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We calculate the electronic structure of Sr2RuO4, treating correlations within dynamical mean-field

theory. The approach successfully reproduces several experimental results and explains the key properties

of this material: the anisotropic mass renormalization of quasiparticles and the crossover into an

incoherent regime above a low temperature scale. While the orbital differentiation originates from

the proximity of the van Hove singularity, strong correlations are caused by the Hund’s coupling.

The generality of this mechanism for other correlated materials is pointed out.
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Fermi-liquid theory describes the low-energy excitations
of metals in terms of quasiparticles, which carry the quan-
tum numbers of a bare electron but have a renormalized
mass m�. Quasiparticles have an infinite lifetime on the
Fermi surface and at temperature T ¼ 0, but otherwise
acquire a finite lifetime @=�. They carry only a fraction
Z of the total spectral weight associated with all single-
particle excitations, as encoded in the spectral function
Aðk; !Þ. A hallmark of strong correlations is that some
of these interaction-induced renormalizations (m�, Z�1, �)
become large.

The concept of a quasiparticle is meaningful only as
long as its inverse lifetime is smaller than the typical
excitation or thermal energy @� & @!, kT. The internal
consistency of Fermi-liquid theory rests on @�� ðkTÞ2=
E�
F � ð@!Þ2=E�

F, due to phase-space constraints. For
temperatures larger than a coherence scale T� (� E�

F=k),
quasiparticles become short-lived and the Landau Fermi-
liquid description no longer applies. Because of strong
correlations, T� can be much lower than the bare electronic
scale EF=k. The description of the incoherent regime
T > T� and of the associated crossover is a major chal-
lenge which requires new concepts and techniques.

Of all transition-metal oxides, the layered perovskite
Sr2RuO4 is undoubtedly the one in which the Fermi-liquid
regime has been most studied [1]. Resistivities obey
accurately a T2 law for T & 30 K [2], despite the large
anisotropy �c=�ab � 103. Sr2RuO4 is also an ideal
material to investigate the crossover into the incoherent
regime. Indeed, at 130 K, �cðTÞ reaches a maximum
and decreases as temperature is further increased, while
the T dependence of �ab remains metallic. Angle-resolved
photoemission spectroscopy (ARPES) studies indicate that
quasiparticle peaks disappear (by broadening and loosing

spectral weight) at a temperature close to that where �c

reaches its maximum [3,4].
The three-sheet Fermi surface of this material has been

accurately determined by quantum oscillation experiments
[1] and is reasonably well described by electronic structure
calculations in the local density approximation (LDA) [5].
On the other hand, the measured masses are not reproduced
by the LDA. Three bands of mainly t2g character cross the

Fermi surface. The broadest (3.5 eV) band of xy character
gives rise to a two-dimensional Fermi surface sheet �. The
degenerate xz and yz orbitals give rise to narrower (1.5 eV)
bands with quasi–one-dimensional Fermi surface sheets
� and �. Experimentally, large and anisotropic mass en-
hancements m�=mLDA are found, namely (3,3.5,5.5) for
sheets �, �, �, respectively [1].
These experimental findings raise several puzzles, un-

resolved to this day. The large effective masses and the
low coherence scale indicate that Sr2RuO4 is a strongly
correlated material. Surprisingly [6], the largest mass en-
hancement is actually observed for the widest (xy) band.
Furthermore, Ru being a 4d element, the screened on-site
repulsion is not expected to be large (U & 3 eV, somewhat
smaller than the bandwidth). In a nutshell, these puzzles
can be loosely summarized by the question: why is
Sr2RuO4 strongly correlated?
In this Letter, we answer these questions in terms of the

electronic structure of the material. Treating correlation
effects within dynamical mean-field theory (DMFT), we
achieve quantitative agreement with experiments. At a
qualitative level, our explanation relies on the Hund’s
coupling J and the proximity of the van Hove singularity
for the xy band. These key elements of our picture, espe-
cially the Hund’s coupling, have general relevance to 4d
transition-metal oxides, as well as to other materials in

PRL 106, 096401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 MARCH 2011

0031-9007=11=106(9)=096401(4) 096401-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.096401


which strong correlation effects are observed but are not
due to a strong Hubbard U or the proximity to a Mott
insulator.

The calculations use the full potential implementation of
LDAþ DMFT as presented in Ref. [7]. The framework of
Ref. [8] gives very similar results. Wannier-like t2g orbitals

are constructed out of Kohn-Sham bands within the energy
window ½�3; 1� eV with respect to the Fermi energy. We
use the full rotationally invariant interaction appropriate
for a correct description of atomic multiplets:

HI¼U
X

m

nm"nm# þ
X

m<n;�

½U0nm�nn ��þðU0 �JÞnm�nn�

�Jcym�cm ��c
y
n ��cn���J

X

m<n

½cym"c
y
m#cn"cn# þH:c:� (1)

where J is the Hund’s coupling constant,U0 ¼ U� 2J and
m, n run over t2g orbitals. Ru eg and O p orbitals are not

explicitly included. The importance of correlations leading
to charge transfer among the orbitals, mass renormaliza-
tions, and satellites was recognized in earlier studies [9].
We use the strong-coupling continuous-time Monte Carlo
impurity solver [10] in order to reach the low-temperature
regime where the coherence-incoherence crossover takes
place [11]. We calculated the interaction parameterU from
first principles using constrained RPA [12]. The interaction
matrix is found to be quite isotropic with U ¼ 2:5 eV for
xy and U ¼ 2:2 eV for xz orbitals. The stronger mass
enhancement of the xy orbital can thus not be explained
by an anisotropy of the interactions [6].

We now turn to results. In Table I we report the mass
enhancements of each orbital, given within DMFT
by m�=mLDA ¼ Z�1jT!0 with Z�1 ¼ 1� @Im�ði!Þ=
@!j!!0þ . The derivative is extracted by fitting a fourth-
order polynomial to the data for the lowest six Matsubara
frequencies. The calculated mass enhancements for
U ¼ 2:3 eV, J ¼ 0:4 eV (used in the remainder of the
Letter [13]) are found to be close to the experiment [1].

Table I demonstrates that the Hund’s coupling is essen-
tial to reproduce the observed magnitude of mass enhance-
ments and the xy-xz differentiation. A comparable mass
enhancement (but without xy-xz differentiation) occurs at
J ¼ 0 only for the unphysically large U ¼ 5 eV. In addi-
tion we find that, by favoring maximal angular momentum,
the Hund’s coupling drives the populations of orbitals

closer to one another (to 1.29 and 1.36, for xy and xz,
respectively) in comparison to the LDA value (1.23,1.39),
hence improving the agreement with quantum oscillations
experiments (� 1:33, 1.33).
To understand the coherence-incoherence crossover,

we display in Fig. 1 the inverse quasiparticle lifetime,
plotted as �=kT vs T, with � ¼ �ZIm�ði0þÞ. At very
low temperatures the Fermi-liquid � / T2 behavior is
indicated (dashed). We define the coherence scale T� by
�ðT�Þ=kT� ¼ 1, but the deviations from T2 law are visible
already at lower temperatures. T� is reported in Table I and
also indicated on Fig. 1. We see that T� is as low as 60 K for
the most correlated xy orbital. At high temperatures T *
T> � 400 K, �=kT saturates, signaling the ‘‘incoherent’’
regime characterized by a quasilinear temperature depen-
dence � / kT. An intermediate crossover region where
�=kT gradually increases connects these two regimes.
How do these regimes reveal themselves when probed

by spectroscopic experiments? The leftmost panel of
Fig. 2 displays an intensity map of the momentum-resolved
spectral function demonstrating that our results compare
well with ARPES [14]. Panels (b) and (c) display the
energy-distribution curves at two specific momenta. In
the ‘‘coherent’’ regime, these spectra display sharp peaks
corresponding to the Fermi surface crossings. Upon in-
creasing temperature the quasiparticle peaks broaden and
above T> cannot be discerned anymore. Note that in
ARPES [3] the peaks disappear already at a somewhat
lower temperature, possibly due to the finite momentum
resolution in experiment.
The crossover scale kT> manifests itself also in the

dependence of the self-energy on frequency, displayed in
the rightmost panels of Fig. 2. We observe that deviations
from the low-frequency Fermi-liquid regime Re��
�ð0Þ þ!ð1� 1=ZÞ, Im��!2 þ ð�TÞ2 appear at an en-
ergy scale of order 40 meV� kT>, at which a ‘‘kink’’ [15]
is observed in Re�ð!Þ. Such a feature at that energy scale
is indeed reported in ARPES (Fig. 2) [16,17].
The crossover also affects the magnetic response. On

Fig. 3(a) we display the orbitally resolved uniform

TABLE I. Mass enhancement of the xy and xz orbitals, as a
function of Hund’s coupling, for U ¼ 2:3 eV. Other columns:
coherence temperatures as defined in the text.

J [eV] m�=mLDAjxy m�=mLDAjxz T�
xy [K] T�

xz [K] T> [K]

0.0, 0.1 1.7 1.7 >1000 >1000 >1000
0.2 2.3 2.0 300 800 >1000
0.3 3.2 2.4 100 300 500

0.4 4.5 3.3 60 150 350

0 100 200 300 400 500 600
T [K]
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FIG. 1 (color online). Temperature dependence of �=kT, with
@=� the quasiparticle lifetime. The shading indicates the ‘‘co-
herent’’ regime with long-lived quasiparticles such that � & kT.
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magnetic susceptibilities and compare them to the NMR
Knight shift measurements [18]. Saturation to a Pauli
magnetic susceptibility is observed only below T�
(shaded). The stronger temperature dependence of the xy
orbital related to T�

xy < T�
xz is reproduced well. The total

low-temperature uniform susceptibility (1:2 emu=mol) is
within the estimated error (� 30% [18]) of the thermody-
namic measurements (0:9 emu=mol) [19]) [20]. We also
calculated the local susceptibility (inset) and found that it
is larger than the uniform one, especially for the xz orbital
[21]. This signals antiferromagnetic correlations, in agree-
ment with experimental observations [22].

In Fig. 3(b) we display lim!!0

P
q Im�ðq;!Þ=! and

compare to the NMR data for 1=T1T (we used the values
of hyperfine couplings from Refs. [22,23]). There, the data
saturate only well below T�, illustrating that the Fermi-
liquid behavior in two-particle properties is more fragile
than in single-particle ones. Indeed, in the well-known
Kondo problem the Kondo resonance persists at tempera-
tures up to 2TK while the magnetic susceptibility saturates
to a Pauli form only below TK=5.

Having demonstrated that the LDAþ DMFT results
agree with experimental data, we turn to theoretical
insights. In DMFT the local physics is revealed by solving
an impurity model (atomþ bath) with atomic interactions
given by Eq. (1). This can be rewritten as HI ¼ ðU� 3JÞ
nðn� 1Þ=2� 2JS2 � ðJ=2ÞT2, where S is the total spin
and T is the total angular momentum [24]. The four-
electrons subspace separates into five T ¼ 2, S ¼ 0 states,
a single T ¼ 0, S ¼ 0 state and nine T ¼ 1, S ¼ 1 states.
At J ¼ 0 all these states are degenerate and form a 15-
dimensional representation of an SUð6Þ symmetry group.
This high degeneracy results in a very high coherence scale
�0:5 eV and small mass renormalizations (see Table I).
The Hund’s coupling J lowers the SUð6Þ symmetry down

to SUð2Þspin � SUð2Þorbit with the ninefold degenerate

atomic multiplet S ¼ 1, T ¼ 1 having lowest energy. The
ground state of the impurity model is nondegenerate with
S ¼ 0, T ¼ 0 corresponding to exact screening of this
atomic multiplet [24]. Thus Sr2RuO4 is a Fermi liquid.
The Hund’s coupling projects the spin degrees of freedom
onto a low-energy manifold characterized by a reduced
Kondo coupling, resulting in a suppressed Kondo scale
[25,26]. The effective low-energy model is in our case a
S ¼ 1 Kondo model. Indeed, the inset of Fig. 3(a) demon-
strates that at low T the LDAþ DMFT result for �loc: is fit
well by the S ¼ 1 Kondo model Bethe ansatz curve [27].
The dramatic reduction of coherence scale as a result of the
Hund’s coupling has been noted before in impurity models
[25,26], DMFT studies of model Hamiltonians [28,29], and
for iron pnictides [30]. It occurs whenever multiplet corre-
lations persist while the on-siteU is strongly screened (due

FIG. 2 (color online). (a) Intensity map of the spectral function Aðk;!Þ along � ! M for 0:55�=a � kx � 1:05�=a, ky ¼ 0 at
T ¼ 60 K compared to ARPES [14]. (b),(c) Spectral line shapes at wave vectors k1, k2 compared to ARPES [3]. (d),(e) Im�ð!þ i0þÞ
and Re�ð!þ i0þÞ for xz orbital at T ¼ 60 K obtained by stochastic maximum entropy (plain line) and Pade approximants (dashed)
compared to ARPES [16]. Also indicated (cross, dotted line) are the low-! behavior from a polynomial fit.

FIG. 3 (color online). (a) The uniform susceptibility �mðq ¼
0Þ for each orbital, m ¼ xy, xz. (Inset) Total local susceptibility
�loc ¼

P
qm�mðqÞ compared to that of the S ¼ 1 Kondo model.

(b) lim!!0

P
q Im�ðq; wÞ=! compared to NMR [18].
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to the large spatial extension of the correlated orbital as in
4d transition-metal oxides, or the large polarizability of
screening orbitals as in pnictides).

The origin of the larger xy effective mass can be traced
to the proximity of the van Hove singularity. Higher den-
sity of states near the Fermi level implies weaker disper-
sion and in turn reflects in a lower value of the respective
hybridization function �ði!Þ at low frequencies (Fig. 4).
Indeed, ignoring the self-consistency (i.e., on the first

DMFT iteration), Im�ð1Þði0þÞ ¼ ���F=½ReGlocði0þÞ2 þ
ð��FÞ2� ’ �1=ð��FÞ with �F the LDA density of states at
the Fermi level. The large value of �F thus corresponds to a
suppressed low-energy effective hopping [31]. In contrast,
the full bandwidth is larger for the xy, and so is the LDA
kinetic energy (0.27 eV for xy, 0.20 eV for xz). This reflects
in the high-frequency behavior of the hybridization, indeed
larger for xy at high frequency. Note that the degree of
correlation cannot be guessed from the kinetic energy or
bandwidth of each band, which would naively suggest a
smaller mass for xy, in contrast to observations.

In summary, we have demonstrated that several experi-
mental results for Sr2RuO4 are well reproduced by the
LDAþ DMFT method. We have shown that the suppres-
sion of the coherence scale is due to the Hund’s coupling,
and pointed out the generality of this mechanism. We have
also shown that the orbital differentiation and larger xy
mass is due to the difference in low-energy hybridization
properties of each orbital, caused by their orientation-
dependent bonding properties in this anisotropic material.
This is expected to be relevant to other layered perovskites,
most notably to the metal-insulator transition in
Ca2�xSrxRuO4.
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