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Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo
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The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical
mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is
the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB
algorithm are critical for bringing new physical regimes within reach of current computational power. Taking
advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present
optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip
lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different
test cases with d electrons, we find speedups of ∼25 up to ∼500 compared to the direct evaluation of the matrix
product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.
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I. INTRODUCTION

One of the frontiers in condensed matter systems is
the realistic modeling of strongly correlated materials. The
combination of density functional theory (DFT), a workhorse
for electronic structure calculations of weakly correlated mate-
rials, with dynamical mean field theory (DMFT) [1], originally
designed to handle strong correlations in simple models,
has allowed insights into strongly correlated compounds at
a level of realism previously unobtainable. Comparisons of
momentum-resolved spectral functions, densities of states, and
optics between theory and experiment are routine.

Lying at the core of this combined theory, named
DFT + DMFT [2–8], is the solution of a generalized Anderson
impurity model. In the strongly correlated regime, the method
of choice is the hybridization-expansion continuous-time
quantum Monte Carlo (CT-HYB) [9–12], a numerically exact
algorithm capable of handling arbitrary local interactions
on the impurity site, in particular, the full atomic Coulomb
potential needed to capture the d and f electron physics
present in strongly correlated materials. Enhancements to the
CT-HYB algorithm are important for bringing new physical
regimes within the reach of current computational resources.

In the context of model Hamiltonians, CT-HYB is also com-
monly used as an impurity solver for cluster generalizations of
DMFT [13–25]. CT-HYB is particularly useful in the strongly
correlated case [26].

Here, we present optimizations based on skip lists [28] and
matrix bounds which result in a speedup of ∼25 up to ∼500 as
compared to the straightforward implementation of CT-HYB
(see Fig. 1). These speedups are obtained for two very different

test cases where the materials contain correlated d electrons.
In the low-temperature and strongly correlated regimes of
interest, the most computationally expensive step is the
evaluation of the expectation value of a time-ordered sequence
of (possibly thousands of) creation and annihilation operators
acting on the impurity degrees of freedom, schematically
written as 〈d†

1d2d3d
†
4d

†
5d6 · · · 〉. When the complete basis of

impurity states is inserted between each operator, the problem
is transformed into (the trace of) a product of hundreds of
matrices, called the impurity trace, which must be evaluated
at each Monte Carlo step.

Our algorithm, which we dub “lazy skip-lists,” optimizes
the matrix product by combining the following two ideas.
First, we take advantage of the fact that between subsequent
Monte Carlo steps, the matrix product only changes by
the insertion or removal of two operators, for example,
〈d1

†d2d3d4
†d5

†d6 · · · 〉 → 〈di
†d1

†d2d3d4
†d jd5

†d6 · · · 〉 in the
case of insertion. We observe that the intermediate products
d
†
1d2d3d

†
4 and d

†
5d6 · · · are unchanged. Using skip lists, we

efficiently store these intermediate products to minimize
recomputation. Historically, the expense of computing this
matrix product led to optimizations, beginning with the left-
right storage of intermediate products [11]. This algorithm was
of order O(k), where k is the order in perturbation theory. In
Refs. [12,29] a faster binary-search-tree algorithm, scaling as
O( log(k)), was proposed. Skip lists are statistically as efficient
as binary trees [28], better match the structure of the impurity
trace, and are simpler to implement.

Second, we often can avoid performing the matrix prod-
uct altogether by quickly rejecting proposed Monte Carlo
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SÉMON, YEE, HAULE, AND TREMBLAY PHYSICAL REVIEW B 90, 075149 (2014)

efficient updates
standard updates

18 38

350

500

13

110

490

640

 0

 200

 400

 600

 800

21

1.3

25 26

12

1.2

15

22

 10

 20

 30

Skip List Lazy Trace
 Evaluation

Lazy Skip
 List (Sec. VA)

Lazy Skip
 List (Sec. VB)

SP
EE

D
U

P

FIG. 1. (Color online) Benchmark of different optimizations pre-
sented in this paper on the basis of a LNO thin film simulation [27] (top
panel) and a FeTe simulation (lower panel), using standard updates
with low acceptance ratio and efficient updates with high acceptance
ratio. We measure the speedup of the skip lists (Sec. V A without
lazy-trace evaluation), the lazy-trace evaluation (Sec. IV), and the
lazy skip-lists (Secs. V A and V B), compared to a straightforward
implementation (Sec. II B) as baseline.

moves via a “lazy” evaluation of the impurity trace. This
implementation was first carried out in Ref. [30] and already
successfully used in Ref. [31]. In normal Monte Carlo
sampling, we compute an acceptance probability p for a
proposed move, then accept the move if p > u, where u

is a number chosen randomly in [0,1]. Here, we do the
opposite: we flip the metaphorical Monte Carlo coin to obtain
u first, then lazily refine bounds pmin < p < pmax on the
acceptance ratio until u drops outside the bracketed interval.
The bounding is fast, involving only scalar operations, and
rapidly converges because the time-evolution operators in the
time-ordered operator sequence often involve exponents which
vary tremendously in magnitude.

We begin by reviewing the CT-HYB algorithm in Sec. II,
focusing on the aspects relevant to this work. In the next two
sections (Secs. III and IV), we present independently the key
algorithmic advancements, skip lists, and lazy-trace evalua-
tion, which are combined to form the final method in Sec. V.
We benchmark our optimizations in Sec. VI. The Appendix
explains how the trace can be bounded using matrix norms.

II. CONTINUOUS-TIME QUANTUM MONTE CARLO

In this section, we briefly summarize the key steps which
generate the hybridization expansion formulation of impurity
models. The goal is to quickly arrive at a description of the
structure of the impurity trace imposed by the physics and to
discuss what it implies for the Monte Carlo algorithm.

A general impurity model consists of a local interacting
system Hloc describing the impurity degrees of freedom,
immersed in a noninteracting electronic bath:

H = Hloc(d†
i ,di) +

∑
μ

εμa†
μaμ +

∑
iμ

(Vμia
†
μdi + H.c.), (1)

where εμ is the bath dispersion and Vμi the amplitude for
particles to hop from the impurity orbital i to the bath orbital
μ. The spin index is absorbed into the index i.

A. Partition function sampling

In CT-HYB, we transform the partition function Z =
Tr e−βH of the impurity model into a form amenable for
Monte Carlo sampling (described in detail in Ref. [12]).
One uses the interaction representation with the unperturbed
Hamiltonian the sum of the local and bath Hamiltonians.
The hybridization is the interaction term. Then, we expand
the resulting expression in powers of this hybridization term,
giving

Z = Zbath

∞∑
k=0

∫ β

0
dτ1 · · ·

∫ β

τk−1

dτk

∫ β

0
dτ ′

1 · · ·
∫ β

τ ′
k−1

dτ ′
k

×
∑
i1···ik

∑
i ′1···i ′k

w{(i1,τ1) · · · (i ′k,τ
′
k)}, (2)

where the integrand is

w{(i1,τ1) · · · (i ′k,τ
′
k)} = Det � Trloc

[
Tτ e

−βHloc

× dik (τk)d†
i ′k

(τ ′
k) · · · di1 (τ1)d†

i ′1
(τ ′

1)
]
. (3)

Since the impurity and bath degrees of freedom are decoupled,
the trace over the bath has been performed. The bath is
contained in the determinant of a k × k matrix � with
elements evaluated from the hybridization function (�)mn =
�i ′min(τ ′

m − τn) whose Matsubara definition is

�ij (iωn) =
∑

μ

V ∗
μiVμj

iωn − εμ

. (4)

The average over the impurity Trloc in general cannot be further
decomposed. Its evaluation requires converting the sequence
of operators (and intervening time-evolution operators) into
matrices in the basis of the impurity Hilbert space H.

The Monte Carlo sampling of Eq. (2) proceeds as fol-
lows: the integrands w of the partition function sum define
the weights of a distribution over the configuration space
{(i1,τ1) . . . (i ′k,τ

′
k)} which is sampled with the Metropolis-

Hastings algorithm. At each step, a new configuration is
proposed with probability A and accepted with probability

p = min

(
1,

A′|w|
A|w′|

)
, (5)

where w and w′ are the weights of the new and the old
configuration, respectively, and A′ is the proposal probability
of the inverse update.

The bottleneck is that the weights w, and the expensive
impurity trace contained within, must be computed in order
to decide whether to accept each new proposed configuration.
In terms of computational effort, if N = |H| is the size of the
local Hilbert space, and we are sitting at perturbation order
k, the impurity trace costs O(N3k) while the hybridization
determinant costs O(k3) [which can be reduced to O(k2)
for local updates]. The average expansion order 〈k〉, which
is typically in the hundreds, is proportional to the inverse
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temperature β, whereas the N grows exponentially with the
number of impurity orbitals (N = 1024 for the d shell). Thus,
except at very low temperatures, the calculation of the impurity
trace is the bottleneck in these Monte Carlo simulations.

Alluded to in the above discussion, the impurity trace
contains a time-evolution operator between each creation and
annihilation operator, which we denote by Pτ = e−τHloc . We
also write (Fi)mn = 〈m|di |n〉 for the matrix representation of
the creation and annihilation operator, where m and n index
the states in H. In this notation, the impurity trace explicitly
becomes an alternating matrix product:

Trloc Pβ−τk
FikPτk−τ ′

k
F

†
i ′k

· · ·Fi1Pτ1−τ ′
1
F

†
i ′1
Pτ ′

1
. (6)

For simplicity, we have assumed that the imaginary times in
Eq. (3) are time-ordered as they appear.

B. Symmetries, sectors, and block matrices

We can make a key simplification to the impurity trace using
symmetries prior to developing computational algorithms
[11]. The local Hamiltonian Hloc generally possesses Abelian
symmetries (e.g., particle number, spin, momentum), which
allow us to decompose the impurity Hilbert space as a direct
sum H = ⊕N

q=1 H(q). Here, q enumerates the sectors of the
Hilbert space, each of which is characterized by a definite set
of quantum numbers (e.g., particle number, spin, momentum).

Using these symmetries one defines a new basis for the
creation-annihilation operators. A creation or annihilation
operator, which we denote by a generalized index α formed
by combining its quantum numbers with the type of operator
(creation or annihilation), maps each sector q either to 0 or
uniquely to one other sector q ′. This leads to block matrices
Fα(q) which can be combined with a sector mapping function
sα [11] defined by sα(q) = q ′. The time-evolution operator
maps each sector onto itself.

In the sector basis, the operator product in Eq. (6) becomes
PFα2k

PFα2k−1 · · · Fα2PFα1P that maps a sector q0 onto q2k

defined by the string q0 → q1 := sα1 (q0) → · · · → q2k :=
sα2k

(q2k−1). The last sector q2k is equal to q0 by construction,
since the proposed Monte Carlo updates are always chosen
to preserve this property. The impurity trace then decomposes
into a sum over sector traces,

Tr PFα2k
· · · Fα1P =

∑
q0

Tr P (q2k)Fα2k
(q2k−1) · · ·

×Fα1 (q0)P (q0), (7)

and only sectors q0 which are not mapped on 0 contribute. Such
mapping on 0 generally occurs because of the Pauli principle.
In a typical 3d impurity model with the full atomic Coulomb
interaction, the number of sectors is ∼100 and the number of
surviving strings ranges from 1 to ∼20.

III. SKIP LISTS

We first begin with a motivation for skip lists. Then the
skip list and the way it is used to store matrix subproducts is
described. The final subsection explains how matrix multipli-
cations can then be performed efficiently when operators are
inserted or removed.

F1F2F4 F3F5F6F7F8

F8 × F7 × F6 × F5 × F4 × F3 × F2 × F1

F8 × F7 × F6 × F5

F8 × F7 F6 × F5

F4 × F3 × F2 × F1

F2 × F1F4 × F3

F1F2F4F5F6F7F8 F3

F2 × F1F4 × F3

F4 × F3 × F2 × F1

F8 × F7

F8 × F7 × F6 × F × F5 × F4 × F3 × F2 × F1

F8 × F7 × F6 × F × F5

F6 × F × F5

×
× ×

×

F

FIG. 2. (Color online) Top panel: Storage scheme for subprod-
ucts of matrices. The arrows store the products of matrices they
span over. The l = 1 level stores the pair products, the l = 2 their
products, and so on. Lower panel: The matrix F has been inserted in
the matrix product of the top panel and the products with a bold red
multiplication sign need to be calculated in order to obtain the total
product.

A. Motivation for skip lists

At each Metropolis-Hastings step, a matrix product needs
to be computed to decide whether the proposed configuration
is accepted or rejected. One possibility is to always calculate
all the products from scratch. However, only two matrices
are typically inserted or removed, so this strategy is not only
expensive, but also highly redundant.

To avoid multiplying almost all the time the same matrices,
we may pair them off and store their product. This way almost
every second multiplication is skipped when calculating the
product of a proposed configuration. However, this is not
yet optimal. One can store products of four, eight matrices,
etc., leading to a collection of subproducts that will allow us
to minimize the number of redundant multiplications. This
storage strategy may be represented as shown in Fig. 2, where
we omit the propagators for simplicity. The arrows store the
subproducts of operators they span, including the operator they
start from and excluding the operator they point to.

Inserting now a matrix F , some of the stored subproducts
expire, as shown on the lower panel of Fig. 2. These are
the subproducts of arrows that span over the inserted matrix.
To calculate the product of the proposed configuration, we
begin with the arrow just above the inserted operator. This
costs two multiplications, F6 · F · F5. Moving up, the next
missing subproduct F8F7 · F6FF5 is calculated from the two
subproducts below with one multiplication, and multiplying
this subproduct with F4F3F2F1 yields the total product. Except
at the first level, this involves one matrix multiplication per
level, as each arrow is the product of two arrows one level
below. For 32, 128, and 512 operators, a representation like
that in Fig. 2 has 5, 7, and 9 levels, respectively, and the number
of matrix multiplications is logarithmic in the number of
operators in the product. However, this storage scheme works
only if the expansion order is a power of two, and we have
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P · 1PF1PF2PF3PF4PF5PF6PF7PF8

P F2 P F1 P

P F4 P F3

P F8 P F7

P F6 P F5

P F6 P F5 P F4 P F3

P F8 P F7 P F6 P F5 P F4 P F3 P F2 P F1 P

FIG. 3. (Color online) Skip list to store subproducts of operators
Fi and propagators P . The arrows store the products they span over.
The bold arrows in red and green show the path that is followed when
a matrix is inserted at the place indicated by the red triangle. The
products stored in the blue arrows are emptied if their tail coincides
with that of the bold red arrows.

to find a strategy to maintain an equilibrated structure when
inserting or removing matrices at random places. Equilibrated
means that a subproduct is ideally always the product of two
subproducts one level below.

For simplicity, we ignore here the block structure of the
operator matrices. That discussion is postponed to Sec. V.

B. Skip lists and matrix products

In Fig. 2, the heights of the vertical bars associated with
the matrices organize the arrows, that is the subproducts. The
original matrices are stored at level l = 0. There is an arrow
starting and ending at the top end of each bar with level l > 0,
except for the first bar on the right where no arrow ends. When
inserting an operator, we are free to associate a bar with this
operator at a height that we may choose. The choice of skip
lists [28] is to take a height l that is determined randomly
according to the distribution 2−l−1; that is, half of the bars
are on average at least level one, a quarter at least level two,
and so on. This keeps the skip list on average equilibrated. A
typical arrangement is shown in Fig. 3. Here we include the
propagators, and an arrow stores the subproduct starting with
the operator at its tail and ending with the propagator at its
head. However, to include the first propagator P appearing on
the right, we need to store the product of P with the identity
matrix at the first bar. Since the heights are chosen randomly,
there is no guarantee that the height of that first bar exceeds all
others as in Fig. 2. Hence we just assume that it is at a height
that exceeds all others.

To calculate the product after insertion of one operator in
this skip list, we can proceed as in Fig. 2 if the randomly
chosen height of the associated bar is zero. This changes if
the height is not zero. More importantly, two operators and
sometimes more must be inserted or removed at once in Monte
Carlo simulations [32], whereas the product is needed at the
end only. Also, combinations of insertions and removals are
sometimes necessary to make the sampling more efficient.
Hence, we need a flexible multiplication algorithm, which is
discussed in the next section.

C. Skip lists and matrix multiplication

To calculate the new product after an arbitrary sequence of
insertions and/or removals with a minimal number of matrix
multiplications, we proceed in two steps. First the matrices

are inserted and/or removed, one after the other. At each time,
this invalidates some subproducts M = PF · · ·PF , stored in
the blue arrows. These subproducts are thus emptied. Once
the new configuration is proposed, the product is calculated by
filling up the emptied subproducts.

When inserting an operator in the skip list, a subproduct
expires if the operator lies between the head and the tail of the
corresponding arrow; see Fig. 3. To identify all such arrows,
we follow the skip list insertion algorithm [28] and begin at
the tail of the top arrow. This arrow necessarily spans over
the operator to insert, and its subproduct is emptied. Moving
down the red arrow on the right in Fig. 3 to the next lower blue
arrow, we test if the operator to insert lies between the head
and tail of this arrow. If yes, the subproduct is emptied, and the
next lower blue arrow is tested. If not, the arrow is traversed
and the process is repeated until we end up by emptying the
subproduct at the blue arrow just above the place where the
operator will be inserted. Proceeding likewise for removal, all
expired subproducts are emptied once the new configuration
is proposed [33].

To fill up the emptied subproducts M once the insertions
and/or removals are completed, we proceed recursively. The
subproduct at an arrow A can be calculated from the subprod-
ucts Ma,Ma+1, . . . ,Mb stored at the arrows Aa,Aa+1, . . . ,Ab

just below. If all of these subproducts have not been emptied,
they are multiplied while traversing the arrowsAa → Aa+1 →
· · · and the result is stored at the arrow A. If however one of
the subproducts Mi at an arrow Ai is missing, we recursively
calculate this subproduct from the subproducts below the arrow
Ai . This recursion stops at the latest at the bottom of the skip
list, where the operators are multiplied with the propagators.
The total product is obtained by starting the recursion at the
top arrow.

Once the new product is calculated, we decide whether to
accept or reject the proposed configuration. To recover the skip
list in case of rejection, a backup is taken at the beginning of
a trial step.

IV. LAZY-TRACE EVALUATION

In the regimes of interest (moderate to low temperatures
T � 100 K, strong Coulomb interaction U � 5 eV), the
probability of accepting a proposed move is low, generally
lying below 10% and often below 1%. The Pauli principle and
time-evolution operators e−�τHloc place strong constraints on
the insertion/deletion of operators, causing the low acceptance
probabilities. Developing techniques to reject improbable
moves with minimal computational effort is crucial.

The Pauli constraint is computationally negligible, as
it can quickly be determined by following the string of
sector mappings q0 → q1 → q2 · · · and checking that not all
strings are annihilated (i.e., mapped to 0). In contrast, the
time-evolution operators are interspersed within the matrix
product. Proposed moves often drive transitions to high-energy
sectors, where the exponentials e−�τHloc strongly suppress
the acceptance probability. Here, we describe a “lazy-trace”
algorithm which leverages these exponentials to efficiently
reject moves with low acceptance probability, largely avoiding
a full evaluation of the impurity trace.
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The first component of the lazy-trace algorithm [30] is
fast bounding of the impurity trace in each symmetry sector.
Writing in shorthand Eq. (7) as Tr = ∑

q Trq , assume we can
quickly compute bounds Bq � | Trq | for each sector trace.
This provides a maximum bound on the trace via the triangle
inequality:

|Tr| �
∑

q

|Trq | �
∑

q

Bq. (8)

Using the expression for the acceptance probability p [Eq. (5)],
and writing the weight of the new configuration as w = Det ·
Tr, we obtain an upper bound

pmax = A′

A

|Det| ∑q Bq

w′ . (9)

This bound can be refined as follows: take the sector qmax

with the largest Bq and compute the exact sector trace Trqmax .
Applying the reverse triangle inequality gives∣∣|Tr| − ∣∣Trqmax

∣∣∣∣ �
∑

q 	=qmax

Bq, (10)

producing refined bounds

(
pmax

pmin

)
= A′

A

|Det|
w′

⎛
⎝|Trqmax | ±

∑
q 	=qmax

Bq

⎞
⎠ . (11)

This procedure can be continued, generating successively
tighter bounds, until we obtain the exact trace. The sequence
of bounds is likely to tighten most rapidly if we choose the
sectors in decreasing order of Bq .

The second key idea is to flip the Monte Carlo coin first to
obtain the acceptance threshold u, before computing the above
approximation to the acceptance probability. If pmax < u, and
it often is, we can reject the move outright. If pmin > u we
accept the move. If neither of these possibilities occurs, we
successively refine the bounds on p until we can either accept
or reject the move, as illustrated in Fig. 4. In the following, we
describe the construction of the bounds Bq .

The basic equation is the formula

|TrA1A2 · · · An| � C · ‖A1‖‖A2‖ · · · ‖An‖, (12)

0 1

u

pmax

pmin pmax

Flip coin

Initial bound

Refined bound: 
move rejected

FIG. 4. (Color online) The bounding technique within the lazy-
trace evaluation. We first flip a coin to obtain a random number
u ∈ [0,1]. Then, using submultiplicative matrix norms, we compute
initial bounds pmin < p < pmax on the acceptance probability. The
bounds are refined until u falls outside [pmin,pmax] and the move can
be definitively accepted or rejected.

proven in the Appendix. Here Ak are matrices (not necessarily
square, although the entire product must be), ‖ · ‖ is a
submultiplicative matrix norm, and C is a constant which
depends on the specific matrix norm chosen and the dimension
of the matrices. In the lazy-trace algorithm, the spectral norm
(see the Appendix) is used. For rectangular matrices Al ∈
RNl×Ml , the constant C becomes the dimension of the smallest
matrix within the product, C = min{Nl}. The spectral norm is
unity for a creation or annihilation operator, and e−�τiE0(qi )

for time-evolution operator, where E0 is the ground-state
energy of the sector qi and �τi is the time spent in this
sector.

Application to the trace of a single sector in Eq. (7)
gives∣∣TrP (q2k)Fα2k

(q2k−1) · · ·Fα1 (q0)P (q0)
∣∣

� min{dimH(qi)} · exp

(
−

2k∑
i=0

�τiE0(qi)

)
, (13)

While extremely cheap to calculate, this bound precisely cap-
tures the vast variations in magnitude caused by exponentials
in the time-evolution operators. The bounds for each sector Bq

decrease extremely rapidly; in many cases, the initial pmax is
sufficient to reject a proposed move.

When a move is accepted, the trace needs to be evaluated
exactly, up to numerical accuracy, to be able to compute the
acceptance probability of the next move.

V. LAZY SKIP-LISTS

In this section, we begin by combining the algorithms
presented in Sec. III and Sec. IV. In a second step, we show
how the bounds on the sector traces in Sec. IV may be improved
using this combined algorithm.

A. Skip lists and lazy-trace evaluation

When iteratively refining the bounds in the lazy-trace
evaluation, we only need the contribution to the trace of one
sector q0 at a time in Eq. (7). To achieve this with the skip
lists in Sec. III B, we begin by taking into account the block
structure of the matrices.

The operators F and the subproducts M are stored
in their block form as pairs s(q),F (q) and s(q),M(q)
of mapped sectors and corresponding matrix blocks. Sim-
ilar to the total product which splits into strings in
Sec. II B, this splits a subproduct PFb · · · PFa into substrings
P (qb+1)Fb(qb) · · ·P (qa+1)Fa(qa). Such a sub-string is stored
in the matrix block M(qa) together with the mapped sector
s(qa) := qb+1.

To calculate one string in the total product, we only need
one of the substrings of a given subproduct. When recursively
updating the subproducts in the skip list as in Sec. III C, we
thus have to specify at each arrow A the requested substring
by a start sector qa . To select the entries in the block matrices
Mi (stored in Ai below A) which need to be multiplied to
obtain the requested substring Mb(qb) · · · Ma+1(qa+1)Ma(qa),
one maps the start sector qa into qb using the sector mappings
si at the arrows Ai , namely qa → qa+1 := sa(qa) → · · · →
qb := sb−1(qb−1). The product is then stored in the matrix
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block M(qa) at the arrow A, together with the mapped sector
s(qa) := qb+1. Again, if a matrix block Mi(qi) at an arrow Ai

is empty, we proceed recursively.
The combination of the skip lists and the lazy-trace

evaluation is now straightforward. First, expiring substrings
are emptied when inserting and/or removing operators in the
skip list, similar to Sec. III C. Once the new configuration has
been proposed, we start the recursion at the top arrow of the
skip list separately for each sector needed by the lazy-trace
evaluation.

B. Subproducts and trace bounds

The bounds on the sector traces in Eq. (13) are calculated
from the product of the norms of each propagator and operator
individually. Tighter bounds may be obtained by using the
norms of stored subproducts. In Fig. 2 for example, the trace
is bounded by

|Tr| � C · ‖F8F7‖‖F6‖‖F‖‖F5‖‖F4F3F2F1‖ (14)

after insertion of the matrix F . Such bounds for a given sector
trace Trq are obtained recursively, in a manner analogous to
the block-matrix product of the corresponding string.

Calculating the spectral norm of a stored matrix block is
expensive, so the Frobenius norm is used here instead. While
this norm is larger than the spectral norm, its numerical cost
is small compared to a matrix multiplication. However, this
means that this bound is not necessarily smaller than the
one in Sec. IV. Other choices for the norms are discussed
in Appendix.

VI. TWO EXAMPLES

In this section we benchmark the skip lists (Sec. III taking
into account the block structure described in Sec. V A),
the lazy-trace evaluation (Sec. IV), and the lazy skip-lists
(Secs. V A and V B). To this end, we consider Anderson
impurity problems that appear in DFT + DMFT electronic
structure calculation for thin film of LaNiO3 (LNO) [27,34]
and FeTe bulk compound [4], using experimental structure of
Refs. [35,36], respectively.

In both cases, the impurity is a d-shell system, and
the associated Hilbert space splits into 132 sectors. The
Slater parametrization of the Coulomb interaction is used.
The average expansion orders are 〈k〉 ≈ 225 for LNO and
〈k〉 ≈ 515 for FeTe. The benchmarks are performed using two
kinds of Metropolis-Hastings updates: (i) standard ones [37]
with low acceptance ratio and (ii) efficient ones [38] with
acceptance ratio higher by a factor 10 to 25.

Figure 1 shows the speedups of the different optimizations
presented in this paper compared with, as a baseline, a
straightforward implementation (Sec. II B) that takes the block
structure into account. Note the logarithmic scale. The skip
lists alone accelerate the simulations for both test cases by a
factor of about 20. While the lazy-trace evaluation gives a sub-
stantial speedup for LNO, essentially no speedup is obtained
for FeTe. This also shows in the performance of the combined
algorithms, the lazy skip-lists, which, with speedups of order
500, perform much better for LNO. The reasons for this
difference between LNO and FeTe will become clear below.
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FIG. 5. (Color online) Benchmark of different optimizations pre-
sented in this paper on the basis of a LNO thin film simulation (a) and
a FeTe simulation (b): using efficient updates with high acceptance
ratio (top panel) and standard updates with low acceptance (lower
panel). We measure speedup, reduction in matrix multiplications, and
reduction in floating-point operations within matrix multiplications,
with a straightforward implementation (Sec. II B) as baseline.

Figure 5 shows, in addition to the speedup, the reduction
in matrix multiplications and the reduction in floating-point
operations. While combining different optimizations does
not always result in an additional speedup, in our case the
lazy-trace evaluation and the skip lists work well together.
The reduction in matrix multiplications for the lazy skip-
lists (Sec. V A) is essentially the product of the reductions
for the lazy-trace evaluation and the skip lists separately.
While the reduction in matrix multiplications for the lazy
skip-lists in Sec. V B is less evident to anticipate, there is
always an additional speedup that comes from calculating the
bounds using the norms of the stored subproducts in the skip
list.

Note that speedups are smaller than expected from the re-
duction in matrix multiplications and floating-point operations,
in particular for the lazy skip-lists of Sec. V B. This is due
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FIG. 6. (Color online) On the basis of a LNO thin film simulation
(a) and of a FeTe simulation (b) with standard updates: average weight
〈Trq/Tr〉 of a sector q in the partition function expansion (top panel)
and frequency with which Trq is calculated for a sector (lower panel).

to the optimization overhead and to the fact that other parts
than the local-trace evaluation in the CT-HYB expansion, such
as the evaluation of the determinants, are beginning to take a
significant proportion of the total time.

To understand why most of the speedup comes from the
lazy-trace evaluation for LNO while it comes from the skip
list for FeTe, it is useful to consider the sector weights. We
use standard updates. In Fig. 6(a) we show results for LNO
and in Fig. 6(b) results for FeTe. Note the logarithmic vertical
scales. The top panels display the average weights 〈Trq/Tr〉
of the various sectors in the partition function expansion. The
lower panels of Figs. 6(a) and 6(b) show for each sector q the
frequency of Trq evaluation.

Consider first the case of LNO. In contrast to the baseline, it
is clear in Fig. 6(a) that the sector frequencies for the lazy-trace
evaluation are largely proportional to the sector weights. Only
a few sectors with N = 7 to 8 collect most of the weight,
and this not only shows where the large reduction in matrix
multiplications in Fig. 5(a) comes from, but also why the

reduction in floating-point operations is even bigger. Indeed,
the sectors with N = 7 to 8 have generally smaller dimension
than the ones with N = 4 to 6 which are not calculated most
of time in the lazy-trace evaluation.

Given their negligible sector weights, it would also be
possible in principle to just drop the sectors with N = 0 to
3. However, the gain from this is small since these sectors
have rather small dimension. Dropping the sectors with N = 4
to 6 involves more important approximations so one would
need careful checks that the truncated sectors do not affect
the results. The lazy-trace evaluation avoids the calculation of
these sectors most of the time and there is no approximation
involved.

Moving to the case of FeTe in Fig. 6(b), one notices that
the sector weights are more uniformly distributed. There are
fewer sectors with extremely small weights. Hence the lazy
trace evaluation does not give a substantial speedup. The
skip lists on the other hand still reduce the number of matrix
multiplications.

VII. DISCUSSION AND CONCLUSION

Quantum Monte Carlo algorithms generally involve mul-
tiplications of large matrices. In the case of the strong-
coupling-based CT-HYB algorithm, this is a limiting factor.
When updates generate new configurations that have a large
probability of being rejected, we have shown that an efficient
way of speeding up the algorithm is to first choose the
random number and then use matrix norms to bound the
Metropolis rejection/acceptance probability. This is called
lazy-trace evaluation. Skip lists on the other hand provide
a way to store intermediate matrix products and avoid in
all circumstances the recomputation of some of the matrix
products. The combination of both algorithms, lazy skip-lists,
provides a robust algorithm that guarantees large speedups
when the trace evaluation takes a large fraction of the
computing time.

The speedup of the trace evaluation achieved with the lazy
skip-lists algorithm is such that parts of CT-HYB that usually
take negligible time compared with the evaluation of the trace,
for example measurements and calculation of determinants,
can now become the limiting factor.

The tree structure introduced in Refs. [12,29] transforms an
O(k) to an O(log k) problem where k is the order in perturba-
tion theory. This substantial gain in speed also applies to skip
list. The multiplication algorithm where multiple insertions
are done before products are recomputed, as presented in
Secs. III C and V A, could be implemented in binary search
trees [12,29] as well. We find skip lists however easier to
implement for at least two reasons: first they use simple
probabilistic rebalancing rather than explicit rebalancing by
tree rotations; second, a linked list is more natural for a product
of operators and propagators than a binary tree. For the same
reasons, skip lists facilitate the exploration of new updates such
as exchanging subsequences of operators. Also, skip lists allow
control of memory requirements by changing the probability
p to add a level to an inserted bar after an update. We have not
discussed further improvements in speed that can be obtained
by using the associative property of matrix multiplication to
speedup the calculation of products of rectangular matrices,

075149-7
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or many other possible optimizations that are dependent on
computer architecture, such as caches, parallelism, etc.

It has also been proposed to use Krylov-space methods
to calculate the trace [39]. For large enough systems, this
approach should be the most efficient one, but for cases of
practical interest it might not be. There are optimizations for
both the Krylov and the matrix formulations. We first compare
the two formulations without optimizations. To this end we
consider the number of operations involved in applying both
a creation/annihilation operator and a propagator to a state
represented by a vector of dimension d in a given symmetry
sector. In the matrix formulation, the expensive operation
comes from the creation/annihilation operators and costs d2

operations. In the Krylov formulation, the expensive operation
is the application of a propagator to a state: it costs the
number of operations NH involved in the application of the
Hamiltonian to a state, times the number of Krylov steps m.
This scales like m × d. Indeed, taking the product of d and
the number of terms in the second quantized Hamiltonian
nH is one way of estimating NH . Another estimate, which
is necessarily smaller, is obtained by actually counting the
number of nonvanishing elements in the Hamiltonian matrix
(of order d). Proceeding here with this last estimate for an
f -shell system in a tetragonal environment, the sector with
the biggest dimension has d = 313 and NH = 17 077. The
relevant ratio to compare the two approaches in this specific
case is thus m × 17 077/(313)2 = m × 0.174. It was found
in Ref. [39] that m can be small. However, highly optimized
libraries are available when memory is accessed in a regular
way, as in the matrix formulation, while the memory access
is irregular in the Krylov algorithm. Hence we think that
the matrix formulation without the optimizations discussed
in this paper can be as fast as the Krylov formulation, even for
typical f-shell impurities. Practical implementations must be
compared to decide.

For the general case, note that while the lazy-trace idea can
be applied to the Krylov algorithm, it is less clear that one can
implement skip list for this algorithm. Hence, while the Krylov
algorithm needs to be repeated k times for an order-k term
in perturbation theory, the skip-list (or binary tree [12,29])
algorithm allows us to change that factor to log(k). Other
optimizations of the Krylov algorithm have been proposed
recently [40].

Some of the ideas developed here can be directly applied to
other problems treated by Monte Carlo methods. For example
the rejection method based on bounds (see Fig. 4) can be
applied to classical Monte Carlo simulations for spins with
long-range interactions [41]: Take an Ising spin system and
consider a single spin-flip Monte Carlo update. The energy
associated with this spin can be bounded by

Ei,[min , max] = Si

∑
j�R

Ji,j Sj ± Si

∑
j>R

|Ji,j |. (15)

The bounds can be refined by successively increasing the range
R. The sums over absolute values of exchange constants need
to be calculated only once. Similar problems are encountered in
spin-ice models with dipolar interactions [42], ordered and/or
random spins with both dipolar and RKKY interactions. Other

schemes relying on different ideas also exist and may be faster
[43]. But this remains to be tested.

Speedups by factors in the hundreds that can be achieved
with the lazy skip-lists algorithm will bring new physical
regimes in correlated electronic-structure calculations and
cluster generalizations of dynamical mean field theories within
reach of computational power. Applications of such methods
extend as far as molecular biology [44].
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APPENDIX: TRACE BOUNDS VIA MATRIX NORMS

Different matrix norms give different bounds for the
magnitude of the trace of a matrix product. We consider here
induced norms

‖A‖p := max
‖x‖p=1

‖Ax‖p,

where A ∈ RN×N , x ∈ RN , and ‖x‖p := (
∑

i |xi |p)1/p with
p � 1, and the Frobenius norm

‖A‖F :=
⎛
⎝∑

ij

A2
ij

⎞
⎠

1
2

.

1. Induced norms

For the induced norms, one obtains |Aii | � ‖Aei‖p �
‖A‖p, where ei is the standard basis of RN , and hence

|TrA| � N · ‖A‖p.

This immediately generalizes to a product∣∣∣∣∣Tr
n∏

l=1

Al

∣∣∣∣∣ � min{Nl} ·
n∏

l=1

‖Al‖p (A1)

of rectangular matrices Al ∈ RNl×Ml , since induced norms are
submultiplicative. From the cyclicity of the trace, the prefactor
in Eq. (12) becomes C = min{Nl} = min{Ml}, the minimal
row or column dimension of all the matrices within the product.

For a propagator Pτ , written in the eigenbasis, one obtains
‖Pτ‖p = exp(−τE0), where E0 is the smallest eigenvalue.
These norms are hence well suited for the lazy-trace evaluation
in Sec. IV. Especially convenient is the spectral norm (p = 2).
This norm is one for annihilation or creation operators since

‖d‖2 = max
〈ψ |ψ〉=1

√
〈ψ |d†d|ψ〉 = 1
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by the Pauli principle, and only the exponentials of the
propagators enter into the bound given in Eq. (A1).

2. Frobenius norm

For the Frobenius norm, Cauchy-Schwarz states

|TrAB| � ‖A‖F · ‖B‖F ,

and as the Frobenius norm is submultiplicative∣∣∣∣∣Tr
n∏

l=1

Al

∣∣∣∣∣ �
n∏

l=1

‖Al‖F, (A2)

where n � 2. The Frobenius norm is numerically cheap, so
Eq. (A2) can be used for the lazy skip-lists in Sec. V B. Other
numerically cheap choices are the induced norms with p = 1
and p = ∞.
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