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Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition
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Electron-electron scattering usually dominates the transport in strongly correlated materials. It typically leads
to pronounced resistivity maxima in the incoherent regime around the coherence temperature T ∗, reflecting the
tendency of carriers to undergo Mott localization following the demise of the Fermi liquid. This behavior is best
pronounced in the vicinity of interaction-driven (Mott-like) metal-insulator transitions, where the T ∗ decreases,
while the resistivity maximum ρmax increases. Here we show that in this regime, the entire family of resistivity
curves displays a characteristic scaling behavior ρ(T )/ρmax ≈ F (T/Tmax), while the ρmax and Tmax ∼ T ∗ assume
a power-law dependence on the quasiparticle effective mass m∗. Remarkably, precisely such trends are found
from an appropriate scaling analysis of experimental data obtained from diluted two-dimensional electron gases
in zero magnetic fields. Our analysis provides strong evidence that inelastic electron-electron scattering—and not
disorder effects—dominates finite-temperature transport in these systems, validating the Wigner-Mott picture of
the two-dimensional metal-insulator transition.
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I. INTRODUCTION

The physical nature of scattering processes which control
transport represents one of the most fundamental properties
for any material. At the lowest temperatures, the thermal
excitations are few, and elastic impurity scattering dominates.
Raising the temperature introduces two basic pathways to
modify transport. First, elastic scattering can acquire a tem-
perature dependence either through the modified screening
of the impurity potential or through dephasing processes.1,2

This general mechanism encapsulates the physical content
of all “quantum corrections”—both in the diffusive and the
ballistic regime—predicted within the Fermi-liquid frame-
work. Indeed, careful and precise experiments have confirmed
the validity of this physical picture for many good metals
with weak disorder.1 Physically, it relies on the existence of
long-lived quasiparticles within a degenerate electron gas.

The second route comes into play in instances where
correlation effects due to electron-electron interactions
are significant. Here, the Fermi-liquid regime featuring
degenerate quasiparticles is often restricted to a very limited
temperature range, T � T ∗ � TF , well below the “coherence
temperature” T ∗, which itself is much smaller than the Fermi
temperature TF . In such materials, which include rare-earth
intermetallics,3,4 many transition-metal oxides,5 and several
classes of organic Mott systems,6–8 a broad intermediate
temperature regime emerges, T ∼ T ∗ � TF , where inelastic
electron-electron scattering dominates all transport properties.
Such scattering directly reflects the thermal destruction of
Landau quasiparticles, which is a situation describing the
demise of a coherent Fermi liquid. In these materials, in the
relevant temperature range, the electron-phonon scattering is
much weaker than the electron-electron one.

When a material is tuned to the vicinity of any metal-
insulator transition,9 both disorder and electron-electron in-
teractions are of a priori importance. But which of these
two scattering mechanisms—elastic or inelastic—dominates
the experimentally relevant temperature range? Answering

this question should provide important clues as to which of
the localization mechanisms dominate in any given material.
Unfortunately, experimental systems permitting sufficiently
precise tuning of control parameters are generally rather few.
An attractive class of systems where a dramatic metal-to-
insulator crossover is observed in a narrow parameter range
is provided by two-dimensional electron gases (2DEG), such
as silicon metal-oxide-semiconductor field-effect transistors
(MOSFETs) or GaAs/AlGaAs heterostructures.10–12 One of
the most striking features observed in these systems is
the pronounced resistivity drop on the metallic side of the
transition. While conventional, relatively weak temperature
dependence is found at high densities (n � nc), very strong
temperature dependence is found near the critical density
nc, roughly in the same density range, nc � n � 2nc, where
other strong correlation phenomena were observed, e.g., large
m∗ enhancement.13 Here, pronounced resistivity maxima are
observed at T ∼ Tmax(n), followed by a dramatic resistivity
drop at lower temperatures, whose physical origin remains a
subject of much controversy and debate.10–12

In this paper, we argue that the electron-electron scattering
dominates the transport in a broad concentration and tempera-
ture range on the metallic side of the metal-insulator transition
(MIT) in Si MOSFETS and GaAs/AlGaAs heterostructures.
This conclusion is reached by (i) a detailed scaling analysis of
the metallic resistivity curves, (ii) establishing a similarity in
the transport properties of the 2DEG and well-studied strongly
correlated materials near the interaction-driven MIT, and (iii)
making a comparison of the resistivity curves in 2DEG with
those in a simple model of the Mott MIT. Our conclusions
favor the interaction-driven (Wigner-Mott) scenario14–18 of the
MIT in 2DEG and provide guidance for the development of a
microscopical theory of incoherent transport in diluted 2DEG.

The remaining part of the paper is organized as follows.
Our phenomenological scaling of the experimental data is
shown in Sec. II, and the analogy with strongly correlated
three-dimensional (3D) materials is highlighted in Sec. III.
The scaling analysis in a simple model of the Mott MIT is
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presented in Sec. IV, and Sec. V contains the conclusion and
discussion.

II. SCALING ANALYSIS OF THE RESISTIVITY MAXIMA

The experimental data reveal well-defined trends in the
density dependence of the resistivity maxima, suggesting a
scaling analysis. While many different scenarios for the metal-
insulator transition predict some form of scaling, its precise
features may provide clues to what mechanism dominates the
transport.

All of the curves displaying a resistivity maximum have an
almost identical shape (Fig. 1), strongly suggesting that unique
physical processes are responsible for a strong temperature
dependence of the resistivity in a large range of concentrations.
The resistivity maxima are typically observed at temperatures
comparable to the Fermi temperature, where a physical picture
of long-lived quasiparticles is no more valid. Complementary
experiments11,13 on the same material have revealed that
large effective mass m∗ enhancements are observed in the
same density range. This behavior is a clear signature of
strong correlation effects which, in all known examples,
produce very strong inelastic electron-electron scattering
in the appropriate temperature range. The electron-phonon
scattering is negligibly small for T < TF � 10 K.20 Since
a strongly correlated system is typically characterized by a
single characteristic energy scale, T ∗ ∼ (m/m∗) TF , we expect
the scaling function f (x) to assume a universal form, while
the scaling parameters Tmax ≡ T ∗ and ρmax are expected to
assume a simple, power-law dependence on the effective mass
m∗. Guided by these observations, in this section we introduce
a scaling ansatz and perform a scaling analysis of the resistivity
curves in Si MOSFETs and GaAs heterostructures.

FIG. 1. Resistivity as a function of temperature from the experi-
ments on Si MOSFET by Pudalov et al. (Ref. 19).

A. Phenomenological scaling hypothesis

In accordance to what is typically found in other examples
of strongly correlated metals with weak to moderate disorder,6

we expect the resistivity to assume an additive form, ρ(T ) =
ρo + δρ(T ). Here, ρo is the residual resistivity due to impurity
scattering, and the temperature-dependent contribution δρ(T )
is expected to be dominated by inelastic electron-electron
scattering. Based on these general considerations, we propose
that the temperature-dependent term assumes a scaling form

δρ(T ) = δρmaxf (T/Tmax), (1)

where δρmax = ρmax − ρo.
To test this phenomenological scaling hypothesis, we

perform a corresponding analysis of experimental data in
several systems displaying 2D MIT. We start with the Si
MOSFET data19 analyzed in Ref. 21. We concentrate on
metallic curves below the separatrix C. In the range of
concentrations 0.83 < n < 1.10, the resistivity curves have a
clear maximum, and nicely collapse with the proposed scaling
ansatz, shown in Fig. 2(a). In fact, we can use the scaling
ansatz to collapse also the data for 1.21 < n < 1.75, where
Tmax and ρmax are determined from the least-squares fit to the
scaling curve. Clearly all eight resistivity curves belong to

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

δρ
 / 

δρ
m

ax

T / Tmax

(a)

n=0.83
n=0.88
n=0.94

n=0.99
n=1.10
n=1.21

n=1.43
n=1.75

DMFT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

δρ
 /

 δ
ρ m

ax

T / T max

(b)

n=0.29
n=0.36
n=0.42
n=0.55

p=1.2
p=1.3
p=1.5

p=0.125
p=0.13
p=0.15
p=0.17
p=0.19
p=0.25

DMFT

FIG. 2. (Color online) Scaled resistivity as a function of scaled
temperature for different electron (hole) concentrations, for (a) Si
MOSFET and (b) GaAs heterostructures. The experimental data are
taken from Ref. 21 (MOSFETs), Ref. 23 (p-GaAs/AlGaAs, blue
symbols), Ref. 24 (n-GaAs/AlGaAs, green symbols), and Ref. 25
(p-GaAs, orange symbols). The solid line is the scaling function
obtained for a simple model of the MIT (see Sec. IV).
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FIG. 3. (Color online) (a) Tmax normalized to Fermi temperature,
and (b) maximal resistivity δρmax = ρmax − ρo in units πh/e2, as a
function of a reduced density. The data are taken from Refs. 21, 23,
and 24.

the same family (have the same functional form), and thus
must be explained by a single dominant transport mechanism.
This conclusion is even more convincing if we apply the
same analysis to several different materials, including an
ultrahigh-mobility GaAs sample, shown in Fig. 2(b). While
the diffusive physics cannot possible apply in such a broad
parameter range, we see that the scaling form we propose
proves to be an extremely robust feature of all available 2D
MIT systems. This result is very significant because disorder
effects must be significantly weaker in these ultraclean
materials, while the interaction effects are expected to be even
stronger.

B. Critical behavior of the Wigner-Mott scaling

Having demonstrated data collapse, we are now in a position
to examine the critical behavior of the relevant crossover scale.
We thus examine the behavior of Tmax and ρmax as a function
of reduced concentration (n − nc)/nc and effective mass m∗
(as determined by complementary experiments).

For different realizations of 2DEG, Tmax shows approxi-
mately power-law dependence on the reduced concentration
[Fig. 3(a)], and even the exponents are similar. Tmax in
our physical picture has a clear physical interpretation as
a coherence temperature—the temperature when the inelas-
tic electron-electron scattering time becomes comparable
to h̄/EF , leading to incoherent transport. The resistivity
maximum, however, shows less universal form. It varies a
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FIG. 4. (Color online) (a) Maximum resistivity δρmax = ρmax −
ρo as a function of Tmax. (b) Tmax as a function of inverse effective
mass m∗. mb is the band mass in Si MOSFETs. The data are taken
from Refs. 21 and 26.

lot in different physical systems. This does not come as a
surprise since the resistivity shows nonuniversal features also
in three-dimensional strongly correlated materials near the
Mott transition. We discuss in detail the analogy with the Mott
systems in Secs. III and IV.

In a Si MOSFET, the resistivity maximum δρmax = ρmax −
ρo shows power-law dependence on Tmax in a fairly broad
concentration range [Fig. 4(a)]. We further analyze the critical
behavior for Si MOSFET using the data for the effective mass
as determined by Shashkin et al.13 from magnetoresistance
measurements in a parallel magnetic field. We find that Tmax is
inversely proportional to the effective mass m∗. This behavior
is typical to all systems near the Mott MIT, where the coherence
temperature is inversely proportional to the effective mass, as
a landmark of strong correlations.

C. Breakdown of the diffusion mode scaling

We have successfully collapsed resistivity curves in a
broad temperature and concentration range and for several
physical realizations of 2DEG. The physical picture behind the
proposed scaling is that the 2D MIT is an interaction-driven
(Wigner-Mott) MIT,14–18 and that the dominant temperature
dependence in the resistivity originates from strong electron-
electron scattering. Another proposed scenario envisions dis-
order as the principal driving force for localization,21,22 while
the interactions are most important above the critical density
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FIG. 5. (Color online) Resistivity as a function of temperature
scaled as in Ref. 21. Red solid line is the calculated scaling
curve.

and at low temperatures, where they suppress the tendency to
localization. An appropriate theory, based on a Fermi-liquid
framework,21 has predicted that a resistivity maximum should
be observed on the metallic side, with the resistivity assuming
the scaling form

ρ(T )/ρmax = f [ρmax ln(T/Tmax)]. (2)

Here, f (x) is a universal scaling function predicted by theory.
The authors point out, though, that this prediction is expected
to be valid only within the diffusive regime, where the thermal
energy kBT is smaller than the elastic scattering rate h̄/τ .
According to this picture, a different (ballistic) mechanism for
transport is expected outside the diffusive regime, presumably
leading to a different temperature dependence, so the proposed
scaling no longer holds. This analysis was applied to the
experimental data of Ref. 19, but was accordingly restricted
to only three densities closest to the transition. Indeed,
if the scaling formula is applied in a broader range of
concentrations, the resistivity curves clearly do not collapse
(Fig. 5). While the Fermi-liquid renormalization-group calcu-
lations are very important in order to answer a fundamental
question of necessary conditions for a true MIT at zero
temperature, our analysis emphasizes that the understanding
of various diluted 2DEG in a broad range of parameters
requires the physics beyond the conventional Fermi-liquid
framework.

III. SCALING IN 3D MATERIALS

The strong temperature dependence of resistivity is a
well-known feature of many strongly correlated materials.
A pronounced resistivity maximum is observed in heavy
fermions3,4 and charge-transfer organic salts,6–8 where the
correlation strength is tuned by applying an external pressure.
The essential mechanism of transport in these materials
relies on strong inelastic electron-electron scattering, and the
Fermi-liquid behavior is restricted to the lowest temperatures.
As the temperature increases, the electron mean free path
becomes comparable to, or smaller than, the lattice spacing,
and the transport becomes incoherent. The electron-phonon
scattering is here much weaker than the electron-electron one.
The temperature of the resistivity maximum can be taken as
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FIG. 6. (Color online) Scaled resistivity curves for (a) UBe13 and
(b) κ-(ET)2Cu2(CN)3, for different external pressure. The data are
taken from Refs. 4 and 7.

a definition of the coherence temperature T ∗. It is inversely
proportional to the effective mass, and much smaller than the
bare Fermi temperature, T ∗ ∼ (mb/m∗) TF . The same scaling
ansatz as given by Eq. (1) was used to collapse the resistivity
curves for CeCu6 already in an early paper by Thompson and
Fisk.3

Here we illustrate the similarity in transport properties
of these systems and 2DEG by scaling the resistivity data
for heavy fermion UBe13 from Ref. 4 [Fig. 6(a)], and for
a charge-transfer conductor κ-(ET)2Cu2(CN)3 [Fig. 6(b)].
The collapse of the resistivity curves is excellent for UBe13,
and well-defined trends are seen in κ − (ET)2Cu2(CN)3.
Remarkable similarity in resistivity curves in such diverse
physical systems like Si MOSFETs, GaAS heterostruc-
tures, heavy fermions, and charge-transfer organic con-
ductors is, in our view, a manifestation of the same
physical processes in the vicinity of the interaction-driven
MIT.

IV. SCALING IN THE MICROSCOPIC MODEL OF THE
INTERACTION-DRIVEN MIT

Having phenomenologically established precise and well-
defined scaling behavior of the experimental curves on the
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FIG. 7. (Color online) (a) Resistivity as a function of temperature
for several interaction strengths in the half-filled Hubbard model
solved within the DMFT. The resistivity is normalized to the Mott
limit value, which corresponds to the scattering length of one lattice
spacing. (b) Scaled resistivity curves.

metallic side of the 2D MIT for temperatures near T ∗, we now
address its microscopic origin. More precisely, we would like
to understand just how robust this result is. Does it depend
on subtle details describing the interplay of disorder and
interactions of 2DEG materials, as suggested in Ref. 27, or is it
a generic feature of strong correlation near interaction-driven
MIT? To answer this important question, we deliberately
focus on the simplest microscopic model for interaction-driven
MIT: the clean single-band Hubbard model at half filling.
Accurate and quantitatively precise results can be obtained
for temperature-dependent transport for this model within
the dynamical mean-field theory (DMFT) approximation.28

While the DMFT reproduces Fermi-liquid behavior at the
lowest temperatures, it is particularly useful in the studies
of “high-temperature” incoherent transport. The results of
such calculation, obtained by the continuous time quantum
Monte Carlo (CTQMC) impurity solver29,30 followed by the
analytical continuation by the maximum entropy method,31

can be analyzed using precisely the same scaling procedure we
proposed for experimental data. We concentrate on the metallic
phase of the Hubbard model with the interaction parameter
U smaller than the value at the critical end point Uc. The
resistivity curves [Fig. 7(a)] have qualitatively the same form
as in 2DEG. The resistivity sharply increases with temperature,
reaches a maximum, and then decreases. The temperature of
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FIG. 8. (Color online) (a) Maximum resistivity as a function
of the corresponding temperature from the DMFT solution of the
Hubbard model. (b) Tmax as a function of the inverse effective mass.

the resistivity maximum decreases as the system approaches
the MIT.

Most remarkably, precisely the same scaling form as in
2DEG is found to describe all resistivity curves close to
the Mott transition [Fig. 7(b)]. In addition, we find that the
scaling parameters Tmax and ρmax again display a power-law
dependence on the effective mass (Fig. 8), and even the
exponents are similar. Finally, we contrast the DMFT scaling
function with that obtained from 2DEG experiments. We find
surprisingly accurate agreement between the DMFT prediction
for the scaling function f (x) and experimental data on all
available materials (Fig. 2). We emphasize, however, that
our scaling hypothesis is valid only in the metallic phase
for U < Uc and for temperatures comparable to T ∗ ∼ 1/m∗.
It should be contrasted with the scaling near the critical
end point (Uc,Tc),32,33 or the proposed quantum critical
scaling in the high-temperature regime above the critical end
point.34

We should point out that for this model, the proposed
resistivity scaling is not valid at the lowest temperatures,
T � Tmax, deep within the Fermi-liquid region: According
to the Kadowaki-Woods relation, here ρ ≈ AT 2 where A ∼
1/m∗2 ∼ 1/T 2

max, and the scaling is violated if the resistivity
is scaled by ρmax. For T � 0.3Tmax, the collapse of the
resistivity curves is excellent [see Fig. 7(b)], and we define
the DMFT scaling curve for this temperature range. This is
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also the reason for the deviations in the scaling in Fig. 6(b)
for κ-organics, which are the materials whose properties are
described remarkably well within the Hubbard model.6,8 In
the Anderson lattice model, on the other hand, the resistivity
maximum does not change much near the MIT and it saturates
approximately to the value which corresponds to the scattering
length of one lattice spacing (Mott limit). In this case, our
scaling ansatz is valid in the whole temperature range up to
T = 0,36 and the collapse of the resistivity curves seen in the
experiments is excellent [Fig. 6(a)].

Microscopic theory of the 2DEG should also include
nonlocal correlations, which are neglected in a simple DMFT
approach. A more realistic extended Hubbard model displays a
two-stage Wigner-Mott localization.17,18 The metal-insulator
transition in this model is found in the region with already
developed nonlocal charge correlations. In the immediate
critical regime, the critical behavior can be represented by
an effective Hubbard model, partially justifying the success
of the present modeling. The existence of a coherence
scale T ∗, which vanishes at the onset of charge order, is
also found in the 2D extended Hubbard model solved by
finite-T Lanczos diagonalization.35 This result is relevant
for quarter-filled layered organic materials, which further
supports the importance and generality of the ideas presented
here.

V. CONCLUSION AND DISCUSSION

In this paper, we argued that the emergence of resistivity
maxima upon thermal destruction of heavy Fermi liquids
should be regarded as a generic phenomenon in strongly
correlated systems. We demonstrated that the resulting family
of resistivity curves typically obeys a simple phenomenology
displaying scaling behavior. Our detailed model calculations
show that all of the qualitative and even quantitative fea-
tures of this scaling phenomenology are obtained from a
microscopic model of heavy electrons close to the Mott
metal-insulator transition. We should stress, however, that
the proposed scaling behavior is obtained—both in our
theory and in experiments—only within the metallic regime,
not too close to the transition, and the temperature regime
around the resistivity maxima. In contrast, earlier experiments
focused on the immediate vicinity of the metal-insulator
transition, where different “quantum critical” scaling was
found.10,37–39 Remarkably, precisely such behavior was also
found in very recent studies of quantum critical transport near
interaction-driven transitions,34 but this was identified in a
different parameter regime than the one studied in the present
paper.

Our results provide compelling evidence that several
puzzling aspects of transport in low-density two-dimensional
electron gases in zero magnetic fields can be understood
and explained within the Wigner-Mott scenario of strong
correlation.14–18 This physical picture views the strong cor-
relation effects in the low-density 2DEG as the primary
driving force behind the transition, and additional disor-
der effects as less significant, secondary processes. In the
Wigner-Mott picture, the insulator essentially consists of
interaction-localized magnetic moments. Remarkably, the
magnetocapacitance measurements of Prus et al.26 show that

the behavior characteristic of localized magnetic moments,
χ (T )/n ≈ gμ2

B/T , is seen near the critical density, while
only weak Pauli-like temperature dependence was observed at
higher density. Very recent experiments on Si MOSFETs find
that the thermopower diverges near the MIT.40 The authors
argue that divergence of the thermopower is not related to
the degree of disorder and reflects the divergence of the
effective mass at a disorder-independent density, which is
behavior that is typical in the vicinity of an interaction-induced
phase transition. Additional hints supporting this physical
picture of 2D MIT are provided by existing first-principles
quantum (diffusion) Monte Carlo results for the low-density
2DEG of Ceperley41 and others.27,42,43 These calculations find
that the correlated metallic state has an “almost crystalline”
structure, thus having a very strong short-range charge
order (i.e., as seen, for example, in the density correlation
function).

Within the physical picture that we propose, the inelastic
electron-electron scattering takes central stage,44,45 in contrast
to disorder-dominated scenarios, where the interaction effects
mainly introduce the temperature dependence of elastic
electron-impurity scattering.2 The two physical pictures de-
scribe two completely different scattering processes, which are
expected to be of relevance in complementary but essentially
nonoverlapping parameter regimes. Indeed, inelastic scattering
dominates only outside the coherent Fermi-liquid regime,
which in good metals happens only at fairly high temperatures.
In strongly correlated regimes that we consider, the situation
is different. Here the Fermi-liquid coherence is found only
at very low temperatures, T < T ∗ � TF , which is behavior
that is generally observed in all system with appreciable
effective mass enhancement. The results presented in this
paper provide precise and detailed characterization of this
incoherent regime, revealing a remarkable coincidence of
trends observed in the experiment to those found from the
Wigner-Mott picture of the interaction-driven metal-insulator
transition. Our scaling ansatz is proposed based on the
physical arguments and the experimental data. While con-
sistent with simple model calculations for strongly correlated
electronic systems, our work does not directly address specific
microscopic mechanism responsible for current dissipation,
a process that in 2DEG systems should be facilitated by
impurities and imperfections.45 Still, it provides very strong
motivation to develop a more realistic microscopic theory of
incoherent transport in the strongly correlated regime of di-
luted 2DEG. This important task remains a challenge for future
work.
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39V. Dobrosavljević, E. Abrahams, E. Miranda, and S. Chakravarty,

Phys. Rev. Lett. 79, 455 (1997).
40A. Mokashi, S. Li, Bo Wen, S. V. Kravchenko, A. A. Shashkin,

V. T. Dolgopolov, and M. P. Sarachik, e-print arXiv:1111.7238
(to be published).

41D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
42S. T. Chui and B. Tanatar, Phys. Rev. Lett. 74, 458 (1995).
43X. Waintal, Phys. Rev. B 73, 075417 (2006).
44M. C. Aguiar, E. Miranda, V. Dobrosavljević, E. Abrahams, and
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