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We resolve the controversy regarding the ground state of the parallel double quantum dot system near

half filling. The numerical renormalization group predicts an underscreened Kondo state with residual

spin-1=2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe

ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero

conductance. We calculate the impurity entropy of the system as a function of the temperature using

the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically

exact stochastic method, and find excellent agreement with the numerical renormalization group results.

We show that the origin of the unconventional behavior in this model is the odd-symmetry ‘‘dark state’’ on

the dots.
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Quantum dot (QD) nanostructures serve as model sys-
tems for studying fundamental many-particle effects, such
as the competition between the Kondo screening and the
exchange interaction. These effects can give rise to ground
states of Fermi-liquid or non-Fermi-liquid nature. The
fingerprints of those different states as well as the
quantum-phase transitions between them have been pre-
dicted theoretically within the generalizations of the
Anderson impurity model and observed in transport
experiments [1–14].

To account for such a rich behavior, powerful nonper-
turbative theoretical tools must be used. Among these
techniques, the numerical renormalization group (NRG)
[15,16] is popular because of its wide applicability, relia-
bility, and relatively low computational demands. The
NRG results for the conductance of single QDs in the
Kondo regime have played the key role in conclusively
proving the occurrence of the Kondo effect in these sys-
tems [3,17,18]. The NRG is an approximate method, ex-
pected to be asymptotically exact on the lowest energy
scales. In constructing the effective chain Hamiltonian, the
conductance band continuum is discretized, a decomposi-
tion into Fourier modes is performed in each interval, and a
single representative state from each interval is retained.
This approximation is, however, well controlled [15].
Some impurity models are integrable and can be solved
exactly by using the Bethe ansatz (BA) technique; these
analytical solutions are very valuable as reference results
which serve as a benchmark for more generally applicable
methods. The single-impurity Kondo and Anderson
models are both integrable [19,20], and excellent
agreement has been found between the NRG and BA
results [19].

One of the simplest problems that exhibits non-Fermi-
liquid behavior is that of the two impurities coupled to
conduction bands: the double quantum dot (DQD).
Recently, a BA solution has been proposed for a family
of two-impurity models of DQDs [21–24]. For two QDs
coupled in parallel between the conductance leads with
equal hybridization strengths, thus forming a symmetric
ring (Fig. 1), the problem maps onto a two-impurity model
with a single effective conduction band. The BA solution
predicts that near the particle-hole symmetric point the two
electrons residing on the dots form a regular Fermi-liquid
(FL) singlet state with the conduction-band electrons, that
the system has zero conductance at the particle-hole
symmetric point, and that the standard Friedel sum rule
is satisfied [21]. All these predictions are, however, at odds
with the NRG results for the same or closely related
models [25–33].
On general physical grounds, one expects that at some

high-energy scale the two impurity moments bind into a
spin-triplet effective state due to the presence of the ferro-
magnetic RKKY interaction (the model corresponds to the
r ¼ 0 limit of the standard two-impurity model [34–38]),
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FIG. 1. Schematic representation of the model for a parallel
double quantum dot coupled to two semi-infinite tight-binding
chains with equal hopping constants. The Fermi level is fixed at
zero energy.
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and then this spin is partially screened in the single-channel
spin-1 Kondo effect yielding a singular Fermi-liquid
ground state, a residual spin-1=2 magnetic moment, and
residual ln2 entropy [39–41]. The NRG results are fully
consistent with this scenario. This is also in line with the
conventional wisdom that a single screening channel can
screen one half-unit of the impurity spin [19,20,39].
Furthermore, the system reaches unitary conductance at
zero temperature. The Friedel sum rule in its standard form
� ¼ ð�=2Þnimp is violated (there is an additional phase

shift by �=2; see Ref. [31], Sec. IV.B). The underscreened
Kondo effect has already been experimentally observed in
systems described by two-orbital impurity models similar
to the one discussed in this work [12,13,42].

It is disconcerting that two purportedly highly reliable
methods produce opposite results for an elementary impu-
rity model. If the NRG were found to be flawed, this would
demand a reinvestigation of the applicability of the method
and put in question the reliability of a large number of
published theoretical results. It has been suggested that the
presumed deficiency of the NRG consists in disregarding
the higher conduction-band modes in each discretization
interval, and a modified discretization has been proposed
[23]. Since the modified discretization scheme again maps
onto a single effective screening channel, the residual mo-
ment would still not be screened; thus, this does not solve
the observed discrepancy.

For this reason, in this work we resolve the controversy
by using an independent method: We perform extensive
numerical simulations of the impurity Hamiltonian by
using the hybridization-expansion continuous-time quan-
tum Monte Carlo (CTQMC) algorithm [43–45]. This
method is numerically exact, its accuracy being limited
solely by the calculation time. No approximations nor
simplifications of the model Hamiltonian need to be per-
formed. The price for being exact is, however, heavy
computational demands. We show that the simulated re-
sults are consistent with the NRG calculation; thus, the
proposed BA solution is not correct.

The Hamiltonian is H ¼ Hband þHdots þHhyb.

Here Hband ¼
P

k�j�kc
y
k�jck�j is the conduction-band

Hamiltonian, where k is momentum, � ¼"; # is spin, and
j ¼ 1; 2 indexes the leads. Hdots ¼

P
2
i¼1 �ni þUni"ni# is

the quantum dot Hamiltonian. The number operator ni� is

defined as ni� ¼ dyi�di� and ni ¼
P

�ni�, � is the on-site
energy, and U is the electron-electron repulsion. Finally,

Hhyb ¼ 1
ffiffiffiffi
L

p X

k�i

ðVkd
y
i�ck� þ H:c:Þ (1)

is the coupling Hamiltonian, where L is a normalization
constant. We model the conductance leads by semi-infinite
tight-binding chains, and the dots couple to the end of these
chains by a hopping term; see Fig. 1. The hybridization
function is defined as �ð!Þ ¼ 2�

P
k�ð!� �kÞV2

k ¼

2��ð!ÞV2
kð!Þ with �ð!Þ the density of states in the band

and Vkð!Þ the coupling coefficient at momentum k that

corresponds to energy !; the additional factor 2 in the
expression takes into account that there are two leads. We
have � ¼ 2t cosk and Vk ¼ t0 sink, which gives

�ð!Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð!=2tÞ2

q
; (2)

with � ¼ ðt0Þ2=t. In the following, we use the half-
bandwidth D ¼ 2t as the energy unit. The final expression
for the impurity action is

S ¼
Z �

0
d�

� X

i¼ð1;2Þ;�
dyi�

�
@

@�
��þ �

�
di� þUni"ni#

�

þ 1

�

Z �

0
d�

Z �

0
d�0dye�ð�Þ�ð�� �0Þde�ð�0Þ: (3)

The even-odd combination of operators is defined as

dye=o;� ¼ ðdy1� � dy2�Þ=
ffiffiffi
2

p
. Only the even orbital hybridizes

with the conduction band.
In this problem, there are three important energy scales

[29]. On the scale of U the local moments are formed, and
the dots start to behave as two spin-1=2 impurities. On the
RKKY scale of JRKKY �Uð�JKÞ2 ¼ ð64=�2Þ�2=U, the
spins bind into a S ¼ 1 state. Here �JK ¼ 8�=�U
quantifies the strength of the exchange coupling. Finally,
on the scale of the Kondo temperature TK �
U

ffiffiffiffiffiffiffiffiffi
�JK

p
expð�1=�JKÞ, the impurity moment is partially

screened from spin-1 to spin-1=2 in the single-channel
spin-1 Kondo effect [39]. No other low-energy scales are
present in this problem [34]. The U=� ratios in experi-
ments on quantum dots range roughly from 1 to 20; thus,
the three energy scales introduced above are not
necessarily well separated.
Different methods for solving impurity models are best

compared by calculating thermodynamic functions such as
energy or entropy, since all other quantities of interest can
be obtained by taking appropriate derivatives. In this work

we calculate the impurity entropy Simp ¼ S� Sð0Þ, where S
is the entropy of the full system, while Sð0Þ is the entropy of
the conduction band alone. Using the NRG, one can com-
pute Simp over a wide range of temperature scales with little

numerical effort. To the contrary, the CTQMC calculation
becomes increasingly numerically demanding at low tem-
peratures and for larger hybridization strength �. The
comparison of the results can thus be performed only in
a limited temperature window which depends on �. To
circumvent this limitation, we perform calculations for a
range of � at fixedU; in this way we tune the characteristic
low-energy scales of the problem (the Kondo temperature
and the RKKY scale) from very small to very large values,
making them pass through the available temperature
window for different values of �.
In NRG, the impurity entropy is computed in the stan-

dard way [16]. To obtain good results even on the
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temperature scale of the bandwidth, the discretization is
performed with a small value of the discretization parame-
ter � ¼ 1:8, and the twist averaging with Nz ¼ 16 is used.
Nevertheless, some small quantitative systematic errors
due to the discretization of the band are expected for
temperatures approaching the bandwidth. The truncation
is performed with a sufficiently high-energy cutoff
Ecutoff ¼ 12!N that the results can be considered as fully
converged.

In CTQMC calculation, we calculate the impurity en-
ergy for a range of temperatures and obtain the entropy as

Simp ¼
Z 1

T

�
@Eimp

@T

�

�
dT þ const: (4)

The integration constant is fixed by the high-temperature
asymptotic limit of 2 ln4. The impurity energy is defined as
Eimp ¼ hHdotsi þ Ec with

Ec ¼ hHhybi þ ðhHbandi � hHbandi0Þ: (5)

The notation h i0 indicates that the expectation value is
computed for the system without the impurity (i.e., in the
� ! 0 limit). Ec is obtained from the impurity spectral
function in the Matsubara space Gði!nÞ:

Ec ¼ �

�

X

i!n;�

dði!nÞGði!nÞ; (6)

where

dðzÞ ¼ �i sgn½ImðzÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p : (8)

The impurity spectral function is defined as G ¼ G11 þ
G12 þ G21 þ G22 with GijðzÞ ¼ hhdi; dyj iiz. To avoid the

minus sign problem, the simulation is performed in the
even-odd basis. Since the asymptotic behavior of
the Green’s function is Gði!nÞ � 1

i!n
, we subtract and

add 1=ði!nÞ and calculate the problematic part exactly.
The results for the temperature dependence of the im-

purity entropy are shown in Fig. 2 at the p-h symmetric
point and in Fig. 3 away from it. The agreement between
the NRG and CTQMC results is excellent in all cases
considered. A small systematic deviation of the NRG
from the QMC results at very high temperatures (T �D)
is anticipated. At intermediate temperatures, the agreement
improves until at some low �-dependent temperature the
QMC simulation can no longer be performed in reasonable
time due to slow thermalization. Nevertheless, NRG and
QMC results are found to agree below all the relevant
energy scales in the problem. The DQD system near the
p-h symmetric point thus behaves as a singular FL, as
predicted by the NRG. Furthermore, in Fig. 3, we show
numerical evidence of a quantum-phase transition where,
as a function of �, the system goes from a singular FL to a
regular FL ground state (the BA solution predicts no such
transition).

The DQD problem being integrable, this raises the ques-
tion of why the BA solution differs from the NRG and
QMC results. One possibility is that the BAwave function
corresponds to some excited state instead of the actual
ground state of the system. We remark that the NRG and
QMC calculations are both grand-canonical-ensemble
calculations in the thermodynamic limit—thus, the
occupancy of the dots is automatically correctly
determined—while in BA the thermodynamic limit is
taken at the end of the calculation—thus, one needs to
take care to choose the wave function from the correct
charge and spin sector. In particular, the occupancy of the

odd state dyo;� is important in this problem. In the non-

interacting limit, one has ½H; nodd� ¼ 0 with nodd ¼P
�d

y
o;�do;�; thus, the occupancy of the odd state is a

conserved quantity (the system is nonergodic). This state
is completely decoupled from the continuum and is some-
times referred to as the bound state in the continuum, dark
state, or ghost Fano resonance [30,46,47]. It lies exactly at
the Fermi level when the system is tuned to the particle-
hole symmetric point. Formally, at this point the system
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FIG. 2 (color online). Comparison of the impurity entropy
curves at the particle-hole symmetric point. Lines: NRG; circles:
QMC results (with error bars). Energy unit is the half-bandwidth
D ¼ 1.
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FIG. 3 (color online). Comparison of the impurity entropy
curves away from the particle-hole symmetric point. Lines:
NRG; circles: QMC results (with error bars).
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has 2 ln2 residual entropy, since for each spin the level may
be either occupied or unoccupied at no energy cost. As the
interaction is turned on, nodd is no longer a constant of
motion, yet the odd state still plays a nontrivial role. We
find that the ‘‘dark state’’ gives rise, at finite U, to a finite
range of the gate voltages � around the particle-hole
symmetric point where the occupancy of the odd level is
pinned exactly to one; i.e., the odd level accommodates an
electron of either spin, which is asymptotically decoupled
from the rest of the system on low-energy scales. This
gives rise to a singular FL ground state with ln2 residual
entropy. The breakdown of the regular FL ground state in
this parameter range has been noted previously by using
the Gunnarson-Schönhammer variational approach based
on a regular FL trial function, which failed to converge in
the parameter range that is now known to correspond to the
singular FL phase [48]. The corresponding interval of the
gate voltages � is delimited by quantum-phase transitions
across which the impurity charge changes discontinuously
(in both even and odd levels) [29,30]. These quantum-
phase transitions emerge directly from the noninteracting
dark state as the interaction is turned on; see Fig. 4. We also
note that the system is fully conducting at the particle-hole
symmetric point for any value of U, including U ¼ 0. It
remains an open technical problem how to include these
effects in the BA calculation in order to obtain the correct
doublet ground state around half filling.

In conclusion, we solved the problem of the parallel
DQD by using hybridization-expansion CTQMC calcula-
tions and demonstrated that the results agree with the
results of the NRG. We pointed out the nontrivial role
played by the dark state odd orbital. We remark that the
studied model is an excellent benchmark test for various
many-body techniques, since only a few appear to produce
the correct results, and that even supposedly exact analyti-
cal calculations need to be a posteriori validated against
other reference results.
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