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We study the Anderson lattice model with one f orbital per lattice site as the simplest model which describes
generic features of heavy fermion materials. The resistivity and magnetic susceptibility results obtained within
dynamical mean-field theory (DMFT) for a nearly half-filled conduction band show the existence of a single
energy scale T ∗ which is similar to the single-ion Kondo temperature T o

K . To determine the importance of intersite
correlations, we have also solved the model within cellular DMFT (CDMFT) with two sites in a unit cell. The
antiferromagnetic region on the phase diagram is much narrower than in the single-site solution, having a smaller
critical hybridization Vc and Néel temperature TN . At temperatures above TN the nonlocal correlations are small,
and the DMFT paramagnetic solution is in this case practically exact, which justifies the ab initio local density
approximation (LDA) + DMFT approach in theoretical studies of heavy fermions. Strong intersite correlations
in the CDMFT solution for T < TN , however, indicate that they have to be properly treated in order to unravel
the physical properties near the quantum critical point.
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I. INTRODUCTION

Heavy fermions have been intensively studied in the
past 30 years and a large amount of experimental data has
been gathered,1,2 but a complete microscopic theory of these
materials is still not available.3 The unusual low-temperature
properties originate from the electrons from partially filled f

shells which hybridize with a broad band of weakly interacting
conduction electrons. At high temperatures, the f electrons
are weakly coupled to the conduction electron band and act
as local magnetic moments on which the conduction electrons
are scattered. Below the characteristic temperature (the lattice
coherence temperature) T ∗, the coherent quasiparticles start
to develop and the resistivity suddenly decreases. The depen-
dence of T ∗ on microscopic parameters and the nature of the
coherent heavy electron (Kondo) liquid is still a subject of
active debate.4–6

Many experiments clearly show the existence of a unique
energy scale that characterizes all transport and thermo-
dynamic properties7,8 and several attempts were made to
explain universal features of heavy fermions, both within
the phenomenological theory4,5 and from the solution of the
microscopical model.9 There is, however, a growing evidence6

that the energy scales which dominate the low-temperature
properties of heavy fermions depend on details of the density of
states near the Fermi level and the degeneracy and crystal fields
splitting of the f states—the system-dependent properties
which cannot be captured by the simple theoretical model
with just one f -spin doublet or a featureless conduction-band
density of states. The physics is even richer at temperatures
T � T ∗, where the system typically orders magnetically and
even exhibits superconductivity.10–12

In this paper we solve the Anderson lattice model (ALM)
with one f -electron orbital per lattice site, in order to
precisely determine the lattice coherence temperature T ∗ and
the importance of nonlocal correlations in different regions
of the phase diagram. We concentrate on the most interesting

regime of parameters near the antiferromagnetic phase driven
by the conduction-electron-mediated RKKY interaction.13

The model is first solved within the dynamical mean-field
theory (DMFT) approximation,14 which is exact in the case of
purely local correlations, i.e., in the case where the self-energy
depends only on frequency and not on the momentum. The
relevance of the local approximation is tested by a comparison
with the cellular DMFT (CDMFT) solution.15,16 We consider
a cluster of two sites in a self-consistently determined medium
as a minimal model which treats the intersite correlations
beyond the mean-field level. For temperatures larger than
the Néel temperature, we find that the nonlocal correlations
are very small and the local DMFT solutions becomes
practically exact. Therefore, for stronger hybridization the
lattice coherence temperature is determined by the local DMFT
solution and in this case, in the ALM close to half-filling,
we find that it is proportional to the single-ion Kondo
temperature for the same set of parameters T ∗ ≈ T ∗

DMFT ∼ T o
K .

For weaker hybridization, near the antiferromagnetic critical
point, T ∗

DMFT � TN and the coherence temperature is likely
to be dominated by the intersite correlations driven by the
RKKY interaction. To determine the precise form of T ∗ in
this regime and to unravel the physical properties near the
quantum critical point, we need to consider larger clusters
and different clustering schemes. The important conclusion
can, however, be drawn already from the present results:
For temperatures T > TN the correlations are local, which
means that local density approximation (LDA) + DMFT the-
ory gives an excellent framework for a quantitative study
of heavy fermion materials in this temperature range.17–19

The LDA + DMFT method,20 obtained by combining DMFT
with the LDA, treats on equal footing the band structure,
the atomic multiplet splitting, and the Kondo physics, but
assumes that the correlations are local in space. This method
has led to a significant progress in the study of strongly
correlated materials, and may also prove crucial in order to
determine the importance of the crystal-field effects and atomic
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multiplets for low-temperature properties of various heavy
fermions.

The remaining part of the paper is organized as follows. In
Sec. II we define the Hamiltonian and describe the CDMFT
method of its solution. Section III contains the phase diagram
and a comparison of the results with a single-site DMFT. The
coherence temperature T ∗

DMFT is determined from the magnetic
susceptibility and resistivity results in Sec. IV, and in Sec. V
the strength of nonlocal correlations is examined. Conclusions
and discussion are presented in Sec. VI.

II. METHODS

We consider the periodic Anderson model of three-
dimensional cubic lattice given by the Hamiltonian

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ + V

∑
iσ

(f †
iσ ciσ + H.c.)

+ (Ef − μ)
∑
iσ

f
†
iσ fiσ + U

∑
i

n
f

i↑n
f

i↓. (2.1)

c
†
iσ and f

†
iσ create a conduction-band electron (c electron)

and f electron at site i for spin σ . n
f

iσ = f
†
iσ fiσ is the

occupation number operator of f electrons, t is the nearest-
neighbor hopping amplitude, μ is the chemical potential,
V is the hybridization strength, U is the interaction, and
Ef is the f -electron energy level. In DMFT, the solution
of the ALM reduces to solving a single impurity problem
supplemented by a self-consistency condition.14 In CDMFT,
in contrast, the original lattice is tiled with a superlattice of
clusters. An effective Anderson impurity action is derived
for a single cluster and supplemented by the self-consistency
condition which relates the cluster Green’s function to the local
Green’s function of the superlattice.15,16 For the cluster of two
impurities, allowing for the antiferromagnetic order, there are
three independent components of the cluster Green’s function,
e.g., G11↑, G22↑, and G12↑. Details of the self-consistent
procedure for calculation of the Green’s function are presented
in Appendix A.

Technically the most difficult step in the DMFT (CDMFT)
procedure is a solution of the model of an impurity (cluster
of impurities) immersed into the given conduction bath.
For this step we use the Continuous Time Quantum Monte
Carlo (CTQMC) impurity solver21 in the implementation from
Ref. 22. This allows us to obtain a numerically exact solution
even at very low temperatures which are well below the Néel
temperature of the model. We note that the same model in
the CDMFT framework was studied previously, but this work
used numerical methods which are inferior as compared to the
CTQMC. The CTQMC allows us to reach temperatures that
are orders of magnitude lower than the Hirsh-Fye impurity
solver used in Ref. 23. The exact diagonalization method,24 on
the other hand, is restricted to zero temperature, it discretizes
the degrees of freedom of the conduction bath, and uses a
discrete mesh of frequency points that are much larger than
the temperature in our work. Since the energy scales for the
range of parameters where the Kondo temperature and RKKY
interaction energy are comparable in magnitude are very small,
the numerical method that we use in this paper is crucial in

order to precisely determine the phase diagram and to examine
the importance of nonlocal correlations.

III. PHASE DIAGRAM

We present the solution of DMFT (CDMFT) equations
for the Anderson lattice model for U = 1.2, Ef = −0.4,
μ = −0.03, and various hybridization V . These parameters
correspond to metallic nearly half-filled system, where stable
magnetic phase and strong nonlocal effects are expected.
The occupation of f electrons is close to 1 (Kondo limit)
and the total occupation is close to 2. A nearly half-filled
conduction band leads to antiferromagnetic correlations in
the spin density. We will concentrate on the most interesting
regime of hybridization where the Kondo temperature and
RKKY interaction energy are of the same order of magnitude.
The energy will be measured in units of the conduction
electron half-bandwidth D = 6t = 1. The lowest temperature
in numerical results is T = 1/1200, which is crucial in order
to stabilize the antiferromagnetic solution within CDMFT.

The phase diagram of the model is shown in Fig. 1. The
phase boundary between the antiferromagnetic (AFM) and
paramagnetic solution is determined by the relative strength
of the Kondo screening and RKKY interaction. The result
is in a qualitative agreement with Doniach’s phase diagram:
The AFM solution is stabilized for small hybridization V

when JRKKY ∼ ρoJ
o
K

2 dominates over the Kondo scale T o
K ∼

exp(−1/2ρoJ
o
K ). Here J o

K = ( 1
|Ef −μ| + 1

|U+Ef −μ| )V
2 is the

bare Kondo coupling and ρo is the density of states of the
conduction electrons at the Fermi level. The numerical solution
of ALM model, however, gives us a possibility to quantitatively
determine the relevant energy scales. The red dotted line in
Fig. 1 is the lattice coherence temperature T ∗

DMFT obtained, in
the DMFT solution, as the temperature corresponding to the
maximum resistivity for a given value of V (see Sec. IV).
In DMFT, which neglects nonlocal correlations, the Néel
temperature T DMFT

N can be taken as the measure of JRKKY.
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FIG. 1. (Color online) Temperature vs hybridization phase dia-
gram in DMFT (solid red line) and CDMFT (solid blue line). The
red dotted line is the coherence temperature in the DMFT solution.
Nonlocal correlations are very weak for temperatures above Tnl (blue
dotted line) and in this region the paramagnetic DMFT solution is
practically exact.
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FIG. 2. (Color online) Staggered magnetization of f and c

electrons in DMFT (a) and CDMFT solution (b). Dotted lines are
fit to the square-root mean-field curve.

In the AFM phase T ∗
DMFT < T DMFT

N in almost the entire phase
diagram (except very close to the critical V DMFT

c ), in agreement
with a recent DMFT phase diagram for the Kondo lattice
model.25

The AFM region in the CDMFT solution is significantly
narrower than in the single-site DMFT solution due to the
intersite correlations which are treated beyond the mean
field level in CDMFT. The highest Néel temperature in
CDMFT is approximately four times lower than in DMFT.
The critical hybridization Vc for the quantum phase transition
reduces from V DMFT

c ≈ 0.23 in DMFT to Vc ≈ 0.18 in the
CDMFT solution. As examined in detail in Sec. V, above the
temperature Tnl ∼ 0.004, the nonlocal correlations are very
small and the paramagnetic solution in single-site DMFT
becomes practically exact for T � Tnl. For T < Tnl, however,
intersite correlations found in two-site CDMFT are strong and
dominate the low-temperature physics of the ALM for V � Vc.

The CTQMC impurity solver22 enables us to stabilize the
AFM solution in CDMFT at very low temperatures with
a small minus sign problem. The numerical quality of the
data can be verified from the magnetization results shown
on Fig. 2. In the DMFT solution, the mean-field behavior
of the staggered magnetization, nf ↑ − nf ↓ ∝ −(nc↑ − nc↓) ∝
(1 − T/Tc)1/2, is observed in a wide temperature range. In

the CDMFT solution, the short range correlations are better
taken into account and the mean-field behavior is restricted to
a narrower temperature region near Tc. The error bars are the
statistical errors estimated from several CTQMC runs. They
are much larger in the CDMFT solution due to the appearance
of a minus sign problem in the AFM phase. The staggered
magnetization mf = nf ↑ − nf ↓ is less than 1 even as T → 0
due to the hybridization with the conduction electrons. mf

in the CDMFT solution is almost two times smaller than
in DMFT. Typical results for the self-energy and Green’s
functions on the Matsubara axis are shown in Appendix B.

IV. COHERENCE TEMPERATURE IN DMFT SOLUTION

At high temperatures f electrons are weakly coupled to the
conduction-band electrons and behave as local moments. The
scattering of c electrons initially increases with decreasing
temperature similarly as in the limit of diluted magnetic
moments. The resistivity reaches a maximum at a characteristic
temperature Tmax that can be taken for a definition of the lattice
coherence temperature. Below Tmax the f and c electrons
strongly hybridize and eventually form long-lived heavy
quasiparticles.

In the single-site DMFT it is easy to calculate the
scattering rate and the resistivity. They are obtained from
the self-energy �c which corresponds to the conduction
electrons. The conduction electron Green’s function is given
by Gc(ω) = 1

N

∑
�k[ω + μ − ε�k − �c(ω)]−1, where �c(ω) =

V 2/[ω − Ef + μ − �f (ω)], and �f is the self-energy of
the impurity (i.e., f electron). The scattering rate is given
by τ−1 = −2 Im �c(ω = 0), and the resistivity ρ is obtained
from the zero frequency limit of the real part of the optical
conductivity26,27 ρ = 1/Re σ (ω → 0),

ρ−1 = πe2 1

N

∑
�k

∫
dω

(
− df

dω

)
v2

xA
2(�k,ω). (4.1)

Here A(�k,ω) = Im[ω + μ − ε�k − �c(ω)] is the conduction
electron spectral function, vx = ∂ε�k/∂kx , N is the number
of �k states in the Brillouin zone, and f is the Fermi-Dirac
distribution. In the CTQMC impurity solver the self-energy
is obtained at Matsubara frequencies, and to obtain the real
frequency data we assume the polynomial form for �c at low
frequencies �c = az2 + bz + c, and determine the complex
parameters a,b, and c from the real and imaginary parts of
�c(iωn) for first three Matsubara frequencies, for each T

and V . This simple analytical continuation is not restricted
to the Fermi-liquid region, and it turned out to be remarkably
accurate, as we will see from the analysis of the resistivity
curves.

The scattering rate is shown on Fig. 3(a) as a function
of temperature and for several values of the hybridization
parameter. The scattering rate curves have a prominent maxima
at values which are of the order of the Mott-Ioffe-Regel limit
for a maximal metallic resistivity τ−1

max ∼ 1. The resistivity
saturation at this value, which corresponds to the mean free
path of one lattice spacing, is indeed the property of heavy
fermions.28,29 It can be simply explained from the sum rule,
and the resistivity saturates when the Drude peak in the
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D. TANASKOVIĆ et al. PHYSICAL REVIEW B 84, 115105 (2011)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.005  0.01  0.015  0.02

τ-1

T

(a)

V=0.27
V=0.25
V=0.23
V=0.21
V=0.19
V=0.18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.005  0.01  0.015  0.02

ρ/
ρ M

ot
t

T

(b)

V=0.27
V=0.25
V=0.23
V=0.21
V=0.19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5

ρ /
ρ M

ot
t

T/Tmax

(c)

V=0.27
V=0.25
V=0.23
V=0.21
V=0.19

FIG. 3. (Color online) (a) Scattering rate and (b) resistivity as a
function of temperature for several hybridization strengths. (c) The
resistivity curves approximately collapse to a single one after scaling
the temperature.

optical conductivity gets completely smeared with increasing
temperature.30 The resistivity curves [Fig. 3(b)] have the same
form as the scattering rate curves, with only slightly shifted
maxima due to the temperature dependence of the real part
of �c. The resistivity is given in units of ρMott defined as the
resistivity for τ−1 = 1. When the temperature is scaled with
Tmax, the shape of the resistivity curves is almost the same for
all values of the hybridization strength [Fig. 3(c)].
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FIG. 4. (Color online) (a) Resistivity as a function of T 2. The
linear region is observed for T � Tmax/2. (b) The resistivity slope
A is a linear function of 1/T 2

max. (c) The temperature Tmax of the
resistivity maximum depends exponentially on the hybridization.

The resistivity [Fig. 4(a)] follows the Fermi-liquid form
ρ = AT 2 up to the temperature ∼Tmax/2, which can be taken
as the boundary of the Fermi-liquid region. We use the data
for T < Tmax/2 to determine the slope A, which depends
linearly on 1/T 2

max [Fig. 4(b)]. This is a manifestation of the
Kadowaki-Woods relation,7,31,32 which establishes a universal
ratio between the resistivity and thermodynamic quantities,
such as the specific heat. In our case A ∼ 1/T 2

max ∼ m∗2 ∼ γ 2,
where m∗ is the effective mass and γ is the specific-heat
coefficient. The Kadowaki-Woods ratio explains excellent
scaling of the resistivity curves at low temperatures. By
scaling only the temperature, we find that the curves approx-
imately collapse to a single curve in the whole temperature
range since the maximum resistivity is approximately the
same for all values of hybridization. The resistivity scaling
was successfully applied in an early experimental paper on
CeCu6.8

The resistivity scaling clearly shows the existence of just
one energy scale–lattice coherence temperature T ∗ ≡ Tmax.
Therefore, it is very important to determine its dependence
on microscopic parameters and make a comparison with the
single-ion Kondo temperature. As we show on Fig. 4(c), the re-
sistivity maximum depends exponentially on the hybridization
parameter. We can use a relation T ∗ = C exp(−1/2ρoJ

latt
K ) as

a definition for the lattice Kondo coupling. Taking ρo = 0.855
for the conduction-band density of states, we obtain J latt

K =
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FIG. 5. (Color online) Scaled susceptibility (a) [inverse suscepti-
bility (b)] as a function of scaled temperature. If we omit the data for
T < Tmax (the insets), the scaling is excellent.

3.7V 2 ≈ J o
K , where J o

K = ( 1
|Ef −μ| + 1

|U+Ef −μ| )V
2 = 3.9V 2.

Therefore, in the theory with only local correlations, the
coherence temperature has the same functional form as the
single-ion Kondo temperature T o

K , and the effective Kondo
coupling J latt

K is approximately the same as J o
K . We note that

the functional form of Tmax(V ) is the same if Tmax is taken
from the scattering rate curves, with the same value for J latt

K

and with the prefactor C only slightly smaller than the one
obtained from the resistivity curves.

We further compare the lattice and single-ion energy
scale using the magnetic susceptibility data. The static local
magnetic susceptibility χloc(ω = 0) ≡ χ can be determined
very accurately using CTQMC as the impurity solver and does
not require an analytical continuation of the data. The plots on
Fig. 5 are obtained by scaling with a single parameter To, which
we call the lattice Kondo temperature. As in the single-ion
case, the temperature is scaled by To and the susceptibility is
multiplied by To in order to collapse the data on a single curve.
To has an exponential dependence on V 2, as we analyze in
detail in the rest of this section. The scaling of the susceptibility
[Fig. 5(a)] is very good except for the temperatures T < Tmax.
The reason is that the hybridization bath assumes a strong
temperature dependence for temperatures lower than the lattice
coherence temperature. If we omit the data in the scaling
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FIG. 6. (Color online) Inverse magnetic susceptibility as a func-
tion of temperature for ALM (a) and SIAM (b). For the ALM the
susceptibility follows the Curie-Weiss form above T ∗ (solid red
dots). The Curie-Weiss temperature for ALM is approximately twice
larger than in SIAM (c), but has the same functional dependence on
hybridization (d).

analysis for T < Tmax for each value of V , we find that all the
data collapse to a single universal curve [the inset in Fig. 5(a)].
The same scaling analysis for the inverse susceptibility is
shown in Fig. 5(b).

We now carefully analyze the local susceptibility and make
a comparison with the single-ion case. Figures 6(a) and 6(b)
show the inverse susceptibility as a function of temperature for
the ALM and the single-impurity Anderson model (SIAM).
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We start from the Curie-Weiss form

χ−1 = aT + bTo. (4.2)

Here a and b are constants. In the single-ion case To

corresponds to the Kondo temperature T o
K . In the lattice

model χ (T ) also follows the Curie-Weiss form except at
the lowest temperatures T � Tmax, where it significantly
deviates from linear dependence. The inverse susceptibility at
T = T ∗ = Tmax is shown by the solid red dots in Fig. 6(a).
As expected, the value of χ−1 at T = T ∗ is proportional
T ∗. To obtain the lattice Kondo temperature T latt

K , we omit
the data for T < T ∗ and make a fit to Eq. (4.2). For the
case of a single impurity we can keep all data to obtain
To ≡ T o

K . The ALM and SIAM values for To differ by
a factor of 2 [Fig. 6(c)], but have the same exponential
dependence on V 2 [Fig. 6(d)]: To ∝ exp(−1/2ρoJK ), where
the lattice Kondo coupling J latt

K ≈ J o
K ∝ V 2. Some deviation

from linear behavior for SIAM is due to the small change of
the occupation number (0.9 < nf < 0.96) since we keep the
chemical potential fixed while changing T and V .

We can conclude that both the resistivity and magnetic
susceptibility data give the same value for the effective lattice
Kondo coupling whose value is very similar to the bare Kondo
coupling in the case of diluted impurities. The Curie-Weiss
form, Eq. (4.2), gives the value of To up to the prefactor.
In order to compare the absolute values of T ∗ ≡ Tmax and
T latt

K ≡ To for the ALM, we can use the value b from the single-
impurity theory. From the Wilson formula,1 χ (T = 0) =
0.4128/(4T o

K ), which gives b = 9.7. [We used b = 9.7, a = 4,
and gμB = 1 on the scaling plot (Fig. 5).] Then T ∗/T latt

K = 0.6
and their ratio does not depend on V . The conclusion that
T ∗ and T o

K have the same exponential dependence on the
hybridization parameter, i.e., on the coupling constant, agrees
with the previous results using the numerical renormalization
group as the impurity solver,9,33 and the slave boson mean-field
theory,6 and this is valid even far away from half-filling.
The prefactor is, however, of the order of 1 only in the
case of nearly half-filled featureless conduction band. Only
in this case there is a single energy scale in the ALM and
all additional low-energy scales assigned to different physical
properties are proportional to this single low-temperature
scale. For small occupation of c electrons there are two energy
scales: T 0

K , where the screening begins, and T ∗ � T o
K , where

coherence sets in.9,33 T ∗ � T o
K also if there is a peak in

the noninteracting conduction-band density of states, while
T ∗ � T o

K if there is a dip at the Fermi level.6 Before we
concentrate on the strength of intersite correlations, which has
not been previously explored, we will make few additional
remarks about the analytical continuation performed in our
work.

The only assumption that we use is that the self-energy
is an analytical function, and we approximate the low-
frequency part by a second-order polynomial obtained from
the self-energy at the first three Matsubara frequencies. The
high-frequency part of the self-energy is not important at
all when calculating the resistivity, since the derivative of
the Fermi-Dirac function in Eq. (4.1) is negligible away
from the Fermi level. It is enough to keep the frequencies
|ω| � 3T in the integral, and in this case a second-order
polynomial is a reasonable approximation for the self-energy.

The approximation by a polynomial would be problematic
if the self-energy is nonanalytic near the quantum critical
point. However, in our case we do not have such an irregular
self-energy to worry about. Finally, our results include two
stringent tests of the analytical continuation: The Fermi-liquid
behavior at low T is reproduced remarkably well, and the
susceptibility data, which does not require the analytical
continuation, give the same energy scales as obtained from
the resistivity calculations. We emphasize, however, that our
method for analytical continuation is not restricted to the
Fermi-liquid region, and we believe that it is the best possible
option if we are interested only in the low-frequency part of the
spectrum. The maximum entropy method gives roughly correct
spectra at intermediate frequencies, but from our experience,
it never gives better results than the polynomial fit at low
frequencies. The small noise from QMC data can also lead
to fairly bad results in the Padé method for the analytical
continuation.

V. STRENGTH OF NONLOCAL CORRELATIONS

The results obtained in the previous section are exact if the
correlations are local, i.e., if the self-energy depends only on
the frequency and not on the momentum. In order to determine
the importance of nonlocal correlations, we consider the ALM
within CDMFT with two sites in a unit cell as the minimal
model which includes nonlocal correlations. We restrict to
the paramagnetic solution. Typical results for the f -electron
self-energy are shown in Fig. 7. The hybridization parameter
in this figure is chosen very close to a critical value V =
0.18 ≈ Vc, but the results for the self-energy are qualitatively
the same also for hybridization away from the critical point.
The intersite correlations are determined by the difference
between even and odd components of the self-energy �00 and
�ππ . At T = 1/200 [Fig. 7(a)], the self-energy fully coincides
with the single-site DMFT solution. At T = 1/600 [Fig. 7(b)],
very weak intersite correlations are present, and they gradually
increase as the temperature is further lowered to T = 1/1200
[Fig. 7(c)]. We note that we did not find any signatures of
the Kondo breakdown—the decoupling of f electrons and
Fermi-surface reconstruction for V = Vc.34 The imaginary
part of the self-energy Im �f (ω = 0) goes to zero, and
the quasiparticle weight Z = [1 − ∂ Im �(iω)/∂ω]−1|ω→0+ ∼
1/m∗ remains finite as T → 0 and V = Vc.

The strength of nonlocal correlations can be quantified
using the probabilities for the occupation of different cluster
eigenstates. At high temperatures, f electrons are almost
decoupled, and the probabilities Ps and Pt for the singlet
and (one of three available) triplet states are almost the
same, and approach the free spin value Ps ≈ Pt ∼ 0.25. At
low temperature the probability of the singlet state suddenly
increases [Fig. 8], and the singlet cluster eigenstate is dom-
inantly occupied for T � Tnl. A large singlet probability Ps ,
which approaches 1 at the lowest temperatures, implies strong
singlet correlations. We can use these probabilities to define
a crossover temperature Tnl which divides the regions of
strong and weak intersite correlations. We define Tnl as the
temperature when Ps − Pt = 0.1, which is shown by a blue
dotted line on the phase diagram (Fig. 1). Tnl roughly follows
TN , but Ps − Pt stays large at the lowest temperatures also for

115105-6



PHASE DIAGRAM, ENERGY SCALES, AND NONLOCAL . . . PHYSICAL REVIEW B 84, 115105 (2011)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

(a)

T=1/200

Re Σ0
Im Σ0
Re Σπ
Im Σπ

Re ΣDMFT
Im ΣDMFT

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

(b)

T=1/600

Re Σ0
Im Σ0
Re Σπ
Im Σπ

Re ΣDMFT
Im ΣDMFT

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

ωn

(c)

T=1/1200

Re Σ0
Im Σ0
Re Σπ
Im Σπ

Re ΣDMFT
Im ΣDMFT

FIG. 7. (Color online) Comparison of the paramagnetic DMFT
and CDMFT solutions for the self-energy on the Matsubara axis for
V = 0.18 and T = 1/200,1/600,1/1200.

V > Vc. The calculation of the observables, such as the spin
susceptibility and resistivity, remains to be done in future work.
While for a reliable quantitative analysis we need to study also
larger clusters and compare different clustering schemes since
the two-site cluster version may overestimate the local singlet
formation, we expect that the two impurity results already
give a good estimate of the line which separates the regions of
strong and weak intersite correlations.
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FIG. 8. (Color online) Difference of probabilities for finding the
two-site impurity in the singlet and triplet cluster eigenstates.

VI. CONCLUSION AND DISCUSSION

In summary, we have solved CDMFT equations with two
sites in a unit cell for a nearly half-filled Anderson lattice model
and compared the results with single-site DMFT. The phase
diagram generally agrees with Doniach’s physical picture: The
antiferromagnetic phase is stabilized when the RKKY interac-
tion energy is larger than the Kondo temperature. The CDMFT
solution gives a much narrower AFM phase as compared
to DMFT, which is expected since the mean-field solution
generally overestimates a tendency to magnetic order, and
two-site CDMFT overestimates the local singlet formation,
which competes with the long-range magnetic order, hence
the exact Néel temperature of the ALM is expected to be
somewhere between the two limits. At temperatures above
TN the nonlocal correlations are small and the CDMFT and
the DMFT paramagnetic solutions are almost the same. This
conclusion has important practical consequences for theoret-
ical studies of heavy fermions. For temperatures larger than
TN the self-energy is weakly momentum dependent, which
explains the success of the LDA + DMFT approach in ab
initio calculation of transport and thermodynamic properties
of heavy fermions. Heavy fermions are particularly well
suited for the single-site DMFT approach since the interesting
crossovers in transport and thermodynamic properties, from
coherent to fully incoherent behavior, are seen in a broad
temperature region above very low ordering temperature.
At temperatures T � TN when short-range processes are
included, and if frustration at short distances is weak, the
modifications from local DMFT predictions can be substantial.

We have also determined the lattice coherence temperature
T ∗ from the resistivity and magnetic susceptibility calculated
within DMFT and made a careful comparison with the Kondo
scale T o

K for diluted impurities with the same set of parameters.
The results clearly show that there exists a single energy scale
T ∗ ∼ T o

K , which dominates the low-temperature properties
in the case of a nearly half-filled featureless conduction band.
The comparison with the CDMFT solution shows that for
stronger hybridization the nonlocal correlations are negligible
at temperatures T ∗(V ) and that T ∗ is approximately the same
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as given by the local DMFT solution. Near the quantum critical
point, the intersite correlations have to be properly taken into
account to determine the lattice coherence scales. For this
purpose, larger clusters and different clustering schemes also
need to be considered, an important research direction which
is left for future work. In real materials the effects of atomic
multiplets and crystal fields, as well as the existence of sharp
peaks or dips in the density of states at the Fermi level,
may significantly modify the low-temperature physics6,35 as
compared to our simple model.

We note that in this paper we have concentrated on a
broad temperature range above the quantum critical point and
have not directly addressed an important and controversial
question of the nature of the quantum critical point.12,34,36 Our
two-site CDMFT solution, however, shows that the f -electron
density of states remains finite at the Fermi level even very
near the critical point, and we did not see signatures of the
Kondo breakdown—decoupling of the f electrons from the
conduction bath at the Fermi level. This agrees with recent
studies of the Kondo lattice model within dynamical cluster
approximation,37 and numerical renormalization group studies
of the two-impurity Anderson model.38 Further studies in this
direction are needed, for different parameter regimes and larger
clusters, facilitated with the CTQMC impurity solver, which
is proven to be able to reliably treat the competition of small
energy scales.

ACKNOWLEDGMENTS

We thank M. Ferrero and M. Vojta for useful discussions.
D.T. acknowledges support from the Serbian Ministry of
Education and Science under Project No. ON171017. K.H.
was supported by NSF Grant No. DMR-0746395, G.K. by
NSF Grant No. DMR-0906943, and V. D. by the National
High Magnetic Field Laboratory and the NSF Grant No. DMR-
1005751. D.T was supported in part by I2CAM under NSF
Grant No. DMR-0844115. D.T., K.H., and G.K. acknowledge
the hospitality of KITP, Santa Barbara, under NSF Grant
No. PHY05-51164. Numerical simulations were run on the
AEGIS e-Infrastructure, supported in part by FP7 projects
EGI-InSPIRE, PRACE-1IP, and HP-SEE.

APPENDIX A: SELF-CONSISTENCY EQUATIONS

In the CDMFT the original lattice is tiled with a su-
perlattice of clusters, and an effective Anderson impurity
action is derived for a single cluster and supplemented by the
self-consistency condition which relates the cluster Green’s
function to the local Green’s function of the superlattice.
The hybridization bath for the Anderson impurity action,
the cluster Green function, and the cluster self-energy have
intersite components and can be conveniently represented in
the matrix form. For the cluster of two impurities the Green’s
function takes the form

Ĝf =

⎛
⎜⎜⎜⎝

G11↓ G12↓ 0 0

G21↓ G22↓ 0 0

0 0 G11↑ G12↑
0 0 G21↑ G22↑

⎞
⎟⎟⎟⎠ . (A1)

From the CDMFT self-consistency equation, the hybridiza-
tion function �̂ is given by

�̂(iωn) = iωn + μ − Ef − �̂f (iωn) − Ĝ−1
f (iωn), (A2)

where the cluster Green’s function coincides with the local
component of the lattice Green’s function

Ĝf (iωn) = 1

N

∑
�k

Ĝf (iωn,�k). (A3)

Ĝf (iωn,�k) is easily obtained by integrating out the conduction
electrons from the action which corresponds to the Hamilto-
nian (2.1), and its spin σ component is explicitly given by

Ĝf σ (iωn,�k)

=
[(

iωn + μ − Ef 0

0 iωn + μ − Ef

)

−V 2(iωn + μ − t̂(�k))−1 −
(

�11σ �12σ

�21σ �22σ

)]−1

. (A4)

For a hypercubic lattice the summation over �k is done in the
reduced Brillouin zone: kx ∈ (−π

2 , π
2 ), ky,kz ∈ (−π,π ), and

the hopping term is equal to

t̂(�k) =
(

0 e−ikx ε�k
eikx ε�k 0

)
, (A5)

with ε�k = −2t(cos kx + cos ky + cos kz).
We solve the two-site Anderson impurity problem using

the CTQMC impurity solver as implemented in Ref. 22. This
requires to switch to the cluster momenta basis functions,
which are, in the case of two sites in a cluster, given by

|ψ0,σ 〉 = (|σ,0〉 + |0,σ 〉) /
√

2,
(A6)

|ψπ,σ 〉 = (|σ,0〉 − |0,σ 〉) /
√

2.

In this alternate basis, the hopping matrix is equal to

t̂(�k) = ε�k

(
cos kx i sin kx

−i sin kx − cos kx

)
, (A7)

and the self-consistency equation is given by(
G00σ G0πσ

Gπ0σ Gππσ

)

= 1

N

∑
k

[(
iωn + μ − Ef 0

0 iωn + μ − Ef

)

− V 2(iωn + μ − t̂(�k))−1 −
(

�00σ �0πσ

�π0σ �ππσ

)]−1

, (A8)

where

[iωn + μ − t̂(�k)]−1 = 1

(iωn + μ)2 − ε2
�k

×
(

iωn + μ + ε�k cos kx iε�k sin kx

−iε�k sin kx iωn + μ − ε�k cos kx

)
.

(A9)
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The components of the Green’s functions are related to those
in the direct basis as

G00σ = (G11σ + G22σ + G21σ + G12σ )/2,

G0πσ = (G11σ − G22σ + G21σ − G12σ )/2,
(A10)

Gπ0σ = (G11σ − G22σ − G21σ + G12σ )/2,

Gππσ = (G11σ + G22σ − G21σ − G12σ )/2.

In the AFM phase G11↑ = G22↓, G22↑ = G11↓, G12↑ =
G21↓, and G21↑ = G12↓. Therefore, G00↑ = G00↓, Gππ↑ =
Gππ↓, G0π↑ = −G0π↓, and Gπ0↑ = −Gπ0↓. Also, the off-
diagonal Green’s functions at constant spin are the same,
G0π↑ = Gπ0↑ and G0π↓ = Gπ0↓. Analogous relations are
valid for the self-energy and for the hybridization bath. There-
fore, the effective two-impurity Anderson model is solved in
the hybridization bath with three independent components

�̂ =

⎛
⎜⎜⎜⎝

�00 �0π 0 0

�0π �ππ 0 0

0 0 �00 −�0π

0 0 −�0π �ππ

⎞
⎟⎟⎟⎠ , (A11)

and supplemented by the self-consistency condition, Eqs. (A2)
and (A8). The Green’s function also has three independent
components

G00 = (G11 + G22)/2 + G12,

G0π = (G11 − G22)/2, (A12)

Gππ = (G11 + G22)/2 − G12,

where the spin index has been suppressed. Analogous relations
are valid for the self-energy. We note that the off-diagonal
components �0π lead to the antiferromagnetic order. In the
paramagnetic solution they are equal to zero.

APPENDIX B: GREEN’S FUNCTIONS IN
THE AFM SOLUTION

Typical results for the f -electron self-energy and Green’s
function in the AFM phase are given in Fig. 9. The self-energy
[Fig. 9(a)] has very small nonlocal component �12 = (�00 −
�ππ )/2. The finite �0π component leads to the staggered
magnetization. The corresponding local Green’s function
G11,σ = (G00,σ + Gππ,σ )/2 + G0π,σ has different spin-up and
spin-down components [Fig. 9(b)]. For given parameters,
nf ↑ − nf ↓ = 0.35, nc↑ − nc↓ = −0.08, nf ↑ + nf ↓ = 0.96,
and the total occupation is 1.92.
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FIG. 9. (Color online) Self-energy (a) and local Green’s function
(b) in CDMFT solution for V = 0.16 and T = 1/800.

We note that the Néel temperature strongly depends on
the occupation number. It is the highest in the Kondo insulator
(for nf + nc = 2), and drops sharply as the occupation number
decreases. In the Kondo insulator for V = 0.18, Ef = −0.6,
we find that T DMFT

N ≈ 0.015, which is similar as in Ref. 13,
while T CDMFT

N ≈ 0.004. We suspect that TN is much larger in
Ref. 23 because the solution gets stuck in a metastable local
minimum, giving a false higher value for TN , or because of the
self-consistency condition, which is in fact different in Ref. 23.
The expression for the Green’s function in Ref. 23 includes
periodized self-energy which may be noncausal. In our work,
we use the standard CDMFT implementation of the cluster
DMFT.
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