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We introduce a first principles approach to determine the strength of the electronic correlations based on the
fully self-consistent GW approximation. The approach provides a seamless interface with dynamical mean field
theory, and gives good results for well studied correlated materials such as NiO. Applied to the recently
discovered iron arsenide materials, it accounts for the noticeable correlation features observed in optics and
photoemission while explaining the absence of visible satellites in x-ray absorption experiments and other high
energy spectroscopies.
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I. INTRODUCTION

Many metals, semiconductors, and insulators are well de-
scribed by the “standard model” of solid state physics. In this
picture the excitations are band electrons, and their disper-
sion can be computed quantitatively in perturbation theory
starting from the density functional theory using the GW
method.1 When this standard model fails, we talk about
strongly correlated electron systems. The presence of strong
correlations is debated with each new material discovery, as
for example in the context of the iron pnictide superconduct-
ors. On the experimental side, controversies arose because
optical experiments revealed significant mass
renormalizations2–4 while x-ray absorption, core level spec-
troscopies and resonant inelastic x-ray scattering indicated
the absence of satellite peaks,5,6 which are standard finger-
prints of strong correlations. Photoemission studies indicate
that the overall bandwidth is narrowed by a factor of two7,8

but substantially larger mass renormalizations are present
near the Fermi level.9 Similar controversies arose within the
first principles approaches to the treatment of correlations
with some theoretical studies supporting the notion of weak
correlations,10–14 while others advocate a more correlated
picture.15–18 To make progress on this issues one needs to
develop fully ab initio tools for addressing the problem of
determining the strength of correlations and test their predic-
tions against experiments.

In this paper, we present a first principles methodology for
evaluating the strength of the correlations based on the self-
consistent GW method. This approach has been shown to
predict accurate total energy,19,20 and we expect to obtain
reliable estimates for the interaction strength since this quan-
tity can be thought as a second derivative of the total energy
with respect to the occupation of the correlated orbitals. We
test successfully the method on the well-studied example of a
correlated material NiO, and then we apply it to a prototypi-
cal iron pnictide BaFe2As2. We find that the correlations in
iron pnictides are strong, as pointed out in Refs. 15–18 but
unlike earlier studies our ab initio method accounts for the
absence of well defined Hubbard bands in the spectral func-
tions. Our results are thus in excellent agreement with ex-
periment and reconcile the results of apparently conflicting
spectroscopies.

II. METHOD

We start with the one-particle electron Green’s function in
the solid, G, which is measurable in photoemission experi-
ments. We split it into G−1=G0−1

+�, where G0 describes the
noninteracting system of electrons, and � is the frequency
dependent self-energy. Both G and � are matrices in r ,r�.
The electrons interact among themselves via the Coulomb
interaction Vc�r ,r��= 1

�r−r��
, however, the mobile electrons

screen it and is therefore useful to reformulate the problem in
terms of a screened Coulomb interaction W defined by W
=Vc / �1+Vc�� �Refs. 1 and 21� where � is the exact polar-
ization function.

Dynamical mean field theory �DMFT� maps the many
body problem in the solid to that of a correlated atomic shell
embedded in an effective medium. The medium is described
by an energy dependent Weiss field G0, which obeys the
following equation

G0−1
= Glocal

−1 + �local. �1�

Here, Glocal and �local are the local Green’s function and the
local self-energy, respectively.

The electrons in the renormalized atom feel an effective
retarded Coulomb interaction U���. Just like the Weiss field
G0 of the atom reflects the delocalizing effect of the medium
at the single particle level, the Weiss field U��� captures the
screening of the interaction due to the presence of the other
atoms. The Weiss field at the two particle level U��� obeys
the following relation

U−1 = Wlocal
−1 + �local, �2�

where �local and Wlocal are the local polarization function
and the local screened interaction, respectively. The bare lo-
cal propagators G0��� and bare interaction U��� are chosen
so as to give the exact Glocal and Wlocal when all the local
Feynman diagrams are summed up. Equations �1� and �2� are
a version of the extended-DMFT equations studied for sim-
plified models in Refs. 22 and 23. The key idea of this work
is to use this approach to estimate the correlation strength in
the solid, and illustrate the power of the method by a practi-
cal realistic self-consistent implementation.
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The approach shares ideas with other methods to compute
the local interaction matrix U. Like constrained local density
approximation �LDA�, it defines correlations on a correlated
orbital. It adopts the philosophy of the constrained random
phase approximation �RPA� method,24,25 which divides the
bands into a set that belongs to the low-energy model, and
the rest of the bands, which contribute to screening. How-
ever, instead of the bands, our method uses orbitals to divide
the polarization operator of the lattice into a local part, in-
volving the correlated orbital, and the rest, which screens the
local interaction.

We now describe the steps required for the practical
implementation of the method and its interface with LDA
+DMFT �Ref. 26�: �i� We perform a fully self consistent GW
calculation.1 �ii� We evaluate Gloc and Wloc using the projec-
tor P�rr� , tL1L2�, defined in Ref. 27: Glocal L1L2

t

=�drP�rr� , tL1L2�G�rr�� and Wlocal L4L1;L3L2

t =�P�rr , tL4L1�
W�rr��P�r�r� , tL3L2�drdr�. t is the atom index and L
= �l ,m� is the angular momentum index. �iii� We evaluate
�loc���=Wlocal���Glocal�−�� and �loc���=Glocal���Glocal�−��.
We use Eq. �2� to evaluate U���, which we now denote by
UGW. �iv� We also evaluate the hybridization function

�GW��� using Eq. �1� and identity GGW
0−1

=�−Eimp−�GW. �GW
contains the coupling of the correlated orbitals to the valence
states of the system �L���, and to the semicore states �H���,
and can thus be represented as ��i��=�d���L���
+�H���� / �i�−��. In LDA+DMFT the hybridization to these
semicore state is eliminated resulting in �L, which is con-
nected to GW hybridization by �GW�i��=�L�i��− i��,
where ���d��H��� /�2. This factor is then absorbed by res-
caling of the field 	→	 /�1+� and consequently the inter-
action matrix used in the LDA+DMFT calculation becomes
ULDA+DMFT=UGW��=0� / �1+��2. This renormalization is
usually very small, and in BaFe2As2 is ��0.05.

We use this fully ab initio method to determine the inter-
action matrix strength UGW and the occupancy of the d or-
bital nd, which fixes the double-counting correction of
LDA+DMFT. With this input, the LDA+DMFT method be-
comes a fully ab initio method.

The effective interaction obtained with this method is a
general symmetric tensor with four indices
	
mi�,

�Um4,m3,m2,m1

	m4

† 	m3
�

† 	m2
�	m1
. It is useful to in-
quire to which extent this interaction can be approximated in
terms of Slater integrals Fk


l�, where k runs over 0 , . . .2l. The
optimal determination of this parameters is done with the
projector

Fk

l� = 	

m1,m2,m3,m4

1

Nl,k

4�

2k + 1
�Ylm4

�Ykm4−m1
�Ylm1



� Um4m3m2m1

GW �Ylm3
�Ykm2−m3

� �Ylm2
 . �3�

Here Nl,0= �2l+1�2, Nl=2,k=1=5�2 /7�2 and Nl=2,k=2
= �10 /21�2. The quality of the projection is excellent and can
be seen by recomputing the Coulomb repulsion from the
Slater integrals and comparing the resulting Uatom with the
full U matrix. We mention in passing that the naive Hartree-
Fock like estimation of Slater integrals J= �Umm�mm�m�m�,

F2=14 /1.625J, and F4=8.75 /1.625J, can lead to a substan-
tial underestimation of Slater integrals.

III. RESULTS

We first test our method in an arc-typical charge transfer
insulator NiO. We get the following static values of the
Slater integrals F0=7.9 eV, F2=10 eV, and F4=6.7 eV. If
the Hund’s parameter J is computed from F2�F4� we get
J�F2�=1.16 eV�J�F4�=1.24 eV�. When these parameter are
used in LDA+DMFT, the agreement between the theory and
experiment is very good.28 We mention in passing that when
the GW screened interaction and polarization are computed
from the LDA Kohn-Sham states �non-self-consistent GW�
we get slightly smaller interaction strength F0�7.2 eV.

Next we turn to the Coulomb repulsion in BaFe2As2. Fig-
ure 1�a� and 1�b� show the frequency dependence of the
Slater integrals for Fe-3d orbitals on imaginary frequency
axis in linear and log scale, respectively. At very high fre-
quency, the interaction is unscreened and approaches its
atomic value. The density-density Coulomb interaction F0 is
strongly screened in the solid, while the higher multipoles F2
and F4 are much less energy dependent, and almost equal in
solid as in the atom.

The static Coulomb interaction F0 is estimated to be no
less then 5 eV, larger then previously estimated by con-
strained LDA11 and constrained RPA.10 We want to remark
that the self-consistency of GW is important in this material,
because the non-self consistent version of GW leads to
weaker interaction strength F0�3.4 eV.

The higher order multipoles F2 and F4 show only a weak
frequency dependence. The highest multipole F4 is less
screened then F2, and hence a single number J does not
parameterize the form of the Hund’s coupling very well, as
J�F2��J�F4� in Fig. 1�c�. Finally Fig. 1�d� shows that the
Slater parametrization of the GW Coulomb interaction is re-
markably accurate in BaFe2As2, with error less then 6%.

FIG. 1. �Color online� �a� and �b� Slater integrals versus Mat-
subara frequency as computed by fully self-consistent GW method,
�c� corresponding Hund’s coupling strength J, and �d� the difference
between the GW Coulomb interaction and its Slater
parameterization.
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We now turn to the spectral properties of the BaFe2As2.
Earlier five-band model LDA+DMFT calculations15 not
only displayed important mass renormalization at low ener-
gies �m� /m�3−5�, but also showed a sharp lower Hubbard
band. We now perform computations by newly implemented
charge self-consistent LDA+DMFT�CTQMC� method,
based on WIEN2K,29 and explained in detail in Ref. 27. The
GW estimate for the Slater integrals, renormalized by 1 / �1
+��2=0.91 due to elimination of the hybridization with
semicore states, are F0=4.9 eV, F2=6.4 eV, and F4
=4.3 eV. We use the standard localized limit double-
counting, which gives for the valence nd=6.20.05, in per-
fect agreement with GW estimate nd=6.2, hence there is no
uncertainty in appropriateness of the chosen double-counting
correction. The quasiparticle mass renormalization obtained
by DMFT is Z�1 /2 for lighter x2−y2 and z2 orbitals and
Z�1 /3 for heavier xz, yz and zx orbitals.

In Fig. 2�a�, we plot the spectral function A�k ,�� along
the path shown in the inset. There are three circular hole
pockets at � and two electron pockets at M, in agreement
with ARPES30,31 and LDA. The two smaller pockets are de-
generate and their crossing occurs at 0.166� /a and 0.28� /a,
in good agreement with ARPES,9 where the pocket size was
estimated to 0.14� /a and 0.28� /a, respectively. The Fermi
velocities at � point toward X, predicted by our method, are
�0.45 eV Å, more then twice smaller then in LDA. The
velocity is in reasonable agreement with experiment where
somewhat different velocities for the two pockets are esti-
mated to be 0.43 eV Å and 0.32 eV Å.9 We also overlay the
ARPES intensity from Ref. 9 on our spectral dispersion to
emphasize good agreement.

The optical conductivity is also a strong test of the corre-
lation strength, as pointed out in Ref. 2. The strong reduction
of Drude weight and the presence of midinfrared peak at

�0.6 eV was noticed in Refs. 3 and 4. In Fig. 2�b�, we show
optics obtained by LDA and by DMFT, and we compare it to
experimental results of Refs. 4. Although LDA gives a rea-
sonable order of magnitude for optics, it clearly disagrees
with experiments in strength of the Drude peak ��p
�2.6 eV� and position of the mid-infrared peak, coming
from the interband transitions. In contrary our DMFT results
give smaller Drude peak of strength �p=1.6 eV, in very
favorable agreement with experiments.3,4 We also notice
similar width of the Drude peak in DMFT and experiments,
which shows that the most important channel for scattering
in this material is the electron-electron scattering. Finally, the
position of the midinfrared peak, which LDA predicts at fre-
quency �1.2 eV, appears around 0.6 eV in DMFT, in very
favorable agreement with experiment.3,4

To demonstrate the sensitivity of the optical conductivity
to the strength of the correlations, we carried out LDA
+DMFT calculation using parameters of Ref. 10, F0
=2.69 eV, J=0.79 eV, and nd=6.53. The resulting quasipar-
ticle renormalization amplitude is Z�0.6, in very good
agreement with results of Ref. 10. In Fig. 2�b� we show
optical conductivity thus obtained with label DMFT-w. We
noticed that neither Drude peak weight ��p=2.0 eV� nor the
position of the midinfrared peak ��1 eV� is in good agree-
ment with experiments, thus confirming that BaFe2As2
should not be regarded as weakly correlated material.

Finally, Fig. 2�c� shows the temperature dependence of
optical conductivity as obtained by DMFT. While the inter-
band transitions are roughly temperature independent, the
Drude peak width and strength is temperature dependent,
substantially sharpening at 150 K compared to 300 K, which
is the consequence of the coherence incoherence crossover in
this temperature range, discussed in Ref. 32.

Figure 3�a� show the total density of states �DOS� and
Fe-3d partial DOS. Panel �b� shows the As-4p partial DOS.

FIG. 2. �Color online� �a� A�k ,�� of BaFe2As2 at T=150 K as computed by LDA+DMFT. The inset shows the path in momentum
space, while the gray inset shows the ARPES intensity from Ref. 9. �b� Optical conductivity of LDA+DMFT method �DMFT� and its
comparison with experiment of Ref. 4 �exper.�. Also shown is the LDA optical conductivity and LDA+DMFT conductivity with substan-
tially smaller F0 of Ref. 10 �DMFT-w�. The legend contains the strength of the Drude peak, which is broadened only due to electron-electron
interactions. �c� Temperature dependence of the optical conductivity within LDA+DMFT.
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Comparing LDA+DMFT partial DOS to LDA partial DOS,
we notice that apart from the renormalization of the low
energy quasiparticles, and broadening of the high-energy fea-
tures, there is only little difference between LDA and LDA
+DMFT momentum averaged spectral functions. This is in
agreement with x-ray absorption spectroscopy,6 where good
agreement between LDA and the experiments was pointed
out. Given the strong correlation effects present in optics and
low energy ARPES, it is unusual that no clear Hubbard-like
satellites of the atomic like 3d5 state can be identified in local
density of states.

The DMFT valence histogram,33 describing the probabil-
ity of finding each Fe-3d atomic configuration in the solid as
a function of the renormalized energy of the atomic state
sheds light on the unusual metallic state of the iron pnictides.
In a weakly correlated metal, almost all the atomic configu-
rations are significantly present in the ground state of the
solid and their energy vary over the scale of the hybridization
which represents the bandwidth of the metal. In correlated
oxides, on the other hand, only a few atomic states in each
valence have substantial weight, which results in sharp Hub-
bard bands. As shown in Fig. 4, in BaFe2As2, the probability
of the atomic ground state with valence N=6, N=7, and N
=5 is only 0.014, 0.01, and 0.007, respectively. Other states
have smaller probability, but remarkably all atomic states
with valence 5, 6, and 7 have finite probability larger then
0.0005. The large occupancy of the extremely large number
of atomic configurations is reminiscent of an itinerant sys-
tem. On the other hand, unlike the weakly correlated situa-
tion, the spread of the multiplets of the N=5 states, �coming
from the Slater integrals F2 and F4� is �7 eV similarly the
atomic states with N=6 span an energy range of 6.5 eV. This
scale, represents the width of the Hubbard bands and is very
large, much larger than the scale of the hybridization �2. eV�.

We stress that the absence of clear atomiclike satellite
excitations is not due to weak correlations in FeAs materials,
as suggested in Refs. 10–12, but rather due to the strength of
the atomic multiplet splittings and due to the broad band-
width of the highly polarizable As states. This situation,
arises for the parameters determined from the self consistent
GW method. It is significantly different from what is found
in the oxides, and is captured by the charge self-consistent
LDA+DMFT calculation.

IV. CONCLUSION

In conclusion, we introduced a self-consistent approach to
compute the Coulomb interaction which is tailored to be
used with the all-electron DMFT method. It successfully ex-
plains the normal state properties of BaFe2As2, and eluci-
dates the unique nature of the correlations in this material.
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FIG. 3. �Color online� Total and partial density of states of
LDA+DMFT method compared to LDA density of states. FIG. 4. �Color online� The atomic histogram of the Fe-3d shell

for BaFe2As2. The atomic states �all 1024� are sorted according to
their valence N. Below the arrow we also display the multiplet
splitting of the atomic states in each valence. The N=5 and N=6
valences show the largest splitting of 7 and 6.5 eV, resulting in a
very broad lower Hubbard band of the one electron density of
states.
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