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Thermoelectrics Near the Mott
Localization–Delocalization Transition

K. Haule and G. Kotliar

1 Introduction

1.1 Weakly Correlated Systems

The dream of accelerating the discovery of materials with useful properties using
computation and theory is quite old, but actual implementations of this idea is recent.
Successes in material design using weakly correlated materials, are due, to a large
degree, to a two important developments:

1. Approximate implementations of the first principles density functional theory,
which are relatively accurate and computationally efficient

2. Robust implementation of algorithms which are highly reproducible and widely
available

Density functional theory based approaches gives reliable estimates of the total
energy, and are an excellent starting point for computing excited state properties
of weakly correlated electron systems. These approaches allows the evaluation of
transport coefficients using very limited, or no empirical information, and are be-
ginning to be used in conjunction with data mining technique and combinatorial
searches.

1.2 Strongly Correlated Electron Systems

Since a large number of interesting physical phenomena, such as high temperature
superconductivity and large Seebeck coefficients, are realized in strongly correlated
materials, there is a great interest in the possibility of carrying out rational material
design with correlated materials.
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The theoretical situation in this area, however, is a lot more uncertain. For
example, the issue of whether the two dimensional one band Hubbard model sup-
ports superconductivity or not is still very open [10]. Given that this model is an
extraordinary oversimplification of realistic materials, it is hard to contemplate ex-
plaining, let alone predicting experimental results in materials that require a much
more elaborate models for their description. The prospect of predicting properties
of materials which have not yet been synthesized is even more daunting. In this
chapter we will argue that this assessment is overly pessimistic, and we will give
some reasons why we expect a rapid progress in the coming years through the in-
terplay of qualitative reasoning, new theoretical methods, and experiments. We will
then describe some attempts in gaining experience in this field, and the lessons that
we have learned in the process using thermoelectric performance as an example.

1.2.1 Dynamical Mean Field Theory

The advent of Dynamical Mean Field Theory (DMFT) removed many difficulties
of the traditional electronic structure methods. DMFT describes Mott insulators,
as well as correlated metals. It treats quasiparticle bands and Hubbard bands on
the same footing, and, unlike simpler approaches such as LDA+U, is able to de-
scribe the multiplet structure of correlated solids. The latter is being inherited from
open shell atoms and ions. DMFT has been successful in accounting for the be-
havior observed in correlated materials ranging from plutonium to vanadium oxides
and has even made some predictions, which have been confirmed by experiment.
This suggests that the approach is reasonably accurate, in the sense that it gives a
zeroth orderpicture of correlated materials, not too close to criticality. Ten years
ago, a combination of DMFT with electronic structure methods, LDA+DMFT,
wasproposed [1, 8, 15] and accurate implementations are being actively developed
across the world. Just like LDA, these tools connect the atomic positions with the
physical observables using very little information from experiment, and therefore
they have the potential to accelerate material discovery.

Predicting the phase diagram of strongly correlated materials is an extremely
difficult problem. Correlated materials have many competing phases, which are very
close in energy. This poses serious difficulties to traditional many body approaches.
(i) Terms in the Hamiltonian, present in the actual material, but absent in the model
Hamiltonian, can exchange the stability of two very different phases. (ii) Finite size
effects or boundary conditions can artificially stabilize a phase, which is not stable
in experiment.

DMFT divides the solution of the many-body problem of a solid state system into
two separate distinct steps. Common to many mean field approaches, a given Hamil-
tonian can have many distinct DMFT solutions, describing various possible phases
of a material. Which phase is realized for a given value of parameters (temperature,
volume, stress, doping concentration of impurities, etc.) is determined by comparing
the free energy of the different DMFT solutions. A lot of important information can
be obtained from the first step alone, when combined withexperimental information.



Author's personal copy
Thermoelectrics Near the Mott Localization–Delocalization Transition 121

If one knows that for some value of parameters certain phase is realized in material,
one can use DMFT to explore the properties of that phase, and optimize desired
physical property, side stepping the difficult issue of the comparing the free energies
of competing phases. The free energy difference can be computed at a later stage.

2 The Process of Rational Material Design

Figure 1 describes schematically the rational material design process. It begins with
a qualitative idea, which is then tested by a calculation. One of the major advances
of realistic DMFT implementations such as LDA+DMFT or GW+DMFT is that
now this calculation can be made material specific, resulting in a set of predictions
that can be tested experimentally. The experimental results can either rule out the
qualitative idea, in which case the process stops, or reinforce and refine the idea.
Experiments also help to calibrate the computational methods, which in turn lead
to an improved material specific prediction in the next iteration. Not only materials
with improved properties M1, M2, M3, · result from this approach, but in addition,
this process tests theoretical ideas in an unbiased way, deepens our understanding of
materials physics, and refines the accuracy of computational tools. Large databases
of existing materials are created (e.g. http://icsd.ill.eu/icsd/index.html), which are
starting to be used, in combination with the first principle methods, for data min-
ing techniques. Using the crystal structure information from the database, the first
principles methods can identify potentially promising materials, which can then be
analyzed experimentally.

Fig. 1 A schematic drawing of the rational material design process. It relies on condensed matter
theory, material databases and realistic DMFT implementations, and it involves a close and iterative
interplay of theory and experiment.
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3 Thermoelectricity of Correlated Materials

3.1 Formalism

The transport coefficients that govern the thermopower, electric and thermal con-
ductivity can be expressed in terms of the matrix of kinetic coefficients Am relating
the electric and thermal currents J, JQ to the applied external fields ∇μ/T , ∇T/T 2.
Transport quantities become S = −(kB/e)(A1/A0), σ = (e2/T )A0, κ = k2

B[A2 −
A1

2/A0]. The thermoelectric response thus reduces to the evaluation of kinetic
coefficients.

The thermoelectric figure of merit is defined by

ZT =
S2σT

κ+κphonon
, (1)

where T is the absolute temperature, σ is the electrical conductivity, S is the Seebeck
coefficient or thermopower, and κ (κphonon) is the electron (phonon) contribution to
the thermal conductivity.

The Wiedemann–Franz law is an approximate relation that allows us to estimate
the ratio of the electronic contribution to the thermal conductivity (κ) and electric
conductivity (σ ). It postulates that the Lorentz number, L = κ/(σT ), is weakly
material dependent.

Its value at low temperatures is given by (π2/3)(kB/e)2 = 2.44×10−8WΩ/K2.
We will return to the Lorentz number at higher temperatures later in this article. If
we ignore the thermal conductivity of the lattice, the figure of merit can be writ-
ten as ZT = S2/L, hence to have a promising figure of merit (ZT close to or larger
than one) it is necessary to have S bigger than the basic scale k/e = 86×106V/K.
The thermal current of an interacting electronic system was determined first by
Mahan and Jonson [11]. Reference [11] discusses a model containing electrons
interacting with phonons, and the review [16] discusses the general case of the
electron–electron interactions (see also Ref. [22]).

DMFT expresses the one particle Greens function in terms of a local self energy
of an impurity model, satisfying a self consistency condition. Practical evaluation
of the transport coefficients becomes possible in the approximation of small vertex
corrections. This was first done by Schweitzer and Czycholl [25] (see also Ref.
[23]). For the Hubbard-like interactions, there are no contributions from the non-
local Coulomb interactions, and the neglect of the vertex corrections can be justified
rigorously in the limit of infinite dimensions [13]. The same is true, but far less
obvious, for the thermal current, as it was shown in Ref. [22]. In the multi-orbital
situation, the vertex corrections to the conductivity need to be examined on a case
by case basis, and do not necessarily vanish, even in infinite dimensions. With this
approximation, the LDA+DMFT transport coefficients reduce to

Aμνm = πT
∫

dω
(
− d f

dω

)(ω
T

)m
∑
k

Tr[vμk (ω)ρk(ω)vνk(ω)ρk(ω)] (2)
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where vμk =−i
∫

dre−ikr ∂
∂xμ are velocities of electrons and ρk is the electron spectral

density

ρk(ω) =
1

2πi
[G†

k(ω)−Gk(ω)]. (3)

The weakly interacting case appears as a limiting case where the spectral func-
tion becomes a delta function ρk(ε) = ∑i δ (ε − εki). One can therefore formulate
the problem of the optimization of the figure of merit as the problem of optimiz-
ing a functional of spectral functions, with self energies which are realizable from
an Anderson impurity model, with a bath satisfying the DMFT self-consistency
condition.

3.2 Thermoelectricity near the Mott Transition: Qualitative
Considerations

Following the early developments of DMFT and its successful application to the
theory of the Mott transition in three dimensional transition metal oxides [6], it
was natural to use this approach to formulate and answer the question of whether
we should look for good thermoelectrics near the Mott localization–delocalization
transition. The theoretical answer to this central issue of this article is no, but
perhaps yes.

There were several reasons to suspect that proximity to the localization–
delocalization transition is good for thermoelectricity:

1. Sharp structures in the density of states lead to large S in simple theories [17]. The
modern theory of the Mott transition predicts a quasiparticle peak, which narrows
as the transition is approached. And this could result in a large thermoelectric
response.

2. One can think on a qualitative level of the thermoelectric coefficient as the
entropy per carrier. In the incoherent regime, one could imagine that each car-
rier can transport a large amount of entropy. The incoherent regime, above a
characteristic coherence temperature T ∗, is easy to access near a localization–
delocalization transition, because the proximity to this boundary makes T ∗ low.

3. Orbital degeneracy increases the number of carriers and would be expected to in-
crease the figure of merit. There are many orbitally degenerate three dimensional
correlated transition metal oxides.

Reference [14] considered a model of the prototypical doped insulator LaSrTiO3,
which has been carefully investigated in a series of papers [26]. The thermoelectric
properties of this system had not been investigated at that time. Early DMFT studies
accounted for the divergence of the linear term of the specific heat, and the suscep-
tibility, as well as the existence of a quasiparticle peak in the spectra [28].

The Hall coefficient, however, coincides with the band theory calculations, and
is non-critical near the Mott transition [12]. It is possible to analyze the DMFT
transport equations in two regimes: (i) T � T ∗, where the electronic transport is
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controlled by band-like coherent quasiparticles, well described in momentum space,
(ii) T � T ∗ when the electron is better described as a particle in real space, and
the transport is diffusive [14] (see below). The second regime is well described by
the high temperature expansion, valid for T > D (D is the bandwidth), and by com-
parison with approximate numerical solutions of the DMFT equations. In Ref. [14] it
was noticed that the thermoelectric response of the high temperature regime matches
smoothly with the low response at low temperatures, valid for T � T ∗.

3.3 Application to LaSrTiO3

An approximate numerical solution of the DMFT equations for the titanides was
shown to interpolate smoothly between the high temperature and low temperature
region. This is consistent with the idea that DMFT reconciles the band picture at low
energies and low temperatures, with the particle picture at high energies and high
temperatures. The temperature scale here is set by the coherence temperature T ∗.
Taking a tight binding parametrization suitable for the titanites, the figure of merit
as a function of temperature and doping is reproduced in Fig. 2.

The behavior of the thermoelectric power near the Mott transition is shown
in Fig. 3. Notice that at low doping, the contribution from the lower Hubbard

Fig. 2 Figure of merit for
different values of the lattice
thermal conductivity.
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Fig. 3 Experimental (left panel) and theoretical computations of the thermoelectric power of the
titanites from Refs. [7, 14].
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band dominates and the thermoelectric power is positive while at high doping the
quasiparticle contribution dominates and the thermoelectric power is electron-like.
Measurements near the Mott transition were carried out a few years later [7], and
they are qualitatively, but not quantitatively, similar to the theory. This is to be
expected, given the various approximations that were made (the electronic structure,
the lattice distortion, and crystal field effects ignored, the impurity solvers used were
very approximate).

3.4 Low Temperature Regime

LaSrTiO3 is described by a multi-band Hubbard model. At low temperatures, the
Fermi liquid theory is valid. The slope of the real part of the self energy scales
as 1 − 1/Z, where Z is the quasiparticle residue. The quadratic part of the self
energy is related to the quasiparticle lifetime, which is small in the Fermi liquid
regime.

Under these assumptions, we can rewrite a simpler expressions for the transport
coefficients An of a multiband Hubbard model at low temperatures

Aμνn =
NkBT

8

∫ ∞

−∞
dx

xn

cosh2(x/2)
Φμν(xT +μ−Σ ′(xT ))

Σ ′′(xT )
, (4)

whereΦμν is the transport function defined byΦμν =∑k vμk vνkδ (ω−εk) and Σ ′′(ω)
is the imaginary part of the electron self-energy.

At low temperatures, A0 and A2 are simply estimated by replacing Σ ′′(ω) by its
quadratic approximation, Σ ′′(ω) ∼ γ0

Z2 (ω2 +π2T 2) ≡ Σ (2)(ω). We then obtain

A2n =
Z2

T
NkB

2γ0π2 E1
2nΦμν(μ0),

where μ0 = μ−Σ ′(0) and

Ek
n =
∫ ∞

−∞

xndx
4cosh2(x/2)[1+(x/π)2]k

are numerical constants of the order unity.
On the other hand, this approximation neglects particle-hole asymmetry and

gives zero thermoelectricity since E1
1 = 0. There are two sources of particle-hole

asymmetry. One is obtained by expanding the transport function in Eq. (4) to first
order, which describes the particle-hole asymmetry in the electronic velocities, con-
tained in the bare band structure of the problem. This term can be approximated by
the LDA Seebeck coefficient divided by quasiparticle renormalization amplitude Z.
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The second contribution is the result of the particle hole asymmetry of the scattering
rate. It involves subleading cubic terms in the self energy, which scale near the Mott
transition as

Σ ′′(ω) = Σ (2)(ω)+Σ (3)(ω)+ · · · ,

Σ 3(ω) =
(a1ω3 +a2 ω T 2)

Z3 , (5)

and a1, a2 are constants of order unity (even terms in frequency are not important).
This leads to the following expression for the thermoelectric coefficient:

A1 = Z
NkB

2γ0π2

[
Φ ′
μν(μ0) E1

2 −Φμν(μ0) (a1E2
4 +a2E2

2 )/γ0
]
, (6)

where Φ ′(x) = dΦ(x)/dx.
Unfortunately it has proved to be very difficult to estimate the magnitude of

the coefficients a1 and a2. It is important to develop intuition into when these
terms are important and their sign. Since in many cases, LDA predicts the correct
sign of the thermoelectric power at low temperatures, perhaps the scattering time
particle-hole asymmetry Eq. (5) is not dominant in the LaTiO3 system but should
be investigated carefully in other materials.

At low temperature, the thermoelectric coefficients is

S = − kB

|e|
kBT

Z

[
Φ ′(μ0)
Φ(μ0)

E1
2

E1
0
− a1E2

4 +a2E2
2

γ0E1
0

]
, (7)

which clearly scales as T/Z with Z vanishing at the Mott transition. Since the linear
term of the specific heat γ scales as 1/Z the ratio S/(γT ) in a Hubbard-like model
approaches a finite value as Z vanishes:

S
γT

= − 3
|e|

1
D(μ0)

[
Φ ′(μ0)
Φ(μ0)

E1
2

E1
0
− a1E2

4 +a2E2
2

γ0E1
0

]
. (8)

The first part of the ratio depends only on the bare band-structure quantities and is
not effected by strong correlations. The second part, however, is due to the asym-
metry of the quasiparticle lifetime, and might be less universal and more material
and correlation specific. This question deserves further study.

For the LaSrTiO3 system, we estimated its value numerically using LDA+DMFT
[21] and we include its value in the plot of Behnia et al. [2] in Fig. 4. In Ref. [2] it
was observed that the ratio S/γT is weakly material dependent in a large number
of materials which they compiled. From the theoretical point of view, the weak de-
pendence of the ratio of Behnia et al. on material can be view as a validation of the
local approximation, since the most material dependence is embodied in the quan-
tity Z, which cancels in the ratio S/(γT ). This suggest that the DMFT approach
holds great promise for the search of good thermoelectric materials. Deviations
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Fig. 4 Bhenia Jaccard
Flouquet plot from Ref. [2].
The theoretical point obtained
on the LaSrTiO3 system with
20% doping away from the
Mott insulator is also shown
in the same graph.

from universality arise from the variations of the bare density of states and from
the effects of the cubic terms in the self energy that were not included in the anal-
ysis of Ref. [14]. It would be interesting to return to this problem using modern
LDA+DMFT tools.

3.5 High Temperature Results

In the high temperature region, the expansion of the solution of the DMFT equa-
tions led to the celebrated Heikes formula for the Seebeck coefficient. In this limit,
thermopower is given by S = μ/(eT ), where μ is the chemical potential. The exact
diagonalization of the atomic problem gives a set of atomic eigenvalues Em and their
degeneracies dm. The chemical potential is then determined from the partition sum

n =∑
m

dme−β (Em−μN)/Z, (9)

where n is the number of electrons in a correlated orbital. Hence, the valence of the
solid, n, can be used to predict the high temperature value of thermopower.

For the case of n ≤ 1, which is relevant for the titanides, the expressions for
transport quantities take the explicit form:

σ =
e2

ah̄
πN(Dβ )γ0

n
N (1−n)

[ n
N +(1−n2)]2

, (10)

S =
kB

e
log

n
N(1−n)

, (11)
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κ =
kBD
ah̄

πN(Dβ )2γ2

n
N (1−n)

[ n
N +(1−n)]2

. (12)

Here N is the spin and orbital degeneracy, and n is the electron density, D is half of
the bare bandwidth and γ0, γ2 are numerical constants of order unity.

Notice that at high temperature the Lorentz number is given by L = (k/e)2(D/kT )2

γ2/γ0. Hence the Lorentz number in a model with a fixed number of particles and
finite bandwidth goes to zero at high temperatures. Thus eventually the electronic
thermal conductivity becomes less than the lattice conductivity and the latter con-
trols the figure or merit. This effect was modeled in the dashed curve of Fig. 2, where
the effects of the lattice thermal conductivity was modeled by a constant 2.0 W/mK.
The inclusion of the lattice thermal conductivity resulted in a dramatic reduction of
the figure of merit. We can interpret the high temperature DMFT results for the
thermal transport using a well known equation κ = 1

3 vF cV l, where vF is the Fermi
velocity, cV the specific heat, and l the electron mean free path. Since the specific
heat decreases as (D/T )2, the mean free path has saturated to a lattice spacing, and
the velocity of the electrons is of the order of vF . This is consistent with the value of
the conductivity if one uses the Einstein relation σ = Dc dn/dμ with dn/dμ ≈ 1/T
and the charge diffusion constant Dc = vF l. Here the mean free path l is of the or-
der of the lattice spacing, and the Fermi velocity vF is approximately temperature
independent.

4 Towards Material Design

4.1 Rules for Good Correlated Thermoelectricity

From the theoretical analysis it becomes clear why LaSrTiO3 is not a good thermo-
electric material. The contributions from the Hubbard bands and the quasiparticle
peak have opposite signs, and they compete with each other in the interesting tem-
perature regime, when T is comparable to T ∗. This observation leads to empirical
rules for the search for good correlated thermoelectric materials:

1. The optimal performance (when the thermal conductivity of the lattice is taken
into account) occurs in the crossover region T ≈ T ∗. Hence one should tune T ∗

to the temperature region where the thermoelectric device operates. One should
also reduce the electronic thermal conductivity (and therefore also the electric
conductivity) until it becomes comparable to the lattice thermal conductivity, but
not any further.

2. In the crossover regime, both the quasiparticle bands and the Hubbard bands con-
tribute to the transport. Hence one should try to optimize both high temperature
and low temperature expressions for the figure of merit. Therefore good candi-
dates for thermoelectricity have quasiparticle carriers and Hubbard band carriers
of the same sign.
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We see that LaSrTiO3 does NOT satisfy the second rule, and hence its figure of
merit is not large. The quasiparticle contribution to the thermopower is electron-like
while the lower Hubbard band contribution is hole-like.

In contrast, the cobaltates have one hole in the lower Hubbard band, and the
quasiparticle contribution evaluated from the LDA [27] has a positive sign, hence it
satisfies the second rule for good thermoelectricity (assuming that the contribution
from the asymmetry in the scattering rate does not modify the sign of the Seebeck
coefficient).

An investigation of the density driven Mott transition in the context of a two
band Hubbard model, with one electron per site, was carried out in Ref. [20], and
the qualitative analysis is very similar to the doping driven Mott transition.

4.2 Emergent Mottness

Interest in thermoelectricity near the doping driven Mott transition leads to the-
oretical and experimental investigations of La1−xSrxTiO3 and CoO2Nax for small
values of the concentration parameter x. Both theory and experiment suggest that
the thermoelectric figure of merit is not very large in this regime. On the other hand,
the vicinity of the band insulator end, La1−xSrxTiO3 [19] and CoO2Nax (see Fig. 5
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for the phase diagram) were shown to have promising thermoelectric performance.
Should we conclude that Mottness is bad for thermoelectricity? Not necessarily,
after all, clear signatures of correlation were found in more realistic modeling of
doped band insulators, once the impurity potentials of the dopant atoms were taken
into account [24]. The impurity potential was found to restrict the spatial regions
available for the motion of the electricity and heat carriers. In this restricted config-
uration space, the occupancy of the electrons is close to integer and Mott physics is
realized.

We have suggested that a similar situation occurs in the electron gas close to
the metal insulator transition. Here, the long range Coulomb interaction generates
short range charge crystalline lattice order. The occupancy of these lattice sites is
close to integer filling, suggesting that the character of the metal to insulator tran-
sition is that of a Wigner–Mott transition [3]. The mechanism, spatial or orbital
differentiation results in a restricted low energy configuration, making Mott physics
relevant. This mechanism is quite general, and operates in other materials such as
the ruthenates [18]. It could be called emergent Mottness or super-Mottness, and
contains similar physics to the orbital selective Mott transition phenomena. Hence
(super) Mottness might be relevant for high performance thermoelectricity after all!.
It would be useful to reconsider the most recent advances in thermoelectric materi-
als in this light, and investigate the local magnetic susceptibility at the impurity sites
of the high performance thermoelectrics [4, 9].

5 Outlook

The outlook for material design in the field of thermoelectric is quite promising.
DMFT seems to capture qualitative trends in oxides of practical interest, further-
more we have simple qualitative ideas, which can be refined and tested with tools of
ever increasing precision. In this context, the new thermoelectric modules to be de-
veloped in conjunction with the new generation of LDA+DMFT codes, look very
appealing. In conjunction with the renewed experimental efforts in this field, the
future looks very promising.
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