kotliar, in Electron Correlations and Materials
Properties 2, edited by A. Gonis (Kluwer, New York,
2002).

[8] M. B. Zölfl et al., Phys. Rev. Lett. 87, 276403 (2001).
[9] K. Held et al., Phys. Rev. Lett. 87, 276404 (2001); A. K.

McMahan et al., Phys. Rev. B 67, 075108 (2003).
[10] D. M. Wieliczka et al., Phys. Rev. Lett. 52, 2180 (1984);

E. Weschke et al., Phys. Rev. B 44, 8304 (1991); F.
Patthey et al., Phys. Rev. Lett. 55, 1518 (1985).

[11] Th. Pruschke et al., Z. Phys. B 74, 439 (1989); K. Haule
et al., Phys. Rev. B 64, 155111 (2001).

[12] V. Oudovenko et al., Phys. Rev. B 70, 125112 (2004).
[13] S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
[14] W. E. Pickett et al., Phys. Rev. B 23, 1266 (1981).
[15] A. K. McMahan, C. Huscroft, R. T. Scalettar, and E. L.

Pollock, J. Comput,-Aided Mater. Des. 5, 131 (1998).
[16] Ph. Lambin et al., Phys. Rev. B 29, 3430 (1984).
[17] J. Y. Rhee et al., Phys. Rev. B 51, 17390 (1995).
[18] A. J. Millis and P. A. Lee, Phys. Rev. B 35, 3394 (1987); P.

Coleman, Phys. Rev. Lett. 59, 1026 (1987).
[19] B. H. Grier et al., Phys. Rev. B 24, 6242 (1981).
[20] S. V Dordevic et al., Phys. Rev. Lett. 86, 684 (2001).
[21] S. Donovan et al., Phys. Rev. Lett. 79, 1401 (1997).


